簡易檢索 / 詳目顯示

研究生: 游家齊
Chia-chi Yu
論文名稱: 利用不同的表面改質方式提升鋯基塊狀金屬玻璃之彎曲延展性及疲勞性質
Bending Ductility and Fatigue Property Enhancements of Zr-based Bulk Metallic Glass by Various Surface Modifications
指導教授: 朱瑾
Jinn P. Chu
口試委員: 郭俞麟
Yu-lin Kuo
薛承輝
Chun-hway Hsueh
鄭憲清
Jason Shian-Ching Jang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 125
中文關鍵詞: 塊狀金屬玻璃彎曲延展性疲勞性質刮痕金屬玻璃薄膜飛秒雷射
外文關鍵詞: Bulk metallic glass, Bending ductility, Fatigue properties, Scratch, Thin film metallic glass, Femtosecond laser
相關次數: 點閱:367下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 塊狀金屬玻璃 (BMGs) 在室溫下通常經過非常有限的塑性變形即斷裂,因此限制了其在工程材料上的應用,由於金屬玻璃的變形是由剪切帶及剪切滑移所造成,因此促進剪切帶的生成與傳播來使其塑性變形更為重要。
    在本研究中,於鋯基金屬玻璃的張應力面進行不同方式的表面改質來增加其四點彎曲延展性及疲勞性質。於彎曲延展性實驗中,其表面改質包括人工刮痕、金屬玻璃鍍層及飛秒雷射處理。預先存在的剪切帶由刮痕產生於金屬玻璃表面因而造成剪切軟化,在負載時應力集中於刮痕因而造成多重剪切帶生成與滑移,因此相較於剛拋光的試片,有刮痕的試片呈現至少1.5倍高的塑性應變。鍍有金屬玻璃薄膜的試片也顯著地展現增強的彎曲塑性(增加>2倍),500 奈米厚的金屬玻璃塗層具有很高的韌性,能夠促進均勻分佈及高密度剪切帶的形成,因此大量剪切帶的分支可以防止局部剪切滑移進而得到增加的塑性應變。此外,經受飛秒雷射處理後的試片顯示出增加的塑性應變(增加>1.8倍),可能是由於應力分佈集中於凹槽和飛秒雷射產生的雷射誘導週期性表面結構中。
    經彎曲試驗後,我們也研究了金屬玻璃試片剪切帶的間距與滑移,結果顯示,高密度剪切帶與大型剪切帶偏移量形成於表面改質金屬玻璃試片中可以防止局部剪切帶並承受較大的彎曲塑性變形。結果顯示,此研究中不同的表面改質方式成為有潛力的方法來增強大尺寸的塊狀金屬玻璃之彎曲延展性。
    另一方面,我們於金屬玻璃基材度上一層200奈米厚的金屬玻璃薄膜來增加其疲勞性質,相較於無鍍膜的塊狀金屬玻璃,鍍膜試片的疲勞壽命增加至少25倍,並且疲勞限也上升33%,表面光滑、良好附著力及高韌性之金屬玻璃薄膜被認為是增強金屬玻璃基材之疲勞性質重要的角色。


    Bulk metallic glasses (BMGs) are normally fractured with very limited plastic strain at room temperature, severely restricting their application as engineering materials. Since deformation in BMGs is accommodated by shear bands and shear-offsets, it is important to promote homogenous formation and propagation of shear bands in order to obtain plastic strains.
    In this study, various surface modifications were performed on the tensile surface of Zr-based BMG substrates to enhance their four-point bending ductility and fatigue properties. The surface modifications for ductility enhancement include artificial scratch, thin film metallic glass (TFMG) coating as well as femtosecond laser patterning. For the artificial scratch, the pre-existing shear bands are generated and they lead to shear-softening. The stress is concentrated in the scratches upon loading, which causes the multiple shear band formations and offsets. As a result, the scratched samples show at least 1.5 times higher plastic strain than that of as-polished samples. The TFMG coated samples also exhibit significantly enhanced bending plasticity (>2 times improved). A 500 nm-thick TFMG coating with high toughness is capable of promoting the formation of a high density of homogeneously distributed shear bands. Thus, abundant of shear band branches can prevent shear band localization so as to obtain increased plastic strain. In addition, the samples after being subjected to the femtosecond laser patterning show an increased plasticity (>1.8 times improved) which might be attributed to stress redistribution in the grooves and the laser-induced periodic surface structure produced by femtosecond laser.
    The shear band spacing and offsets on BMG samples are also examined after bending test. It is found that a high density of shear bands with large shear band offset formed in surface-modified BMG samples can prevent localized shear banding and accommodate large plastic deformation under bending. The results demonstrate that the various surface modifications in this study become promising methods for bending ductility enhancement of large-scale BMG.
    On the other hand, a 200 nm-thick TFMG was deposited on the BMG substrate to improve the four-point bending fatigue properties. The fatigue life of a coated BMG substrate is significantly improved by at least 25 times and the fatigue limit is increased by 33% compare with the bare one. The smooth surface, good adhesion and high toughness of film are found to play an important role in superior fatigue properties.

    摘要 Abstract Acknowledgements Content List of Figures List of Tables Chapter 1 Introduction 1.1Background of the Study 1.2 Objectives of the Study Chapter 2 Literature Review 2.1 Bulk Metallic Glasses (BMGs) 2.1.1 Glass Forming Ability of BMGs 2.1.2 Supercooled Liquid Region 2.1.3 Mechanical behavior of BMGs 2.1.3.1 Free Volume in BMGs 2.1.3.2 Shear Transformation Zones 2.1.3.3 Shear Bands in Metallic Glasses 2.1.4 Advantages of BMGs compared with crystalline materials 2.2 Ductility Improvement of BMGs 2.2.1 Ductility Improvement by Microstructure Modifications 2.2.1.1 Cold Rolling 2.2.1.2 BMG matrix composites 2.2.1.3 Annealing 2.2.2 Ductility Improvement by Surface Modifications 2.2.2.1 Intrinsic Surface Microstructure Modification 2.2.2.2 Extrinsic Coating 2.2.3 Ductility Improvement by Other Methods 2.5 Fatigue Behavior of Bulk Metallic Glasses 2.4 Thin Film Metallic Glasses (TFMGs) 2.5 Physical Vapor Deposition-Sputtering Chapter 3 Experimental Procedures 3.1 Sample Preparation 3.1.1 BMG Substrate Preparation 3.1.2 Artificial Scratches Generation 3.1.3 Thin Film Metallic Glass Preparation 3.1.4 Femtosecond Laser Patterning 3.2 Four-Point Bending and Fatigue Test 3.3 Material characterizations 3.3.1 Chemical Composition Analysis 3.3.2 Crystallography 3.3.3 Thermal analysis 3.3.4 Nanoindentation 3.3.5 Microstructure Analysis 3.3.6 Surface Topography 3.3.7 HRC Adhesion Test Chapter 4 Results and Discussion 4.1 Substrate and Coating Properties 4.1.1 Composition and Structure of Zr55Cu30Al10Ni5 BMG 4.1.2 Composition and Structure of Zr-based TFMGs 4.1.3 Mechanical Properties of BMG substrate and TFMGs 4.2 Surface Modifications of Zr55Cu30Al10Ni5 BMG for Plasticity Enhancements 4.2.1 As-polished and Artificial Scratches for Bending Ductility Improvement 4.2.1.1 Bending Results of As-polished and Scratched BMG 4.2.1.2 Microstructure investigation of As-polished and Scratched BMG 4.2.2 TFMG Coating for Bending Ductility Improvement 4.2.2.1 Rockwell-C Adhesion Test of TFMG on BMG substrate 4.2.2.2Bending Results of TFMG Coated BMG 4.2.2.3 Microstructure investigation of TFMG Coated BMG 4.2.3 Femtosecond Laser Patterning for Bending Ductility Improvement 4.2.3.1 Surface Structure Analysis of Laser-patterned BMG Samples 4.2.3.2 Bending Results of Laser-patterned BMG Samples 4.2.3.3 Microstructure Investigation of Laser-patterned BMG Samples 4.3 Effects of Surface Modification on Shear Band Formation and Propagation 4.3.1 Shear Band Morphology in Different Surface-modified BMG Samples 4.3.2 Shear Band Spacing and Shear Offset Analysis 4.4 Zr-based TFMG Coating on Zr50Cu30Al10Ni10 BMG Substrate for Fatigue Property Enhancements 4.4.1 Stress versus Fatigue Life (S-N) Curves 4.4.2 Fatigue Fracture Surface and Microstructure Investigations 4.4.3 Effect of TFMG Coating on BMG Substrate Fatigue Property Enhancements Chapter 5 Conclusions 5.1 Conclusions Reference

    [1] W. Klement, R.H. Willens, P. Duwez, Nature, 187 (1960) 869-870.
