簡易檢索 / 詳目顯示

研究生: 杜柏賢
Bo-Shian Tu
論文名稱: 可攜帶拍照式足底壓力分佈量測設備開發與驗證
Development and Validation of Portable Camera-type Foot Pressure Measurement System
指導教授: 林上智
Shang-Chih Lin
口試委員: 許昕
林淵翔
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 74
中文關鍵詞: 足底壓力分佈量測系統足弓指數足底壓力灰階值
外文關鍵詞: Foot pressure measurement system,, Arch index, Plantar pressure, Grayscale
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

足部作為人體支撐人體重要的部位,也是大多數人時常忽略的地方,大部分都是等到有不適或已經影響生活了才進行檢查發現問題,若能提早了解自身的足部狀況及可以提早改善本身足部的問題,目前市面上常見的足底壓力量測設備多為機型龐大以及價格昂貴、不便於移動的設備,因此本研究為建立一種可攜帶式方便操作的足壓分部量測系統。
本系統包含了量測底板、量測機台、移動端應用程式、影像處理程式、雲端伺服器,在使用者採踏完成後會透過量測底板上的矽膠薄膜沾黏紀錄足部拓印,並使用移動端應用程式控制量測機台拍攝於底板足部拓印圖片,再將圖片上傳至雲端伺服器進行運算,計算完成的足弓指數與足底分佈報告圖回傳至移動端應用程式上,並且同步儲存於雲端伺服器資料庫內,提供使用者做為後續追蹤。
實驗方法為請受測者分別量測對這組設備以及以不同踩踏方式使用本設備進行靜態足壓量測,對照組設備為F-Scan系統。實驗目的為驗證本設備效果及未來發展的方向,進行三項實驗數據統計,以不同踩踏方式使用本設備進行量測是否有差異,將踩踏量測底板分成五種方式並比較量測結果是否有差異;使用本設備量測與使用對照組設備量測足弓指數是否有差異,比較受測者使用本設備進行量測與使用對造組設備進行量測之差異,以驗證本設備之準確性;足底面積比例與足底壓力比例是否具有相關係數關係,為了解是否能以面積分佈狀況計算壓力分佈情形。
本實驗結果顯示在不同踩踏方式下進行量測面積無差異但壓力分佈上有顯著差異,本設備與對照組設備在量測足弓指數上無顯著差異,足底面積比例與足底壓力比例不具有高度相關係數關係。

關鍵字:足底壓力分佈量測系統、足弓指數、足底壓力、灰階值


The foot as an important part of the human body to support the human body, but also most people often ignore the place, most people wait until there is discomfort or has affected the life of the inspection to find the problem, if you can understand the condition of their own feet and can be early to improve the problem of their own feet, the common plantar pressure measurement equipment on the market for the large model and expensive, inconvenient to move the equipment, therefore, this study for the Therefore, this study aims to establish a portable and convenient foot pressure measurement system.
The system consists of a measuring plate, a measuring machine, a mobile application, an image processing program, and a cloud server. After the user has finished pedaling, the foot topography will be recorded through the silicone film on the measuring plate, and the measuring machine will be controlled by the mobile application to take a picture of the foot topography on the plate, and then the picture will be uploaded to the cloud server for computation, and the computed arch index and plantar distribution report graphs will be sent back to the mobile application and synchronously stored in the cloud server database to provide the user with a follow-up tracking.
The experimental method is to ask the test subjects to measure the static foot pressure measurement of this equipment and the equipment with different pedal mode, the control group equipment is F-Scan system. The purpose of the experiment is to verify the effect of the equipment and the direction of future development, three experimental data statistics, whether there is a difference between using the equipment in different pedal mode for measurement, whether there is a difference between the results of the measurement by dividing the pedal measurement plate into five modes; whether there is a difference between using the equipment for measurement and using the control group for measurement of the arch index, whether there is a difference between using the equipment for measurement and the control group for measurement, and whether there is a difference between the results of the measurement by using the equipment for measurement and the control group for measurement, and whether there is a difference between the measurement by using the equipment for measurement and the control group for measurement. To verify the accuracy of the equipment by comparing the difference between the measurement using the equipment and the measurement using the control group equipment; whether there is a correlation coefficient between the ratio of plantar area and the ratio of plantar pressure, in order to find out whether the pressure distribution can be calculated by the distribution of the area.
The results of this experiment showed that there was no difference in the measured area under different pedaling methods but there was a significant difference in the pressure distribution. There was no significant difference in the measured arch index between this device and the control group device, and the proportion of plantar area and the proportion of plantar pressure did not have a high correlation coefficient relationship.
Keywords: Foot pressure measurement system, Arch index, Plantar pressure, Grayscale

摘要 III Abstract IV 致謝 VI 目錄 VII 圖目錄 X 表目錄 XII 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 1 1.3論文架構 2 第二章 文獻回顧 3 2.1足部解剖 3 2.1.1扁平足 4 2.1.2高弓足 5 2.2足弓判定 5 2.2.1足部姿勢指數(Foot Posture Index, FPI) 5 2.2.2足弓指數(Arch Index, AI) 6 2.2.3舟狀骨指數(Normalized Navicular Height Truncated, NNHT) 7 2.3量測設備原理回顧 8 2.3.1足印式 8 2.3.2電學式 10 2.3.3光學感測式 12 2.4影像處理 12 2.4.1色彩模型 12 2.4.2灰階處理 14 2.4.3影像去背 15 2.4.4侵蝕與膨脹 15 第三章 研究材料與方法 17 3.1量測設備開發 17 3.1.1硬體機構 17 3.1.1.1底板 17 3.1.1.2機台 18 3.1.1.3補光設備 20 3.1.2硬體電路 20 3.1.2.1微控制器單元 21 3.1.2.2電源控制電路 24 3.1.3軟體架構 25 3.1.3.1影像處理 26 3.1.3.2移動端應用程式與伺服器 26 3.1.4試樣生產 28 3.2量測設備驗證 29 3.2.1對照設備 29 3.2.2實驗設計 30 3.2.3比較指標 30 3.2.4統計方法 31 第四章 結果 32 4.1設備開發成果 32 4.1.1硬體機構與電路 32 4.1.2軟體架構 33 4.1.2.1影像處理成果 34 4.1.2.2移動端應用程式與伺服器成果 35 4.2實驗結果 37 4.2.1不同踩踏方式進行量測差異統計成果 37 4.2.2與對照組設備比較差異統計成果 40 4.2.3足底壓力與面積相關係數統計 43 第五章 討論 44 5.1設備開發討論 44 5.1.1硬體機構 44 5.1.2軟體架構 45 5.1.2.1影像處理 46 5.1.2.2移動端應用程式與伺服器 47 5.2實驗數據討論 48 5.2.1不同踩踏方式進行量測差異討論 48 5.2.2與對照組設備比較差異討論 51 5.2.3足底壓力與面積相關係數討論 53 第六章 結論與未來展望 55 6.1結論 55 6.2未來展望 56 第七章 參考文獻 57

[1] 張維寧. (2020, March 3). O形與X形腿(Bow Legs and Knock Knees). 高雄榮民總醫院.
[2] 許太彥, 柯柏任. (2010). 從鞋子的構造及足底壓力淺談足部病變. 臺中教育大學體育學系系刊, (5), 1-6.
[3] 吳宜蓁, 成和正. (2015). 足底筋膜炎的成因與治療方式探討. 嘉大體育健康休閒期刊, 14(2), 163-175.
[4] Colorado springs orthopaedic group. (2022, March 9). THE BASICS OF ANKLE ANATOMY AND FOOT ANATOMY. Colorado Springs Orthopaedic Group. https://www.csog.net/the-basics-of-ankle-anatomy-and-foot-anatomy/
[5] 陳曉謙. (2021, April 11). 肌肉、肌腱、韌帶,你還傻傻分不清嗎?. 運動視界. https://www.sportsv.net/articles/81714
[6] Orthonorcal, Orthopedic specialists, Capitola, Morgan hill, & Watsonville. (2020, June 6). A Patient’s Guide to Foot Anatomy. OrthoNorCal. https://www.orthonorcal.com/blog/a-patients-guide-to-foot-anatomy-21481.html
[7] 高逢駿. (2022, July 13). 扁平足帶來潛在病症,如何檢測與矯正運動. 維力骨科診所. https://www.weili-clinic.com/knowledge/category-42/post-115
[8] Drew H Van Boerum, MD. Bruce J Sangeorzan, MD. Biomechanics and pathophysiology of flat foot. SEPTEMBER 2003 VOLUME 8, ISSUE 3, P419-430.
[9] Staheli, L. T., Chew, D. E., & Corbett, M. (1987). The longitudinal arch. A survey of eight hundred and eighty-two feet in normal children and adults. The Journal of bone and joint surgery. American volume, 69(3), 426–428.
[10] Gray, E. G., & Basmajian, J. V. (1968). Electromyography and cinematography of leg and foot ("normal" and flat) during walking. The Anatomical record, 161(1), 1–15. https://doi.org/10.1002/ar.1091610101
[11] Manoli A, Graham B. The Subtle Cavus Foot, “the Underpronator,” a Review. Foot & Ankle International. 2005;26(3):256-263. doi:10.1177/107110070502600313
[12] 高逢駿. (2022, July 21). 壓力全集中腳趾的高足弓,怎麼舒緩與運動? 維力骨科診所. https://www.weili-clinic.com/knowledge/category-42/post-118
[13] 王順正, & 林玉瓊 (Eds.). (2020, December 22). 運動生理學網站.
[14] Redmond, A. C., Crane, Y. Z., & Menz, H. B. (2008). Normative values for the foot posture index. Journal of Foot and Ankle Research, 1(1), 6.
[15] Redmond, A. C., Crosbie, J., & Ouvrier, R. A. (2006). Development and validation of a novel rating system for scoring standing foot posture: The Foot Posture Index. Clinical Biomechanics, 21, 89-98.
[16] Cavanagh, P. R., & Rodgers, M. M. (1987). The arch index: a useful measure from footprints. Journal of biomechanics, 20(5), 547-551.
[17] Aboelnasr, E. A., Hegazy, F. A., Zaghloul, A. A., El-Talawy, H. A., & Abdelazim, F. H. (2018). Validation of normalized truncated navicular height as a clinical assessment measure of static foot posture to determine flatfoot in children and adolescents: a cross sectional study. The Foot, 37, 85-90.
[18] Evans, A. M., Copper, A. W., Scharfbillig, R. W., Scutter, S. D., & Williams, M. T. (2003). Reliability of the foot posture index and traditional measures of foot position. Journal of the American Podiatric Medical Association, 93(3), 203-213.
[19] 趙志強, 趙麗萍, & 趙曉莉. (2009, August 24). 靜態足壓與動態足壓測量方法及其臨床意義. 中國康復醫學雜誌
[20] 黃冠為(2015)。靜態與不同走路速度下動態足底壓力比較。﹝碩士論文。國立陽明大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/7j4qhq
[21] (N.d.). https://www.indiamart.com/proddetail/harris-mat-foot-imprinter-2849753462912.html
[22] Hackney, J. M., Hunt, G. C., Lerche, F. F., Voi, P., & Smith, J. W. (2010). An external shoe modification for reducing metatarsal head pressure in people with metatarsalgia. JPO: Journal of Prosthetics and Orthotics, 22(1), 37-42.
[23] (N.d.). https://www.fujifilm.com/us/en/business/industrial-materials/measurement-film/prescale/feature
[24] (N.d.). https://www.memstec.com.tw/product.php?cat=80
[25] Eaton, W. P., & Smith, J. H. (1997). Micromachined pressure sensors: review and recent developments. Smart Materials and Structures, 6(5), 530.
[26] Clark, S. K., & Wise, K. D. (1979). Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors. IEEE Transactions on Electron Devices, 26(12), 1887-1896.
[27] Frobenius, W. D., Sanderson, A., & Nathanson, H. (1973). A microminiature solid- state capacitive blood pressure transducer with improved sensitivity. IEEE transactions on biomedical engineering(4), 312-314.
[28] Chau, H.-L., & Wise, K. D. (1987). Scaling limits in batch-fabricated silicon pressure sensors. IEEE Transactions on Electron Devices, 34(4), 850-858.
[29] Lee, K.-W., & Wise, K. D. (1982). SENSIM: A simulation program for solid-state pressure sensors. IEEE Transactions on Electron Devices, 29(1), 34-41.
[30] Sander, C. S., Knutti, J. W., & Meindl, J. D. (1980). A monolithic capacitive pressure sensor with pulse-period output. IEEE Transactions on Electron Devices, 27(5), 927- 930.
[31] Emed®: Pressure Distribution under the Foot. (n.d.). Novel.De. https://novel.de/products/emed/
[32] Tressler, J. F., Alkoy, S., & Newnham, R. E. (1998). Piezoelectric sensors and sensor materials. Journal of electroceramics, 2(4), 257-272.
[33] Sirohi, J., & Chopra, I. (2000). Fundamental understanding of piezoelectric strain sensors. Journal of intelligent material systems and structures, 11(4), 246-257. 70
[34] Beeby, S., Blackburn, A., & White, N. (1999). Processing of PZT piezoelectric thick films on silicon for microelectromechancial systems. Journal of Micromechanics and Microengineering, 9(3), 218.
[35] Catalfamo, P., Moser, D., Ghoussayni, S., & Ewins, D. (2008). Detection of gait events using an F-Scan in-shoe pressure measurement system. Gait & posture, 28(3), 420-426.
[36] F-Scan鞋內壓力分佈量測. (n.d.). 麥思科技有限公司. https://www.memstec.com.tw/productDetail.php?PNo=55
[37] F-Scan GO System. (n.d.). Tekscan. https://www.tekscan.com/products-solutions/systems/f-scan-system
[38] 林楗城(2018)掃描與照相式之裸足及鞋墊足壓機研究
[39] 詹森仁等作. (2013). 多媒體導論與應用 (第四版). 旗標出版社
[40] Phuangsaijai, N., Jakmunee, J., & Kittiwachana, S. (2021). Investigation into the predictive performance of colorimetric sensor strips using RGB, CMYK, HSV, and CIELAB coupled with various data preprocessing methods: A case study on an analysis of water quality parameters. Journal of Analytical Science and Technology, 12(1), 1-16.
[41] Rosi, T., Malgieri, M., Onorato, P., & Oss, S. (2016). What are we looking at when we say magenta? Quantitative measurements of RGB and CMYK colours with a homemade spectrophotometer. European Journal of Physics, 37(6), 065301.
[42] Sural, S., Qian, G., & Pramanik, S. (2002, September). Segmentation and histogram generation using the HSV color space for image retrieval. In Proceedings. International Conference on Image Processing (Vol. 2, pp. II-II). IEEE.
[43] Kanan, C., & Cottrell, G. W. (2012). Color-to-grayscale: does the method matter in image recognition?. PloS one, 7(1), e29740.
[44] Kumar, T., & Verma, K. (2010). A Theory Based on Conversion of RGB image to Gray image. International Journal of Computer Applications, 7(2), 7-10.
[45] Finlayson, G. D., Qiu, G., Qiu, M., 1999, Contrast Maximizing and Brightness Preserving Color to Grayscale Image Conversion.
[46] N. Xu, B. Price, S. Cohen, and T. Huang, “Deep Image Matting,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, doi:10.1109/cvpr.2017.41
[47] S. Sengupta, V. Jayaram, B. Curless, S. Seitz, and I. Kemelmacher-Shlizerman, “Background Matting: The World is Your Green Screen,” in 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
[48] Soille, P., & Soille, P. (2004). Erosion and dilation. Morphological Image Analysis: Principles and Applications, 63-103.
[49] Jankowski, M. (2006, July). Erosion, dilation and related operators. In 8th International Mathematica Symposium (pp. 1-10).
[50] Chen, S., & Haralick, R. M. (1995). Recursive erosion, dilation, opening, and closing transforms. IEEE Transactions on image processing, 4(3), 335-345.

無法下載圖示 全文公開日期 2033/08/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE