簡易檢索 / 詳目顯示

研究生: 鄭明江
Ming-chiang Cheng
論文名稱: 以展頻技術將二位元及灰階浮水印植入靜態影像之探討與分析
Embedding of Binary and Grayscale Watermarks into Still Images by Spectrum Spreading
指導教授: 賴坤財
Kuen-Tsair Lay
口試委員: 廖弘源
Hong-Yuan Liao
呂福生
Fu-Shen Lu
謝君偉
Jun-Wei Hsieh
方文賢
Wen-Hsien Fang
胡能忠
Neng-Chung Hu
郭景明
Jing-Ming Guo
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 117
中文關鍵詞: 展頻技術浮水印錯誤更正碼浮水印錯誤率浮水印容量離散小波轉換非均勻保護
外文關鍵詞: spectrum spreading, watermark, error correction coding, watermark bit error rate, watermark capacity, discrete wavelet transform, unequal error protection
相關次數: 點閱:347下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 所謂嵌入浮水印,是基於對影像品質影響不嚴重的原則下,以隱藏的方式植入特定功能,如版權之宣稱、文件及其擁有者之認証、裝置控制等。當已嵌入浮水印之影像在儲存或傳送中,可能遭受多種破壞,如壓縮、濾波、剪裁、幾何扭曲(旋轉和放大縮小)等。在嵌入影像中的浮水印應具有相當程度的強健性以對抗上述之破壞,才能正確擷取出浮水印。在本篇論文中,我們的焦點是著重在靜態的原始影像中植入浮水印。我們提出兩種浮水印技術來達成保護版權和擁有者之認證。

    第一種浮水印技術是提出將浮水印利用假亂碼或正交碼打亂後與原始影像大小一樣,然後再乘上強度因子之後在與原始影像相加而成為已植入浮水印之影像。同時我們也嘗試採用錯誤更正碼來降低浮水印位元之錯誤率。由於利用假亂碼或正交碼打亂浮水印而植入影像中之過程,與數位通訊中之展頻通訊技巧是相類似。因此我們可採取類似數位通訊之位元錯誤率之推導方式,來推演出原始影像品質之失真度、浮水印容量及浮水印位元之錯誤率之值,且提出一些定量的描述和明確的指出三者之間的取捨關係。我們也把這些定量的取捨關係稱為三角邊之取捨,此關係式為本論文最主要貢獻之ㄧ。第一種浮水印技術有時無法有效對抗一些破壞,故我們想提出第二種浮水印技術,來增強浮水印的強健性和減少植入浮水印之能量。

    第二種浮水印技術是提出將浮水印之相對正交碼與原始影像經過離散小波轉換子影像做內積計算,再植入之子影像中。此技術是先把實數軸分成兩種不同型態(相對於浮水印的0或1)的區段,然後再將浮水印位元之相對應正交碼與子影像做內積計算,其結果搭配實數軸0/1區段與浮水印之值而求出之變動量,再將此變動量與浮水印之相對正交碼展頻之後再加至子影像,然後經反離散小波轉換而得到已植入浮水印之影像。此技術所採用之浮水印可為兩位元或灰階之影像。我們在已植入浮水印原始影像邊界上再植入一些資訊來對抗一般攻擊,如JPEG壓縮、JPEG-2000壓縮、列或行移除和影像旋轉(90度、180度、270度)等等。我們也針對此種技術來推導原始影像品質之失真度與浮水印位元之錯誤率之間定量描述。在植入灰階浮水印方面,採用非均勻保護之技巧來調整位元之強健性。


    To embed a watermark into an image is to, under the condition of
    not severely degrading its quality, hide in it some information
    for certain functions, such as copyright claim, authentication (of
    document and its ownership), and device control, etc. When
    watermarked images are stored or transmitted, they may suffer
    various tampering, such as compression, filtering, cropping, and
    geometric distortion (e.g. rotation and scaling), etc. The
    embedded watermarks should be robust to sustain the tampering to a
    certain degree so that it can still be extracted. In this
    dissertation, we focus on the issue of embedding watermarks into
    still images. We propose two methods for copyright protection and
    content authentication.