    [2] A. Inoue, Acta Materialia, 48 (2000) 279-306.
    [3] A. Inoue, A. Takeuchi, Acta Materialia, 59 (2011) 2243-2267.
    [4] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Materialia, 55 (2007) 4067-4109.
    [5] J.R. Greer, J.T.M. De Hosson, Progress in Materials Science, 56 (2011) 654-724.
    [6] H. Guo, P.F. Yan, Y.B. Wang, J. Tan, Z.F. Zhang, M.L. Sui, E. Ma, Nature Materials, 6 (2007) 735-739.
    [7] D. Jang, J.R. Greer, Nature Materials, 9 (2010) 215-219.
    [8] D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, W.L. Johnson, Nature, 451 (2008) 1085-1089.
    [9] B. Chen, Y. Li, M. Yi, R. Li, S. Pang, H. Wang, T. Zhang, Scripta Materialia, 66 (2012) 1057-1060.
    [10] Y. Zhang, W.H. Wang, A.L. Greer, Nature Materials, 5 (2006) 857-860.
    [11] J.P. Chu, J.E. Greene, J.S.C. Jang, J.C. Huang, Y.L. Shen, P.K. Liaw, Y. Yokoyama, A. Inoue, T.G. Nieh, Acta Materialia, 60 (2012) 3226-3238.
    [12] G.Y. Wang, P.K. Liaw, Y. Yokoyama, A. Inoue, C.T. Liu, Materials Science and Engineering: A, 494 (2008) 314-323.
    [13] M.L. Morrison, R.A. Buchanan, P.K. Liaw, B.A. Green, G.Y. Wang, C.T. Liu, J.A. Horton, Materials Science and Engineering: A, 467 (2007) 190-197.
    [14] H.L. Jia, F. Liu, Z. An, W. Li, G. Wang, J.P. Chu, J.S.C. Jang, Y. Gao, P.K. Liaw, Thin Solid Films, 561 (2014) 2-27.
    [15] N. Nishiyama, A. Inoue, Applied Physics Letters, 80 (2002) 568-570.
    [16] C. Suryanarayana, A. Inoue, Bulk metallic glasses, CRC Press, 2011.
    [17] H.S. Chen, Acta Metallurgica, 22 (1974) 1505-1511.
    [18] J.F. Löffler, Intermetallics, 11 (2003) 529-540.
    [19] Z.P. Lu, C.T. Liu, Acta Materialia, 50 (2002) 3501-3512.
    [20] R.W. Cahn, Materials science and technology, (1991).
    [21] A. Inoue, Trans Tech Publications Inc., Stafa-Zurich, Switzerland, (1998).
    [22] D. Turnbull, Contemporary Physics, 10 (1969) 473-488.
    [23] A. Inoue, Materials Transactions, JIM, 36 (1995) 866-875.
    [24] K. Mondal, B.S. Murty, Journal of non-crystalline solids, 351 (2005) 1366-1371.
    [25] Z.Z. Yuan, S.L. Bao, Y. Lu, D.P. Zhang, L. Yao, Journal of Alloys and Compounds, 459 (2008) 251-260.
