簡易檢索 / 詳目顯示

研究生: 陳承彥
Cheng-Yan Chen
論文名稱: 以 Micro LED 面板實踐醫療顯示器之色溫與灰階校正
Color Temperature and Grayscale Calibration of Medical Displays Performed on Micro LED panels
指導教授: 陳鴻興
Hung-Shing Chen
孫沛立
Pei-Li Sun
口試委員: 林敬舜
Ching-Shun Lin
羅梅君
Mei-Chun Lo
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 80
中文關鍵詞: 醫療顯示器DICOM GSDF色溫校正階調曲線校正Micro LED
外文關鍵詞: Medical display, DICOM GSDF, color temperature calibration, tone curve calibration, Micro LED
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在利用Micro LED面板實現醫療顯示器的色溫與灰階階調校正。醫療顯示器在醫學影像診斷和手術引導等領域扮演著重要角色,因此準確的色彩再現和細膩的灰階表現對於提供精確的診斷結果至關重要。然而一般的商用顯示器的灰階階調曲線為γ或是高動態範圍,而這些顯示器灰階訊號與亮度的關係並不適合人眼觀看黑白醫療影像。
    醫療影像管理的協定DICOM詳細規範了醫療顯示器的標準灰階顯示函數-DICOM GSDF,如果能符合該標準便能夠保證醫療影像內容的細節與提高判讀精準度。Micro LED面板技術作為新一代醫療顯示器的顯示技術,這種面板具有高亮度、高對比度和廣色域等特點,能夠提供更準確和真實的色彩再現。本論文希望能透過所提出的醫療顯示器色溫與灰階階調校正演算法實現所需的色溫以及在不同環境照度、面板反射係數的條件最佳化灰階的細節和平滑度,使醫學影像的內容更加清晰、容易判讀。 為了驗證本論文所提演算法的有效性,本論文在將校正演算法套用在Micro LED與LCD上進行不同條件的校正後,分別進行了亮度響應以及色溫的評估實驗。從結果來看本論文所提的演算法能夠通用在不同的面板種類、環境照度、面板反射係數、色溫需求。預期隨著Micro LED本身技術的成熟,對於大幅提高醫學影像的準確性和可靠性具有重要意義,有望在醫學診斷和手術引導等領域得到廣泛應用。


    This paper aims to achieve color temperature and grayscale calibration in medical displays using Micro LED panel technology. Medical displays play a crucial role in medical imaging diagnosis and surgical guidance, where accurate color reproduction and subtle grayscale performance are vital for providing precise diagnostic results. However, conventional commercial displays utilize γ or higher dynamic range curves like PQ (Perceptual Quantization) and HLG (Hybrid Log–Gamma), which are not suitable for viewing black-and-white medical images due to the mismatch between grayscale signals and brightness perceived by the human eye. The DICOM (Digital Imaging and Communication in Medicine) protocol, used for medical image management, details the standard grayscale display function for medical displays called DICOM GSDF (Grayscale Standard Display Function). Complying with this standard ensures the preservation of image details and improves interpretive accuracy. Micro LED panel technology, as a next-generation display technology for medical displays, offers features such as high brightness, high contrast ratio, and wide color gamut, enabling more accurate and realistic color reproduction. This paper proposes an algorithm for color temperature and grayscale calibration in medical displays, aiming to optimize the details and smoothness of grayscale based on the desired color temperature, different ambient illumination conditions, and panel surface reflectance coefficients. The goal is to enhance the clarity and interpretability of medical image content. To validate the effectiveness of the algorithm proposed in this paper, experiments were conducted by applying the algorithm to both Micro LED panels and mainstream LCDs under various conditions. The brightness response and color temperature were evaluated according to the standards set by the American Association of Physicists in Medicine (AAPM). The results indicate that the algorithm presented in this paper is applicable to different panel types, varying ambient illuminations, different panel surface reflectance coefficients, and diverse color temperature requirements. Moreover, as Micro LED technology continues to mature, it holds significant potential for greatly improving the accuracy and reliability of medical imaging. Therefore, its wide application in medical diagnosis and surgical guidance can be expected.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 2 第二章 原理與文獻探討 3 2.1 色彩度量學 3 2.1.1 色彩形成 3 2.1.2 CIE 1931 XYZ 色度系統 4 2.1.3 CIE 1976 UCS 均勻色度圖 6 2.1.4 L^* a^* b^*色彩空間 8 2.1.5 色差公式 9 2.1.6 色溫 12 2.2 顯示器色彩 13 2.2.1 階調曲線 13 2.2.2 設備特性描述 15 2.3 DICOM GSDF 16 2.3.1 DICOM GSDF基礎 16 2.3.2 DICOM GSDF計算 18 2.3.3 DICOM GSDF評估 20 第三章 研究方法與實驗設計 24 3.1研究流程 24 3.2 硬體設備與開發工具 25 3.3 校正演算法與軟體開發 28 3.3.1 校正目標與功能 28 3.3.2 DICOM GSDF 與色溫校正演算法設計概念 30 3.3.3 1D TEMP LUT設計 31 3.3.4 1D DICOM LUT 設計 36 3.3.5 色溫轉換矩陣設計 37 3.4 實驗設計 38 3.4.1 實驗一 : 階調曲線評估 38 3.4.2 實驗二 : 色溫評估 39 3.4.3 實驗三 :顯示器位元深度影響 41 第四章 實驗結果與分析 42 4.1亮度響應評估 42 4.1.1 色溫6500 K實驗結果 42 4.1.2 其他色溫實驗結果 46 4.2 JND 變化連續性評估 47 4.2.1 色溫6500 K實驗結果 47 4.2.2 其他色溫組合實驗結果 49 4.3 色溫校正評估 50 4.3.1 Micro LED面板 50 4.3.2 LCD面板 54 4.3.3 其他組合評估結果 57 4.4 顯示器位元深度影響 58 4.4.1 亮度響應評估 59 4.4.2 JND 變化連續性評估 60 4.4.3 色溫評估 61 4.4.4 其他組合評估結果 64 第五章 結論與未來建議 66 參考文獻 67