    First, we propose to scramble the watermark bits with pseudo-noise
    (PN) or orthogonal codes before they are embedded into an image.
    We also try to incorporate error correction coding (ECC) into the
    watermarking scheme, anticipating reduction of the watermark bit
    error rate (WBER). Due to the similarity between the
    PN/orthogonal-coded watermarking and spread spectrum
    communication, it is natural that, following similar derivations
    regarding data BER in digital communications, we derive certain
    explicit quantitative relationships regarding the tradeoff between
    the WBER, the watermark capacity (i.e. the number of watermark
    bits) and the distortion suffered by the original image, which is
    measured in terms of the embedded image's signal-to-noise ratio
    (abbreviated as ISNR). These quantitative relationships are
    succinctly summarized as a so-called tradeoff triangle, which is
    one of this work's major constitutes. Sometimes, method one is not
    effective against a variety of tampering. So, we propose a second
    method to decrease the distortion of the watermarked image and
    provide good watermark robustness.

    In the second method, we propose a blind watermarking scheme using
    orthogonal code spreading in the discrete wavelet transform (DWT)
    domain of an image. In this scheme, the line of real numbers is
    segmented into alternating intervals of two different types
    (corresponding to watermark bits $0$ and $1$, respectively).
    Embedding offsets for all watermark bits with respect to their
    identification orthogonal codes are then computed, and the
    original image is slightly modified according to those offsets.
    The watermark itself can be a binary or a grayscale image. For
    combating some attacks, including JPEG compression, JPEG-2000
    compression, row/column removal, and image rotation (good for
    multiples of the right angle), etc., we embed attack-detection
    messages in the edge lines of the watermarked image. An explicit
    quantitative relationship regarding the trade-off between the WBER
    and the peak signal-to-noise ratio (PSNR) for the proposed scheme
    is derived. For the embedding of grayscale watermarks, an unequal
    error protection (UEP) scheme is proposed to provide different
    degrees of robustness for watermark bits of different degrees of
    significance.

    1 INTRODUCTION 1 1.1 Motivation . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 1 1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Organization of the Dissertation .. . . . . . . . . . . . . . . . . 3 2 FUNCTIONS AND TECHNIQUES RELATED TO WATERMARKING 6 2.1 Digital Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Watermark applications . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Watermark properties . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Watermark categories . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.4 Communication-based models of watermarking . . . . . . . . . . 10 2.2 Attacks on Watermarks . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Wavelet Analysis . . . . . . . . . . . . . . . . . . . . .. . . . . . . 13 2.3.1 Discrete wavelet transform . . . . . . . . . . . . . . . . . . . . . 13 2.4 Watermarking Techniques . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.1 LSB watermarking technique . . . . . . . . . . . . . . . . . . . 17 2.4.2 Spatial domain technique . . . . . . . . . . . . . . . . . . . . . . 17 2.4.3 Frequency domain technique . . . . . . . . . . . . . . . . . . . . 18 2.4.4 Spread spectrum watermarking . . . . . . . . . . . . . . . . . . 19 2.5 Error Control Coding Technique . . . . . . . . . . . . . .. . . . . . . 19 2.5.1 Trellis coded modulation . . . . . . . . . . . . . . . . . . . . . . 19 2.5.2 Turbo coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6 Rate-Distortion Optimization Technique . . . . . . . . . . . . . . . . . 