    [26] Z.P. Lu, C.T. Liu, Physical review letters, 91 (2003) 115505.
    [27] X.H. Du, J.C. Huang, C.T. Liu, Z.P. Lu, Journal of applied physics, 101 (2007) 086108-086108-086103.
    [28] Q.J. Chen, J. Shen, D.L. Zhang, H.B. Fan, J.F. Sun, D.G. McCartney, Materials Science and Engineering: A, 433 (2006) 155-160.
    [29] A. Hrubý, Czechoslovak Journal of Physics B, 22 (1972) 1187-1193.
    [30] G.J. Fan, H. Choo, P.K. Liaw, Journal of non-crystalline solids, 353 (2007) 102-107.
    [31] J.H. Kim, J.S. Park, H.K. Lim, W.T. Kim, D.H. Kim, Journal of non-crystalline solids, 351 (2005) 1433-1440.
    [32] Z.L. Long, H.Q. Wei, Y.H. Ding, P. Zhang, G.Q. Xie, A. Inoue, Journal of Alloys and Compounds, 475 (2009) 207-219.
    [33] Z.L. Long, G.Q. Xie, H.Q. Wei, X.P. Su, J. Peng, P. Zhang, A. Inoue, Materials Science and Engineering: A, 509 (2009) 23-30.
    [34] C. Homer, A. Eberhardt, Scr. Metall., 14 (1980) 1331-1332.
    [35] A.S. Argon, Acta Metallurgica, 27 (1979) 47-58.
    [36] F. Spaepen, Acta Metallurgica, 25 (1977) 407-415.
    [37] D. Turnbull, M.H. Cohen, The Journal of Chemical Physics, 34 (1961) 120-125.
    [38] D. Turnbull, M.H. Cohen, The Journal of Chemical Physics, 52 (1970) 3038-3041.
    [39] M.L. Falk, J.S. Langer, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 57 (1998) 7192-7205.
    [40] J.S. Langer, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77 (2008).
    [41] A.L. Greer, Y.Q. Cheng, E. Ma, Materials Science and Engineering: R: Reports, (2013).
    [42] R.D. Conner, W.L. Johnson, N.E. Paton, W.D. Nix, Journal of applied physics, 94 (2003) 904-911.
    [43] http://liquidmetal.com/properties/properties/.
    [44] Y. Yokoyama, K. Yamano, K. Fukaura, H. Sunada, A. Inoue, Scripta Materialia, 44 (2001) 1529-1533.
    [45] C. Fan, R.T. Ott, T.C. Hufnagel, Applied physics letters, 81 (2002) 1020-1022.
    [46] U. Kuhn, J. Eckert, N. Mattern, L. Schultz, Applied physics letters, 80 (2002) 2478-2480.
    [47] G. He, J. Eckert, W. Löser, L. Schultz, Nature Materials, 2 (2003) 33-37.
    [48] J.C. Lee, Y.C. Kim, J.P. Ahn, H.S. Kim, Acta Materialia, 53 (2005) 129-139.
    [49] M. Hasegawa, Y. Nonaka, Y. Negishi, Y. Okinaka, T. Osaka, Journal of The Electrochemical Society, 153 (2006) C117-C120.
    [50] H. Li, L. Li, C. Fan, H. Choo, P.K. Liaw, Journal of Materials Research, 22 (2007) 508-513.
    [51] B.Q. Chen, S.J. Pang, P.P. Han, Y. Li, A.R. Yavari, G. Vaughan, T. Zhang, Journal of Alloys and Compounds, 504 (2010) S45-S47.
    [52] M.H. Lee, K.S. Lee, J. Das, J. Thomas, U. Kühn, J. Eckert, Scripta Materialia, 62 (2010) 678-681.
    [53] M. Stoica, N. Van Steenberge, J. BEDNARCIK, N. Mattern, H. Franz, J. Eckert, Journal of alloys and compounds, 506 (2010) 85-87.
    [54] Z. Zhu, H. Zhang, Z. Hu, W. Zhang, A. Inoue, Scripta Materialia, 62 (2010) 278-281.