    [1] David Hsieh, “Display Dynamics – March 2021: Micro LED display advantages, technical challenges, and manufacturers’ prospect” , OMDIA, 2021。
    [2] AG Neovo 官方網站, Medical Monitors With DICOM Mode | MX-Series | AG Neovo Global , 上網日期: 2023-05-20
    [3] 羅梅君 編著,「數位色彩管理科學:色彩度量學」,藍海文化,2010。
    [4] 勢動科技, 「光譜儀的光學基礎」, 勢動科技 - 光譜儀的光學基礎 (acttr.com),上網日期: 2023-05-20。
    [5] Krishna Teja , “Holography”, Holography (slideshare.net), 上網日期: 2023-05-20
    [6] Hsien-Che Lee, “Introduction to Color Imaging Science”, Cambridge University Press, 2005。
    [7] Marjan Vazirain, “Colour Characterisation of LCD Display System”, School of Design The University of Leeds, 2018。
    [8] WIKIPEDIA, “MacAdam ellipse”, MacAdam ellipse - Wikipedia, 上網日期: 2023-06-02。
    [9] TFT CENTRAL, “The Pointer’s Gamut – The Coverage of Real Surface Colors by RGB Color Spaces and Wide Gamut Displays”, The Pointer's Gamut - The Coverage of Real Surface Colors by RGB Color Spaces and Wide Gamut Displays - TFTCentral , 上網日期: 2023-06-02。
    [10] P. J. Alessi, E. C. Carter, M. D. Fairchild et al., CIE 15: Technical Report :Colorimetry, 3rd edition, 2004。
    [11] Vilson Vieira, “Example: CIELAB color space” , CIELAB color space | TikZ example (texample.net) , TEXample.net, 上網日期: 2023-06-02。
    [12] Manuel Melgosa, “CIE/ISO new standard: CIEDE2000”, University of Leeds (UK), 2013。
    [13] Alp Durmus, “Correlated color temperature: Use and limitations”, Lighting Research and Technology, 2021。
    [14] 魏碩廷、陳鴻興、謝翠如、李文淵、徐明景、吳瑞卿、孫沛立 著,「顯示色彩工程學(第四版)」,台北,五南圖書出版公司,2023。
    [15] Martin Kykta, “Gamma, Brightness, and Luminance Considerations for HD Displays”, Information Display, 2009。
    [16] ITU-R, “Image parameter values for high dynamic range television for use in production and international programme exchange”, Recommendation ITU-R BT.2100-2, 2018。
    [17] EZIO, How to Accurately Display Both Monochrome and Color Images with the Ideal
    Grayscale | EIZO (eizoglobal.com), 上網日期: 2023-06-05。
    [18] Jason Cross, “A Mini LED display could be the best reason to buy a new iPad Pro”, A Mini LED display could be the best reason to buy a new iPad Pro | Macworld, 上網日期:
    2023-06-05。
    [19] DICOM PS3.14 2023b, “Grayscale Standard Display Function”, 2023。
    [20] Peter Barten, “Physical model for the contrast sensitivity of the human eye”, SPIE, 1992。
    [21] EZIO, “RadiForce GX550”, EIZO RadiForce GX550, 上網日期: 2023-06-05。
    [22] American Association of Physicists in Medicine Task Group 18 Imaging Informatics
    Subcommittee, “ASSESSMENT OF DISPLAY PERFORMANCE FOR MEDICAL
    IMAGING SYSTEMS”, American Association of Physicists in Medicine One Physics
    Ellipse, 2005。
    [23] The Report of AAPM Task Group 270, “Display Quality Assurance”, American
    Association of Physicists in Medicine, 2019。
    [24] 谷口慶治 原編著、汪建志 編譯,「數位色彩工程學」, 全華圖書股份有限公司,
    2014。
    [25] Krupinski, J. P. Johnson, H. Roehrig, & J. Lubin. Optimizing Soft Copy Mammography
    Displays Using a Human Visual System Model: Influence of Display Phosphor. volume
    4686, pages 331–337, 2002. doi:10.1117/12.462694.
    [26] H. Roehrig, E. A. Krupinski, A. S. Chawla, J. Fan, & K. Gandhi. Spatial Noise and
    Threshold Contrasts in LCD Displays. In D. P. Chakraborty and E. A. Krupinski, editors,
    Proc. SPIE. SPIE, 2003. doi:10.1117/12.480358
    [27] Tom Kimpe, Ali Avanaki, Cedric Marchessoux, Johan Rostang, Kathryn Espig, Bastian
    Piepers, Albert Xthona, “CSDF: a color extension of the greyscale standard display
    function”, 56௧௛ Annual Meeting & Exhibition, 2014
    [28] ICC member, “Medical Imaging Display Colour Space(mRGB) Teleconference”, 201

    QR CODE