22 2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 AN EMBEDDING SCHEME FOR BINARY AND GRAYSCALE WATERMARKS BY SPECTRUM SPREADING AND ITS PERFORMANCE ANALYSIS 24 3.1 Robustness and Low Impairment . . . . . . . . . . . . . . . . . . . . . 25 3.2 A Secure Spread Spectrum Watermarking Scheme . . . . . . . . . . . . 26 3.2.1 Watermark Embedding . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.2 Watermark Extraction . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.3 Error Correction Coding of Watermarked Image . . . . . . . . . 28 3.2.4 Generalization to Grayscale Watermarks . . . . . . . . . . . . . 31 3.3 Performance Analysis : Tradeoff between WBER, ISNR and Capacity . 31 3.3.1 ISNR Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.2 WBER Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.3 The tradeoff triangle in watermarking . . . . . . . . . . . . . . . 36 3.3.4 Trellis-based coding . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.5 Unequal error protection in grayscale watermarks . . . . . . . . 38 3.4 Simulations and Discussion . . . . . . . . . . . . . . . . . . . . . . 42 3.4.1 Watermarked images’ fidelity . . . . . . . . . . . . . . . . . . . 42 3.4.2 Watermark’s robustness . . . . . . . . . . . . . . . . . . . . . . 43 3.4.3 Watermark’s capacity . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4.4 Authentication by watermark . . . . . . . . . . . . . . . . . . . 45 3.4.5 JPEG compression attack . . . . . . . . . . . . . . . . . . . . . 46 3.4.6 Achieving acceptable WBER and ISNR via Trellis Coding . . . 48 3.4.7 UEP for grayscale watermarks . . . . . . . . . . . . . . . . . . . 50 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 EMBEDDING OF BINARY AND GRAYSCALE WATERMARKS BY ORTHOGONAL CODE SPREADING IN THE DWT DOMAIN 55 4.1 Watermarking with Orthogonal Code Spreading . . . . . . . . . . . . . 55 4.1.1 Watermark Embedding . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.2 Attack Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.1.3 Watermark Extraction . . . . . . . . . . . . . . . . . . . . . . . 60 4.1.4 Embedding of Grayscale Watermarks . . . . . . . . . . . . . . . 62 4.2 Performance Analysis : Trade-off Between WBER and PSNR . . . . . . 62 4.2.1 PSNR calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.2 WBER calculation . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2.3 Unequal error protection in grayscale watermarks . . . . . . . . 69 4.3 Simulations and Discussion . . . . . . . . . . . . . . . . . . . . 72 4.3.1 Authentication by watermark . . . . . . . . . . . . . . . . . . . 72 4.3.2 Robustness against various attacks . . . . . . . . . . . . . . . . 73 4.3.3 Joint WBER and PSNR optimization . . . . . . . . . . . . . . . 80 4.3.4 UEP for grayscale watermarks . . . . . . . . . . . . . . . . . . . 81 4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5 CONCLUSIONS 87 5.1 Summary of the Dissertation . . . . . . . . . . . . . . . . . . . . 87 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 89 REFERENCE 90

    [1] I. J. Cox, M. L. Miller, and J. A. Bloom, Digital Watermarking, Morgan Kaufmann (2002)
    [2] I. Hong, I. Kim, and S.-S. Han, “A Blind Watermarking Technique Using Wavelet Transform”, Proc. IEEE Inter. Symp. on Industrial Electronics, Vol. 3, pp. 1946-1950 (2001)
    [3] Y. Li, and L. Xu, “A Blind watermarking of vector graphics images”, Proc.
    Fifth Inter. Conf. on Computational Intelligence and Multimedia Applications,
    pp. 424-429 (2003)
    [4] E. Li, H. Liang, and X. Niu, “Blind Image watermarking scheme based on wavelet tree quantization robust to geometric attacks”, IEEE WCICA, pp. 10256-10260 (2006)
    [5] S. Wang, D. Zheng, J. Zhao, W. J. Tam and F. Speranza, “An Image Quality
    Evaluation Method Based on DigitalWatermarking”, IEEE Circuits and Systems
    for Video Technology, Vol. 17, No. 1, pp. 98-105 (2007)
    [6] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for Data Hiding”, IBM Syst. J., Vol. 35, No. 3/4, pp. 313-336 (1996)
    [7] N. Nikolaidis, and I. Pitas, “Robust ImageWatermarking in the Spatial Domain”, Signal Processing, Vol. 66, No. 3, pp. 385-403 (1998)
    [8] D. J. Fleet, D. J. Heeger, “Embedding Invisible Information in Color Images”, Proc. Inter. Conf. on Image Processing, Vol. 1, pp. 532-535 (1997)
    [9] M. Kutter, F. Jordan and F. Bosson, “Digital Signature of Color Images Using Amplitude Modulation”, Proc. SPIE, Vol. 3022, pp. 518-526 (1997)
    [10] R. Bangaleea and H. C. S. Rughooputh, “Performance Improvement of Spread
    Spectrum Spatial Domain Watermarking Scheme Through Diversity and Attack
    Characterisation”, Proc. 6th IEEE AFRICON, Africa, Vol. 1, pp. 293-298 (2002)
    [11] I. Pitas, “A method for Signature Casting on Digital Images”, IEEE International Conference on Image Processing , Lausannce, Switzerland, Vol. 111, pp. 215-218 (1996)
    [12] W. G . Kim, J. C. Lee, and W. D. Lee, “An Image Watermarking Scheme with
    Hidden Signatures”, Inter. Conf. on Image Process, Japan, pp. 206-210 (1999)
    [13] J. Zhong and S. Huang, “An Enhanced Multiplicative Spread Spectrum Watermarking Scheme”, IEEE Trans. on Circuits and Systems for Video Technology, Vol. 16, No. 12, pp. 1491-1506 (2006)
    [14] M.-S. Hsieh, D.-C. Tseng, and Y.-H. Huang, “Hiding Digital Watermarks Using Multiresolution Wavelet Transform”, IEEE Trans. on Industrial Electronics, Vol. 48, No. 5, pp. 875-882 (2001)
    [15] S.-D. Lin and C.-F. Chen, “A Robust DCT-based Watermarking for Copyright
    Protection”, IEEE Trans. on Consumer Electronics, Vol. 46, pp. 415-421 (2000)
    [16] C. T. Hsu, and J.-L. Wu, “Hidden Signatures in Images”, Inter. Conf. on Image Process, Lausanne, Switzerland, vol. 3, pp. 223-226 (1996)
    [17] M. Barni, F. Bartolini, V. Cappelini, and A. Piva, ”A DCT-domain system for robust image watermarking”, Signal Processing, Vol. 66, No. 3, pp. 357-372 (1998)
    [18] S. Tripathi, R.C. Jain and V. Gayatri, ”Novel DCT and DWT based Watermarking Techniques for Digital Images”, ICPR, Vol. 4, pp. 358-361 (2006)
    [19] Y. Fu, R. Shen, and L. Shen, “Robust Image Watermarking Scheme Based
    on Subsampling”, Information Technology and Applications, Vol. 2, pp. 361-365
    (2005)
    [20] P. Meerwald, and A. Uhl, “A Survey of Wavelet-Domain Watermarking Algorithms”, Proc. SPIE, Electronic Imaging, Security and Watermarking of Multimedia Contents III, CA, USA, pp. 505-516 (2001)
    [21] H.-M. Yang, Y.Q. Liang, X.-D. Wang and S. J. Ji, “A DWT-Based Evaluation
    Method of Imperceptibility of Watermark in Watermarked Color Image”,
    ICWAPR, Vol. 1, pp. 198-203 (2007)
    [22] K. Luo, and X. Tian, “A New Robust Watermarking Scheme Based on Wavelet
    Transform”, CISP,Vol. 1, pp. 312-316 (2008)
    [23] Y.-G. Fu, and H.-R. Wang, “A Novel Discrete Wavelet Transform Based Digital Watermarking Scheme”, ASID, pp. 55-58 (2008)
    [24] A. Z. Tirkel, C. F. Osborne, and R. G. van Schyndel, “Image Watermarking - A Spread Spectrum Application”, Proc. IEEE 4th Int. Symp. Spread Spectrum Techn. Applicat., Mainz, Germany, pp. 785-789 (1996)
    [25] I. Cox, J.-P. Linnartz, “Some General Methods for Tampering withWatermarks”, IEEE Journal on Selected Areas in Communication, Vol. 16, No. 4, pp. 587-593 (1998)
    [26] F. Hartung, J. K. Su, and B. Girod, “Spread Spectrum Watermarking: Malicious Attacks and Counterattacks”, Proc. SPIE, Vol. 3657, pp. 147-158 (1999)
    [27] S. P. Maity, M. K. Kundu and M. K. Mandal, “Capacity Improvement in
    Spread Spectrum Watermarking Using Biorthogonal Wavelet”, IEEE 48th Midwest
    Symp. on Circuits and Systems, Vol. 2, pp. 1426-1429 (2005)
    [28] M. U. Celik, A. N. Lemma, S. Katzenbeisser and M. van der Veen, “Secure
    Embedding of Spread SpectrumWatermarks Using Look-up-tables”, IEEE Inter.
    Conf. on Acoustics, Speech and Signal Processing, Vol 2, pp. 153-156 (2007)
    [29] I. J. Cox, J. Kilian, and T. Shamoon, “Secure Spread Spectrum Watermarking for Multimedia”, IEEE Trans. on Image Processing, Vol. 6, No. 12, pp. 1673-1687 (1997)
    [30] R. L. Pickholtz, D. L. Schilling, and L. B. Millstein, “Theory of Spread Spectrum Communications - A Tutorial”, IEEE Trans. on Commun., Vol. 30, pp. 855-884 (1982)
    [31] C. T. Hsu and J. L.Wu, “Multiresolution watermarking for digital images”, IEEE Trans. Circuits and Systems II, Vol. 45, No. 8, pp. 1097-1101 (1998)
    [32] S.-J. Lee, S.-H. Jung, “A survey of watermarking techniques applied to multimedia”, ISIE 2001, Proc. of IEEE Inter. Symposium on Industrial Electronics, Vol. 1, pp. 272-277 (2001)
    [33] S. Katzenbeisser and F.A.P. Petitcolas, Information hiding: Techniques for
    steganography and digital watermarking, Norwood, MA: Artech House Books (2000)
    [34] J. Fridrich, “Applications of data hiding in digital images”, Signal Processing and Its Applications, Vol. 1, pp.1-9 (1999)
    [35] C.-C. Chang, K.-F. Hwang, and M.-S. Hwang, “Robust authentication scheme
    for protecting copyrights of images and graphics,” Proc. IEE Vision, Image and
    Signal Processing, Vol. 149, No. 1, pp. 43-50, Feb. 2002.
    [36] J. Lee and C. S. Won, “A watermarking sequence using parities of error control coding for image authentication and correction”, IEEE Trans. Consumer
    Electronics, Vol. 46, No. 2, pp. 313-317 (2000)
    [37] C.-S. Lu, H.-Y. M. Liao, and C.-J. Sze, “Combined watermarking for image
    authentication and protection”, IEEE ICME, New York, NY, Vol. 3, pp. 1415-
    1418 (2000)
    [38] M. Wu and B. Liu, “Watermarking for image authentication”, Proc. IEEE ICIP, Chicago, pp. 437-441 (1998)
    [39] S. Craver, N. Memon, B.L. Yeo, and M.M. Yeung. “Resolving rightful ownerships with invisible watermarking techniques: Limitations, attacks, and implications”, IEEE Journal on Selected Areas in Communications, Vol. 16, pp. 573-586 (1998)
    [40] M. Holliman, N. Memon, “Counterfeiting attacks on oblivious block-wise independent invisible watermarking schemes”, IEEE Trans. on Image Processing,
    Vol. 9, No. 3, pp. 432-441 (2000)
    [41] L. Qiao and K. Nahrstedt, “Non-invertible watermarking methods for MPEG encoded audio”, Proceedings of SPIE on Security and Watermarking of Multimedia
    Contents, Vol. 3675, pp. 194-202 (1998)
    [42] L. Qiao and K. Nahrstedt, “Watermarking schemes and protocols for protecting rightful ownerships and customers rights”, Journal of Visual Communication and Image Representation, Vol. 9, pp. 194-210 (1998)
    [43] G.C. Langelaar, R. L. Lagendijk, J. Biemond, “Removing spatial spread spectrum watermarks by non-linear filtering,” Proceedings of the 9th European
    signal processing conference, Island of Rhodes, Greece, pp. 2281-2284 (1998)
    [44] M. Kutter, S. Voloshynovskiy, A. Herrigel, “The watermark copy attack”, proceedings of SPIE conference on security and watermarking of multimedia contents II, vol. 3971, pp. 371-380 (2000)
    [45] S. Voloshynovskiy, S. Pereira, A. Herrigel, N. Baumgartner, T. Pun, “Generalised watermarking attack based on watermark estimation and perceptual remodulation”, Proceedings of SPIE conference on security and watermarking of
    multimedia contents II, vol. 3971, pp. 358-370 (2000)
    [46] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice-Hall (1995)
    [47] J.Woods and S. O’Neil, “Subband coding of images”, IEEE Trans. Acous. Speech Signal Proc., Vol. 35, No. 5, pp. 1278-1288 (1986)
    [48] M. Basseville, A. Benveniste, K. Chou, S. Golden, R. Nikoukhah, and A. Willsky, “Medeling and estimation of multiresolution stochastic processes”, IEEE Trans. Inform. Theory, Vol. 38, No. 3, pp. 766-784 (1992)
    [49] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coeffcients”, IEEE Image Proc., Vol. 41, No. 2, pp. 3445-3462 (1993)
    [50] S. G. Chang, Y. Bin, and M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising”, IEEE Trans. on Image Proc., Vol. 9, No. 9, pp. 1532-1546 (2000)
    [51] W. D. Swanson, B. Zhu, and A. H. Tewfik, “Robust data hiding for images”, Proceeding of IEEE Workshop on Digigtal Signal Processing, pp. 37-40 (1996)
    [52] B. Zhu, and A. H. Tewfik, “Media compression via data hiding,” 35th Asilomar Conference on Signals, Systems and C omputers, Vol. 1, pp. 547-651 (1997)
    [53] A. Hanjalic, G.C. Langelaar, P.M.B. van Roosmalen, J. Biemond and R.L. Lagendijk, “Image and Video Databases: Restoration, Watermarking and Retrieval,”Advances in Image Communication, Vol. 8 (2000)
    [54] R. B. Wolfgang, E.J. Delp, “A watermark for digital images”, IEEE Proc. Inter. Conf. on Image Processing, Vol. 3, pp. 219-222 (1996)
    [55] X. G. Xia, C. G. Boncelet, G. R. Arce, “A multiresolution watermark for digital images”, IEEE Inter. Conf. on Image Processing, Vol. 3, pp. 548-551 (1997)
    [56] A. J. Goldsmith and S. Chua, “Adaptive coded modulation for fading channels”, IEEE Transactions on Communications, Vol. 46, No. 5, pp. 595-602 (1998)
    [57] K. J. Hole, H. Holm, and G. E. Oien, “Adaptive multidimensional coded modulation over flat fading channels”, IEEE Journal on Selected Areas in Communications, Vol. 18, No. 7, pp. 1153-1158 (2000)
    [58] V. K. N. Lau and M. D. Macleod, “Variable-rate trellis coded QAM for flat-fading channels”, IEEE Transactions on Communications, Vol. 49, No. 9, pp. 1550-1560 (2001)
    [59] B. Sklar, Digital Communications: Fundamentals and Applications, 2nd ed., Prentice Hall (2001)
    [60] G. Ungerboeck, “Channel coding with multilevel/phase signals”, IEEE Trans. Inf., Vol. IT-28, pp. 55-67 (1982)
    [61] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Compression, Englewood Cliffs, New Jersey: Prentice-Hall Inc (1971)
    [62] L. R. Bahl, J. Cocke, F. Jelinek, J. Raviv, “Optiomal decocding of linear codes for minimizing symbol error rate”, IEEE Trans. Inf., Vol. IT-20, pp. 284-187 (1974)
    [63] C. Nerrou, A. Glavieux, P. Thitimajshima, “Near Shannon limit error-correcting coding and deocding: Turbo-Codes (1)”, IEEE Int. Conf. Commun., Geneva, Switzerland, pp. 1064-1070 (1993)
    [64] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its applications”, IEEE GLOBECOM, Vol. 3, pp. 1680-1686 (1989)
    [65] L. Papke and P. Robertson, “Improved decoding with the SOVA in a parallel
    concatenated (Turbo-code) scheme”, IEEE ICC, Vol. 1, pp. 102-106 (1996)

    QR CODE