    [55] W. Chen, K.C. Chan, P. Yu, G. Wang, Materials Science and Engineering A, 528 (2011) 2988-2994.
    [56] S. Scudino, B. Jerliu, K.B. Surreddi, U. Kühn, J. Eckert, Journal of Alloys and Compounds, 509 (2011) S128-S130.
    [57] W. Chen, K.C. Chan, S.H. Chen, S.F. Guo, W.H. Li, G. Wang, Materials Science and Engineering A, 552 (2012) 199-203.
    [58] Y. Hu, H.H. Yan, T. Lin, J.F. Li, Y.H. Zhou, Journal of Alloys and Compounds, 527 (2012) 36-39.
    [59] T.G. Nieh, Y. Yang, J. Lu, C.T. Liu, Progress in Natural Science: Materials International, (2012).
    [60] R.T. Qu, J.X. Zhao, M. Stoica, J. Eckert, Z.F. Zhang, Materials Science and Engineering: A, 534 (2012) 365-373.
    [61] G.J. Wu, R. Li, Z.Q. Liu, B.Q. Chen, Y. Li, Y. Cai, T. Zhang, Intermetallics, 24 (2012) 50-55.
    [62] R.T. Qu, Q.S. Zhang, Z.F. Zhang, Scripta Materialia, (2013).
    [63] B. Sarac, J. Schroers, Nature Communications, 4 (2013).
    [64] Y. Yokoyama, K. Inoue, K. Fukaura, Materials Transactions, 43 (2002) 3199-3205.
    [65] P. Rizzi, A. Habib, A. Castellero, L. Battezzati, Intermetallics, 33 (2013) 38-43.
    [66] H. Ma, J. Xu, E. Ma, Applied Physics Letters, 83 (2003) 2793-2795.
    [67] M. Calin, J. Eckert, L. Schultz, Scripta Materialia, 48 (2003) 653-658.
    [68] K. Hajlaoui, T. Benameur, G. Vaughan, A.R. Yavari, Scripta materialia, 51 (2004) 843-848.
    [69] A. Slipenyuk, J. Eckert, Scripta materialia, 50 (2004) 39-44.
    [70] G. Kumar, D. Rector, R.D. Conner, J. Schroers, Acta Materialia, 57 (2009) 3572-3583.
    [71] W. Dmowski, C. Fan, M.L. Morrison, P.K. Liaw, T. Egami, Materials Science and Engineering: A, 471 (2007) 125-129.
    [72] N. Van Steenberge, A. Concustell, J. Sort, J. Das, N. Mattern, A. Gebert, S. Surinach, J. Eckert, M.D. Baró, Materials Science and Engineering: A, 491 (2008) 124-130.
    [73] L. Wang, H. Bei, Y.F. Gao, Z.P. Lu, T.G. Nieh, Acta Materialia, 59 (2011) 2858-2864.
    [74] F. Audebert, R. Colaco, R. Vilar, H. Sirkin, Scripta materialia, 48 (2003) 281-286.
    [75] J.Y. Chen, K. Conlon, L. Xue, R. Rogge, Materials Science and Engineering: A, 527 (2010) 7265-7273.
    [76] R.D. Conner, Y. Li, W.D. Nix, W.L. Johnson, Acta materialia, 52 (2004) 2429-2434.
    [77] S.B. Qiu, K.F. Yao, Applied Surface Science, 255 (2008) 3454-3458.
    [78] B. Sarac, J. Ketkaew, D.O. Popnoe, J. Schroers, Advanced Functional Materials, 22 (2012) 3161-3169.
    [79] C.J. Gilbert, J.M. Lippmann, R.O. Ritchie, Scripta Materialia, 38 (1998) 537-542.
    [80] C.J. Gilbert, V. Schroeder, R.O. Ritchie, Metallurgical and Materials Transactions A, 30 (1999) 1739-1753.
    [81] Y. Yokoyama, K. Fukaura, H. Sunada, Materials transactions-JIM, 41 (2000) 675-680.
    [82] G.Y. Wang, P.K. Liaw, A. Peker, B. Yang, M.L. Benson, W. Yuan, W.H. Peter, L. Huang, M. Freels, R.A. Buchanan, Intermetallics, 13 (2005) 429-435.
    [83] G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, Y. Yokoyama, M.L. Benson, B.A. Green, M.J. Kirkham, S.A. White, T.A. Saleh, Intermetallics, 12 (2004) 885-892.
    [84] H.L. Jia, F.X. Liu, Z.N. An, W.D. Li, G.Y. Wang, J.P. Chu, J.S.C. Jang, Y.F. Gao, P.K. Liaw, Thin Solid Films, (2013).
    [85] C.J. Chen, J.C. Huang, H.S. Chou, Y.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, T.G. Nieh, Journal of Alloys and Compounds, 483 (2009) 337-340.
    [86] Y.H. Liu, T. Fujita, A. Hirata, S. Li, H.W. Liu, W. Zhang, A. Inoue, M.W. Chen, Intermetallics, 21 (2012) 105-114.
    [87] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Thin Solid Films, 520 (2012) 5097-5122.
    [88] P.H. Tsai, Y.Z. Lin, J.B. Li, S.R. Jian, J.S.C. Jang, C. Li, J.P. Chu, J.C. Huang, Intermetallics, (2012).
    [89] C.L. Chiang, J.P. Chu, F.X. Liu, P.K. Liaw, R.A. Buchanan, Applied physics letters, 88 (2006) 131902.
    [90] F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu, P.D. Rack, Materials Science and Engineering: A, 468 (2007) 246-252.
    [91] Y.Z. Chang, P.H. Tsai, J.B. Li, H.C. Lin, J.S.C. Jang, C. Li, G.J. Chen, Y.C. Chen, J.P. Chu, P.K. Liaw, Thin Solid Films, (2013).
    [92] A. Tekaya, S. Labdi, T. Benameur, A. Jellad, Journal of materials science, 44 (2009) 4930-4938.
    [93] J.E. Mahan, Physical Vapor Deposition of Thin Films, by John E. Mahan, pp. 336. ISBN 0-471-33001-9. Wiley-VCH, January 2000., 1 (2000).
    [94] J.E. Sipe, J.F. Young, J.S. Preston, H.M. Van Driel, Physical Review B, 27 (1983) 1141.
    [95] N. Vidakis, A. Antoniadis, N. Bilalis, Journal of materials processing technology, 143 (2003) 481-485.
    [96] N. Mattern, U. Kühn, A. Concustell, A. Schöps, M.D. Baro, J. Eckert, Materials Transactions, 48 (2007) 1639-1643.
    [97] J. Gu, M. Song, S. Ni, S.F. Guo, Y.H. He, Materials & Design, 47 (2013) 706-710.
    [98] C.A. Schuh, T.G. Nieh, Acta Materialia, 51 (2003) 87-99.
    [99] Y.I. Golovin, V. Ivolgin, V. Khonik, K. Kitagawa, A. Tyurin, Scripta materialia, 45 (2001) 947-952.
    [100] Y. Yokoyama, H. Tokunaga, A.R. Yavari, T. Kawamata, T. Yamasaki, K. Fujita, K. Sugiyama, P.K. Liaw, A. Inoue, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 42 (2011) 1468-1475.
    [101] A.Y. Vorobyev, A.N. Topkov, O.V. Gurin, V.A. Svich, C. Guo, Applied Physics Letters, 95 (2009).
    [102] Y.C. Chen, J.P. Chu, J.S.C. Jang, C.W. Hsieh, Y. Yang, C.L. Li, Y.M. Chen, J.Y. Jeng, Journal of Micromechanics and Microengineering, 23 (2013).
    [103] G. Ravichandran, A. Molinari, Acta Materialia, 53 (2005) 4087-4095.

    無法下載圖示 全文公開日期 2019/06/30 (校內網路)
    全文公開日期 2024/06/30 (校外網路)
    全文公開日期 2024/06/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE