研究生: |
管金宏 Chin - Hung Kuan |
---|---|
論文名稱: |
混合機器學習模型運用於特徵選取與農業產出預測之研究 Application of Hybrid Machine Learning Models to Feature Selection and Agricultural Output Prediction |
指導教授: |
呂永和
Yung-Ho Leu 李建邦 Chien-Pang Lee |
口試委員: |
李建邦
Chien-Pang Lee 楊維寧 Wei-Ning Yang 林伯慎 Bor-Shen Lin 陳雲岫 Yun-Shiow Chen |
學位類別: |
博士 Doctor |
系所名稱: |
管理學院 - 資訊管理系 Department of Information Management |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 農業產量預測 、支援廻量廻歸 、遺傳演算法 、蜜蜂最佳化 、混合模型 |
外文關鍵詞: | agricultural output prediction, support vector regression, genetic algorithms, honey bees optimization, hybrid model |
相關次數: | 點閱:313 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
長期以來,全球氣候變遷對農業生產產生了深遠影響。不幸的是,最近的冠狀病毒大流行和俄烏戰爭進一步加劇了農業產出的短缺。因此,各國政府不可能根據過去的經驗制定好的農業政策。然而,一個好的預測工具可以幫助政府將歷史數據轉化為有用的資訊,從而簡化農業決策。
基於上述原因,我們提出了兩種混合機器學習預測模型。混合模型I是一個由支援向量廻歸和基因演算法用於預測台灣地區水稻產量的組成。在此模型中,我們利用台灣中央氣象局的氣象數據和地理區域因素來預測2003年至2019年台灣水稻產量。實驗結果顯示:(1) 影響水稻產量的氣候因素包括總日照時數、降雨天數和溫度;(2) 混合模型I用於不同的地理區域,皆有很高的預測精度;(3) 混合模型Ⅰ對水稻產量的預測更可靠、更穩定。
混合模型II是蜜蜂最佳化演算法和支持向量廻歸的混合模型,用於減輕高度波動數據的影響,從而提高預測的準確性。在此模型中,我們使用從台灣行政院農業委員會統計年鑑中收集的年度農業總產值(台灣年度農業總產值,包括農產品、畜禽產品、水產品和林產品)來驗證混合模型 II 的效能。結果證實,所提出的模型比其他模型更準確地預測長期農業產值。因此,混合模型II是一個具有高預測精度的穩健模型,可以幫助農業從業者制定提高農業產值的政策。
Abstract
For a long time, climate change around the world has profoundly impacted agriculture output. Unfortunately, the recent coronavirus pandemic and Russian-Ukrainian War have further aggravated the shortage of agricultural output. Therefore, governments of different countries cannot make good agricultural policies according to their past experiences. However, a good forecasting tool may help the government to convert historical data into useful information to ease decision-making in agriculture.
Therefore, we propose two hybrid machine-learning prediction models. The hybrid model I consists of a Support Vector Regression model and a Genetic Algorithm for predicting rice production in Taiwan. In this model, we used meteorological data from the Central Weather Bureau of Taiwan and the geographic region factors to predict rice production in Taiwan from 2003 to 2019. The experimental results showed that: (1) the climatic factors affecting rice yield included total sunshine hours, rainfall days, and temperature; (2) the hybrid model I had high prediction accuracy for different geographical regions; and (3) rice yield prediction using the hybrid model I were more reliable and stable.
The hybrid model II is a hybrid model of Honey Bees Optimization algorithm and Support Vector Regression, which is used to mitigate the effect of highly volatile data and thus improve the accuracy of prediction. In this model, we validated the performance of the hybrid model II by using the annual total agricultural output values (annual total agricultural output values in Taiwan including agricultural products, livestock and poultry products, aquatic products, and forest products) collected from the official agricultural statistical yearbook of Taiwan Council of Agriculture. The results confirmed that the proposed model predicted long-term agricultural output more accurately than other models. Thus, the hybrid model II is a robust model with high prediction accuracy that can assist agricultural practitioners in making policies for improving agricultural output prediction.
參考文獻
[1] FAO. FAO Food Price Index; 2022.
[2] European Council Council of the European Union. Food security and affordability. Availableonline:https://www.consilium.europa.eu/en/policies/food-security-and-affordability/
[3] Scuderi, A.; La Via, G.; Timpanaro, G.; Sturiale, L., The Digital Applications of “Agriculture 4.0”: Strategic Opportunity for the Development of the Italian Citrus Chain. Agriculture, 12, 400, 2022.
[4] Cheng, Z.; Lu, Z. Regression-Based Correction and I-PSO-Based Optimization of HMCVT's Speed Regulating Characteristics for Agricultural Machinery. Agriculture, 12, 580, 2022.
[5] Gommes, R., A. Challinor, H. Das, M. A. Dawod, L. Mariani, B. Tychon, R. Krüger, U. Otte, R. E. R. Vega and W. Trampf, Guide to Agricultural Meteorological Practices. World Meteorological Organization, No. 134, 2010 .
[6] Oerke, E.C., H.W. Dehne, F. Schonbeck and A. Weber. “Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops.” Elsevier, 2012.
[7] Yoshida, S. and F.T. Parao. “Climatic Influence on Yield and Yield Components of Lowland Rice in the Tropics.”, Climate and Rice, 20, 471-494 , 1976.
[8] L ansigan, F.P., W.L. De los Santos and J.L.O. Coladilla, “Agronomic Impacts of Climate Variability on Rice Production in the Philippines.” Agricultural Ecosystems and Environment, 82(1), 129-137, 2000.
[9] Our World in Data. Available online: www.ourworldindata.org, accessed on 4 December, 2020
[10] Betts, R.A.; Alfieri, L.; Bradshaw, C.; Caeser, J.; Feyen, L.; Friedlingstein, P.; Gohar, L.; Koutroulis, A.; Lewis, K.; Morfopoulos, C.; et al. Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5 ◦C and 2 ◦C global warming with a higher-resolution global climate model. Phil. Trans. R. Soc. A, 376, 20160452, 2018. [CrossRef] [PubMed]
[11] World Population Review. Walnut, United States. Available online: www.worldpopulationreview.com ,accessed on 12 May 2020.
[12] Alexandratos, N.; Bruinsma, J. World Agriculture: Towards 2030/2050; ESA Working Paper, No. 12–03; FAO: Rome, Italy, 2012.
[13] Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science, 333, 616–620, 2011. [CrossRef]
[14] Malhi, G.S.; Kaur, M.; Kaushik, P.; Alyemeni, M.N.; Alsahli, A.; Ahmad, P. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi J. Biol. Sci., 2020. [CrossRef]
[15] S. M. Say, M. Keskin, M. Sehri, and Y. E. Sekerli, “Adoption of precision agriculture technologies in developed and developing countries,” The Online Journal of Science and Technology, vol. 8, no. 1, pp. 7-15, 2018. Article (Web Link).
[16] S. L. Ou, “Forecasting agricultural output with an improved grey forecasting model based on the genetic algorithm,” Computers and Electronics in Agriculture, vol. 85, pp. 33-39, 2012. Article (CrossRef Link).
[17] C. P. Lee, “Reduced the Risk in Agriculture Management for Government Using Support Vector Regression with Dynamic Optimization Parameters,” Lex Localis, vol. 15, pp. 243-261, 2017. Article (CrossRef Link).
[18] I. Yunita, G. Taib, and R. A. Hadiguna, “Coffee bean supply chain strategy: the case of trading institution and profit margin for pioneer coffee commodities in Indonesia,” International Journal of Agriculture Innovation, Technology and Globalisation, vol. 1, no. 1, pp. 57-66, 2019. Article (CrossRef Link).
[19] T. Jheng, T. Li, and C. Lee, “Using hybrid support vector regression to predict agricultural output,” in 27th Wireless and Optical Communication Conference (WOCC) , pp. 1-3, 2018. Article (CrossRef Link).
[20] C. P. Lee, G. J. Shieh, T. J. Yiu, and B. J. Kuo, “The strategy to simulate the cross-pollination rate for the co-existence of genetically modified (GM) and non-GM crops by using FPSOSVR,” Chemometrics and Intelligent Laboratory Systems, vol. 122, pp. 50-57, 2013. Article (CrossRef Link).
[21] Y. Chung, D. Choi, H. Choi, D. Park, H.-H. Chang, and S. Kim, “Automated Detection of Cattle Mounting using Side-View Camera,” KSII Transactions on Internet and Information Systems, vol. 9, no. 8, pp. 3151-3168, 2015. Article (CrossRef Link).
[22] Sun, Y.; Zhang, S.; Tao, F.; Aboelenein, R.; Amer, A. Improving Winter Wheat Yield Forecasting Based on Multi-Source Data and Machine Learning. Agriculture, 12, 571, 2022.
[23] Priyadarshini, P.; Abhilash, P.C. Agri-food systems in India: Concerns and policy recommendations for building resilience in post COVID-19 pandemic times. Global Food Security, 29, 100537, 2021. doi:https://doi.org/10.1016/j.gfs.2021.100537.
[24] Marengo, J.A.; Galdos, M.V.; Challinor, A.; Cunha, A.P.; Marin, F.R.; Vianna, M.d.S.; Alvala, R.C.S.; Alves, L.M.; Moraes, O.L.; Bender, F. Drought in Northeast Brazil: A review of agricultural and policy adaptation options for food security. Climate Resilience and Sustainability , 1, e17, 2022. doi:https://doi.org/10.1002/cli2.17
[25] Pang, J.; Li, X.; Li, X.; Yang, T.; Li, Y.; Chen, X. Analysis of Regional Differences and Factors Influencing the Intensity of Agricultural Water in China. Agriculture, 12, 546, 2022.
[26] Chang, T.Y. The influence of agricultural policies on agriculture structure adjustment in Taiwan. China Agricultural Economic Review, 3, 67-79, 2011. doi:10.1108/17561371111103552.
[27] Darekar, A.; Reddy, A.A. Cotton price forecasting in major producing states. Econ. Aff, 62, 373–378, 2017.
[28] Assis, K.; Amran, A.; Remali, Y. Forecasting cocoa bean prices using univariate time series models. Res. World, 1, 71, 2010.
[29] Gu, Y.H.; Jin, D.; Yin, H.; Zheng, R.; Piao, X.; Yoo, S.J. Forecasting Agricultural Commodity Prices Using Dual Input Attention LSTM. Agriculture, 12, 256, 2022.
[30] Lee, C.-P.; Shieh, G.-J.; Yiu, T.-J.; Kuo, B.-J. The strategy to simulate the cross-pollination rate for the co-existence of genetically modified (GM) and non-GM crops by using FPSOSVR. Chemometrics and Intelligent Laboratory Systems, 122, 50-57, 2013. doi:https://doi.org/10.1016/j.chemolab.2013.01.002.
[31] Jheng, T.; Li, T.; Lee, C. Using hybrid support vector regression to predict agricultural output. In Proceedings of the 27th Wireless and Optical Communication Conference (WOCC), 30 April-1 May 2018, pp. 1-3, 2018.
[32] Liu, L.-W.; Hsieh, S.-H.; Lin, S.-J.; Wang, Y.-M.; Lin, W.-S. Rice Blast (Magnaporthe oryzae) Occurrence Prediction and the Key Factor Sensitivity Analysis by Machine Learning. Agronomy, 11, 771, 2021.
[33] Liu, L.-W.; Lu, C.-T.; Wang, Y.-M.; Lin, K.-H.; Ma, X.; Lin, W.-S. Rice (Oryza sativa L.) Growth Modeling Based on Growth Degree Day (GDD) and Artificial Intelligence Algorithms. Agriculture, 12, 59, 2022.
[34] N. Mahmood, B. Ahmad, S. Hassan and K. Bakhsh, IMPACT OF TEMPERATURE ADN PRECIPITATION ON RICE PRODUCTIVITY IN RICE-WHEAT CROPPING SYSTEM OF PUNJAB PROVINCE, The Journal of Animal & Plant Sciences, 22(4), pp. 993-997, 2012. ISSN: 1018-7081
[35] Sushila, K., Bioeconomic modeling of climate change on crop production in India, 2001. Available online at ww.ecomod.org/files/papers/370.pdf
[36] Kayam, Y., U. Ozsoy, J. Lomas, O. Oden, M. Mandel and M. Gurbuz, The impact of climatic change on wheat production of Aegean region in Turkey: The effect of a reduction of rainfall and the increase of temperature on wheat yields, 2000. Available online at http://www.fao.org/sd/climagrimed/pdf/ws01_2 6.pdf
[37] Saseendran, S. A., K. K. Singh, L. S. Rathore, S. V. Singh and S. K. Sinha, Effects of climate change on rice production in the tropical humid climate of Kerala, India. Climate. Change. 44:495-514, 2000..
[38] Castro, C.A.d.O.; Resende, R.T.; Kuki, K.N.; Carneiro, V.Q.; Marcatti, G.E.; Cruz, C.D.; Motoike, S.Y. High-performance prediction of macauba fruit biomass for agricultural and industrial purposes using Artificial Neural Networks. Industrial Crops and Products, 108, 806-813, 2017. doi:https://doi.org/10.1016/j.indcrop.2017.07.031.
[39] Shen, Y.; Mercatoris, B.; Cao, Z.; Kwan, P.; Guo, L.; Yao, H.; Cheng, Q. Improving Wheat Yield Prediction Accuracy Using LSTM-RF Framework Based on UAV Thermal Infrared and Multispectral Imagery. Agriculture, 12, 892, 2022.
[40] Tian, H.; Wang, P.; Tansey, K.; Zhang, J.; Zhang, S.; Li, H. An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China. Agricultural and Forest Meteorology, 310, 108629, 2021. doi:https://doi.org/10.1016/j.agrformet.2021.108629.
[41] R. Debnath, T. Kurita, An Evolutionary Approach for Gene Selection and Classification of Microarray Data Based on SVM Error-Bound Theories, Biosystems, In Press, Accepted Manuscript, 2010.
[42] H.-H. Liu, C.-. Ong, Variable selection in clustering for marketing segmentation using genetic algorithms, Expert Systems with Applications, 34, 502–510, 2008.
[43] K.-J. Kim, Artificial neural networks with evolutionary instance selection for financial forecasting, Expert Systems with Applications, 30, 519–526, 2006.
[44] K.-J. Kim, I. Han1, Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index, Expert Systems with Applications, 19, 125–132, 2000.
[45] T. Y. Chang, “The influence of agricultural policies on agriculture structure adjustment in Taiwan: An analysis of off‐farm labor movement,” China Agricultural Economic Review, vol. 3, no. 1, pp. 67-79, 2011. Article (CrossRef Link).
[46] N. M. Ranka and L. Sharma, “Design of experiments: a powerful tool for agriculture analysis,” Elixir Statistics, vol. 52, pp. 11356-11358, 2012. Article (Web Link).
[47] D. J. Street, “Fisher's Contributions to Agricultural Statistics,” Biometrics, vol. 46, no. 4, pp. 937-945, 1990. Article (CrossRef Link).
[48] M. Kaul, R. L. Hill, and C. Walthall, “Artificial neural networks for corn and soybean yield prediction,” Agricultural Systems, vol. 85, no. 1, pp. 1-18, 2005. Article (CrossRef Link).
[49] R. Mano and C. Nhemachena, “Assessment of the Economic Impacts of Climate Change on Agriculture in Zimbabwe: A Ricardian Approach,” The World Bank, Policy Research Working Paper Series, 2007. Article (Web Link).
[50] J. Y. Shin, K. R. Kim, and J. C. Ha, “Seasonal forecasting of daily mean air temperatures using a coupled global climate model and machine learning algorithm for field-scale agricultural management,” Agricultural and Forest Meteorology, vol. 281, pp. 107858, 2020. Article (CrossRef Link).
[51] Y. Tian, Y. P. Xu, and G. Wang, “Agricultural drought prediction using climate indices based on Support Vector Regression in Xiangjiang River basin,” Science of The Total Environment, vol. 622-623, pp. 710-720, 2018. Article (CrossRef Link).
[52] J. Holland, Adaptation in natural and artificial systems, University of Michigan Press, 1975.
[53] L. Li, T.A. Darden, C.R. Weingberg, A.J. Levine, L.G. Pedersen, Gene Assessment and Sample Classification for Gene Expression Data Using a Genetic Algorithm / k-nearest Neighbor Method, Combinatorial Chemistry & High Throughput Screening, 4, 727-739, 2001.
[54] D. Liu, T. Shi, J.A. DiDonato, J.D. Carpten, J. Zhu, Z.-H. Duan, Application of genetic algorithm/k-nearest neighbor method to the classification of renal cell carcinoma, in: Computational Systems Bioinformatics Conference, 2004. CSB 2004. Proceedings. 2004 IEEE, pp. 558-559, 2004.
[55] B. Babar, L. T. Luppino, T. Boström, and S. N. Anfinsen, “Random forest regression for improved mapping of solar irradiance at high latitudes,” Solar Energy, vol. 198, pp. 81-92, 2020. Article (CrossRef Link).
[56] K. Millard and M. Richardson, “On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping,” Remote Sensing, vol. 7, no. 7, pp. 8489-8515, 2015. Article (CrossRef Link).
[57] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, 2001. Article (CrossRef Link).
[58] E. Izquierdo-Verdiguier and R. Zurita-Milla, “An evaluation of Guided Regularized Random Forest for classification and regression tasks in remote sensing,” International Journal of Applied Earth Observation and Geoinformation, vol. 88, pp. 102051, 2020. Article (CrossRef Link).
[59] J. C. W. Chan and D. Paelinckx, “Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery,” Remote Sensing of Environment, vol. 112, no. 6, pp. 2999-3011, 2008. Article (CrossRef Link).
[60] D. C. Lo, C. C. Wei, and E. P. Tsai, “Parameter Automatic Calibration Approach for Neural-Network-Based Cyclonic Precipitation Forecast Models,” Water, vol. 7, no. 7, pp. 3963-3977, 2015. Article (CrossRef Link).
[61] G. M. Mulualem and Y.-A. Liou, “Application of Artificial Neural Networks in Forecasting a Standardized Precipitation Evapotranspiration Index for the Upper Blue Nile Basin,” Water, vol. 12, no. 3, p. 643, 2020. Article (CrossRef Link).
[62] C. C. Yang, Y. Leu, and C. P. Lee, “A Dynamic Weighted Distancedbased Fuzzy Time Series Neural Network with Bootstrap Model for Option Price Forecasting,” Romanian Journal of Economic Forecasting, no. 2, pp. 115-129, 2014. Article (Web Link).
[63] J. H. Friedman, “Multivariate Adaptive Regression Splines,” The Annals of Statistics, vol. 19, no. 1, pp. 1-67, 67, 1991. Article (CrossRef Link).
[64] W. Zhang and A. T. C. Goh, “Multivariate adaptive regression splines and neural network models for prediction of pile drivability,” Geoscience Frontiers, vol. 7, no. 1, pp. 45-52, 2016. Article (CrossRef Link).
[65] S. Xu et al., “Spatial Downscaling of Land Surface Temperature Based on a Multi-Factor Geographically Weighted Machine Learning Model,” Remote Sensing, vol. 13, no. 6, p. 1186, 2021. Article (CrossRef Link).
[66] C.-P. Lee, W.-C. Lin, and C.-C. Yang, “A strategy for forecasting option price using fuzzy time series and least square support vector regression with a bootstrap model,” Scientia Iranica, vol. 21, no. 3, pp. 815-825, 2014. Article (Web Link).
[67] A. Gani, K. Mohammadi, S. Shamshirband, T. A. Altameem, D. Petković, and S. Ch, “A combined method to estimate wind speed distribution based on integrating the support vector machine with firefly algorithm,” Environmental Progress & Sustainable Energy, vol. 35, no. 3, pp. 867-875, 2016. Article (CrossRef Link).
[68] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273-297, 1995. Article (CrossRef Link).
[69] A. Jaafari and H. R. Pourghasemi, “28 - Factors Influencing Regional-Scale Wildfire Probability in Iran: An Application of Random Forest and Support Vector Machine,” in Spatial Modeling in GIS and R for Earth and Environmental Sciences, H. R. Pourghasemi and C. Gokceoglu Eds.: Elsevier, pp. 607-619, 2019. Article (CrossRef Link).
[70] H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, “Support Vector Regression Machines,” presented at the Neural Information Processing Systems (NIPS), 1996. Article (Web Link).
[71] D. Basak, S. Pal, and D. C. Patranabis, “Support Vector Regression,” 2007. Article (Web Link).
[72] C. H. Huang, F. H. Yang, and C. P. Lee, “The strategy of investment in the stock market using modified support vector regression model,” Scientia Iranica, vol. 25, no. 3, pp. 1629-1640, 2018. Article (CrossRef Link).
[73] Abbass, H.A. MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach. In Proceedings of the Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), 27-30 May 2001, pp. 207-214 vol. 201, 2001.
[74]. Curkovic, P.; Jerbic, B. Honey-Bees Optimization Algorithm Applied to Path Planning Problem. International Journal of Simulation Modelling, 6,154-164, 2007.
[75] Celik, Y.; Ulker, E. An Improved Marriage in Honey Bees Optimization Algorithm for Single Objective Unconstrained Optimization. The Scientific World Journal, 370172, 2013. doi:10.1155/2013/370172.
[76]. Celik, Y.; Ülker, E. A marriage in honey bee Ooptimisation approach to the asymmetric Travelling salesman problem. International Journal of Innovative Computing, Information and Control, 8, 4123-4132, 2012.
[77] C. P. Lee and Y. Leu, “A novel hybrid feature selection method for microarray data analysis,” Applied Soft Computing, vol. 11, no. 1, pp. 208-213, 2011. Article (CrossRef Link).
[78] S. H. Wu, “Forecasting of Typhoon Path Raided in Taiwan by Using Neural Network Models,” Department of Civil Engineering, National Pingtung University of Science and Technology, 2014. Article (Web Link).
[79] Ou, S.-L. Forecasting agricultural output with an improved grey forecasting model based on the genetic algorithm. Computers and Electronics in Agriculture , 85, 33-39, 2012. doi:https://doi.org/10.1016/j.compag.2012.03.007.
[80] Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicina (Kaunas), 56, 455, 2020. doi:10.3390/medicina56090455.
[81] Chen, X.-Z.; Chang, C.-M.; Yu, C.-W.; Chen, Y.-L. A Real-Time Vehicle Detection System under Various Bad Weather Conditions Based on a Deep Learning Model without Retraining. Sensors, 20, 5731, 2020.
[82] Klabjan, D.; Zhu, X. Neural Network Retraining for Model Serving; arXiv ,2020.
[83] Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. In Proceedings of the Proceedings of the 9th International Conference on Neural Information Processing Systems, Denver, Colorado, pp. 155–161, 1996.
[84] Lee, C.-P. Reduced the Risk in Agriculture Management for Government Using Support Vector Regression with Dynamic Optimization Parameters. Lex Localis, 15, 243-261, 2017. doi:https://doi.org/10.4335/15.2.243-261(2017).
[85] Tian, Y.; Xu, Y.-P.; Wang, G. Agricultural drought prediction using climate indices based on Support Vector Regression in Xiangjiang River basin. Science of The Total Environment, 622-623, 710-720, 2018 . doi:https://doi.org/10.1016/j.scitotenv.2017.12.025.
[86] Alotaibi, M. Hybrid metaheuristic technique for optimal container resource allocation in cloud. Computer Communications, 191, 477-485, 2022. doi:https://doi.org/10.1016/j.comcom.2022.04.012.
[87] Li, L.; Vyth, J. Effects of Different Worker Heuristics in Marriage in Honey Bees Optimization : As Applied to the Graph Coloring Problem. Student thesis, 2018.
[88] Prabhakar, S.K.; Lee, S. Transformation Based Tri-Level Feature Selection Approach Using Wavelets and Swarm Computing for Prostate Cancer Classification. IEEE Access, 8, 127462-127476, 2020. doi:10.1109/ACCESS.2020.3006197.
[89] COA. Agricultural Statistics Yearbook. Available online: https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx
[90] Huang, C.-H.; Yang, F.-H.; Lee, C.-P. The strategy of investment in the stock market using modified supportvector regression model. Scientia Iranica, 25, 1629-1640, 2018. doi:10.24200/sci.2017.4440.
[91] Liu, J.; Hu, Y.X. Support Vector Regression with Kernel Mahalanobis Measure for Financial Forecast. Intelligent Systems Reference Library, 47, 215-227, 2013. doi:10.1007/1007/978-3-642-33439-9_10.
[92] Lee, C.-P.; Lin, W.-C.; Yang, C.-C. A strategy for forecasting option price using fuzzy time series and least square support vector regression with a bootstrap model. Scientia Iranica, 21, 815-825, 2014.
[93] Yang, C.-C.; Leu, Y.; Lee, C.-P. A Dynamic Weighted Distancedbased Fuzzy Time Series Neural Network with Bootstrap Model for Option Price Forecasting. Romanian Journal of Economic Forecasting, 115-129, 2014, .
[94] Ahlburg, D.A. How Accurate are the U.S. Bureau of the Census Projections of Total Live Births? Journal of Forecasting, 1, 365-374, 1982. doi:https://doi.org/10.1002/for.3980010404.
[95] Cao, L.; Liu, H.; Fu, X.; Zhang, Z.; Shen, X.; Ruan, H. Comparison of UAV LiDAR and Digital Aerial Photogrammetry Point Clouds for Estimating Forest Structural Attributes in Subtropical Planted Forests. Forests, 10, 2019. doi:10.3390/f10020145.
[96] Liu, L.-W.; Wang, Y.-M. Modelling Reservoir Turbidity Using Landsat 8 Satellite Imagery by Gene Expression Programming. Water, 11, 2019. doi:10.3390/w11071479.
[97] Leu, Y.; Lee, C.-P.; Jou, Y.-Z. A distance-based fuzzy time series model for exchange rates forecasting. Expert Systems with Applications, 36, 8107-8114, 2009. doi:https://doi.org/10.1016/j.eswa.2008.10.034.
[98] Chen, H.; Wan, Q.; Wang, Y. Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models. Energies, 7, 4185-4198, 2014.
[99] Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. Journal of Business & Economic Statistics, 13, 253-263, 1995. doi:10.1080/07350015.1995.10524599.
[100] DeLurgio, S.A. Forecasting Principles and Applications, 1st ed.; Irwin/McGraw-Hill: New York, 1998.
[101] Aworka, R.; Cedric, L.S.; Adoni, W.Y.H.; Zoueu, J.T.; MutoHBO, F.K.; Kimpolo, C.L.M.; Nahhal, T.; Krichen, M. Agricultural decision system based on advanced machine learning models for yield prediction: Case of East African countries. Smart, Agricultural Technology, 2, 100048, 2022. doi:https://doi.org/10.1016/j.atech.2022.100048
[102] Parviz, L. Assessing accuracy of barley yield forecasting with integration of climate variables and support vector regression, 73, 12, 2019. doi:10.17951/c.2018.73.1.19-30.
[103] Ksieniewicz, P.; Woźniak, M.; Cyganek, B.; Kasprzak, A.; Walkowiak, K. Data stream classification using active learned neural networks. Neurocomputing, 353, 74-82, 2019. doi:https://doi.org/10.1016/j.neucom.2018.05.130.
[104] FAO, “Crop Prospects and Food Situation,” 2008. Article (Web Link).
[105] Peng, S., J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush and K. G. Cassman, Rice yield decline with higher night temperature from global warming. PNAS 101:9971-9975, 2004.
[106] Bradley Boehmke & Brandon Greenwell, Hands-On Machine Learning with R, Taylor & Francis Group, 2022.