簡易檢索 / 詳目顯示

研究生: 翁郁婷
Yu-ting Weng
論文名稱: 次微米高分子粒子與蛋白質混和溶液之交互作用
Interactions between Submicron Polymer Particles and Binary Proteins
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 戴子安
Chi-An Dai
李振綱
Cheng-Kang Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 80
中文關鍵詞: 雙蛋白質混和溶液等電點疏水作用力靜電交互作用力
外文關鍵詞: Binary proteins, Isoelectric point, Hydrophbic force, Electrostatic interaction
相關次數: 點閱:233下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以甲基丙烯酸甲酯(MMA)為疏水性單體,並以過硫酸鈉作為起始劑,HS-10作為界面活性劑,以乳化聚合反應合成乳漿粒子,而這些次微米粒子的表面具有-SO4- 及-SO3- 官能基,因此即使是在不同的pH之下,其粒子表面仍帶負電,故具有對pH較不敏感的特性。
在不同pH值之下,單一BSA及Lysozyme蛋白質溶液對乳漿粒子均會在其等電點的附近有最大吸附量,而在雙蛋白質混合溶液中,則會在pH = 7∼8之間有最大的總吸附量,推測有可能是Lysozym會先吸附在膠體粒子的表面,使得膠體粒子的表面因為Lysozym的關係而呈現正電性的分布,再進而藉由BSA與Lysozym之間的靜電交互吸引作用力而造成BSA的吸附量增加,亦有可能是Lysozym會因為靜電吸引作用力的關係而先與BSA連結在一起,之後再由於Lysozym表面所帶有的正電荷而再與膠體粒子產生靜電吸引力,使得混和後蛋白質總吸附量在pH = 7∼8之間時,有一最大的吸附量。在 pH = 4∼5之間,隨著溶液中離子強度的增加而使得粒子與蛋白質之間的靜電作用力下降,且由於pH值在BSA的等電點附近,此時BSA 具有較強的疏水作用,而此疏水作用力較此時Lysozym的靜電吸引作用力來得強,故使得混和溶液中BSA的吸附量較為單一BSA的吸附情形來得好,而在 pH = 10∼10.5之間時,隨著溶液中離子強度的增加,由於此時Lysozyme的疏水作用力會相較BSA微弱,故會造成混合溶液中BSA受到Lysozyme的影響而使其吸附量增加。


Submicron polymer particles were prepared by emulsion polymerization with methyl methacrylate (MMA) as the hydrophobic monomer, sodium persulfate as the initiator, and HS-10 as the surfactant. These particle surfaces have sulfate groups (-SO4-) and sulfonate groups (-SO3-) at the same time. Therefore, they are relatively insensitive to changes in pH.
The adsorption of binary proteins (BSA and lysozyme) on the particles was studied. Isothermal adsorption of binary proteins onto the particles leads to changes in the zeta potential, particle size and turbidity. At the low ionic strength, the total maximum protein adsorption occurs in the pH range of 7-8. This may well be due to lysozyme adsorption onto the particles first and this will result in increased net negative charge particles and therefore promote the adsorption of BSA. Another reason is that BSA and lysozyme have opposite net charges, they’ll aggregate with each other first by electrostatic attraction forces. Then electrostatic attraction forces between lysozyme of the binary proteins mixture and submicron latex particles bring about the enhanced total adsorbed amount.

中文摘要…………………………………………………………………i 英文摘要…………………………………………………………………ii 目錄……………………………………………………………………iii 圖目錄…………………………………………………………………viii 表目錄……………………………………………………………………xi 第一章 緒論……………………………………………………………1 1-1 研究背景及目的………………………………………………1 1-2 研究內容簡介…………………………………………………1 第二章 文獻回顧…………………………………………………….3 Ⅰ. 膠體之研究理論……………………………………………….3 Ⅰ-1 膠體穩定性…………………………………………………3 Ⅰ-1-1 膠體安定的系統………………………………………3 Ⅰ-2-2 電雙層理論……………………………………………5 Ⅰ-2 膠體粒子的失穩定性………………………………………6 Ⅱ. 蛋白質體學之研究理論…………………………………………7 Ⅱ-1 蛋白質分子之立體結構……………………………………7 Ⅱ-2 穩定蛋白質分子之作用力…………………………………11 Ⅱ-3 溶菌酶(Lysozyme)簡介…………………………………12 Ⅱ-4 牛血清蛋白(bovin serum albumin, BSA)簡介….….16 Ⅲ. 聚合體粒子與蛋白質間作用之研究理論…………………….19 Ⅲ-1 高分子聚合體與蛋白質吸附之過程………………………19 Ⅲ-2 高分子聚合體與蛋白質分子間的交互影響力……………19 Ⅲ-3 影響蛋白質吸附機制的因素………………………………20 Ⅲ-3-1 環境溶液pH值對蛋白質吸附之影響…………………20 Ⅲ-3-2 環境鹽類溶液及其濃度對蛋白質吸附之影響………21 第三章 實驗藥品、設備及方法……………………………………23 3-1 藥品………………………………………………………….23 3-2 實驗儀器及設備…………………………………………….24 3-3 實驗方法…………………………………………………….25 3-3-1 乳漿之製備…………………………………………….25 3-3-2 乳漿粒子的清洗步驟………………………………….26 3-3-3 利用TEM測量乳漿粒子粒徑……………………………27 3-3-4 pH值對乳漿粒子表面電位(ξ)及粒徑(dp)之影 響………………………………………………………27 3-3-5 pH値對乳漿粒子濁度之影響…………………………28 3-3-6 不同NaCl濃度對乳漿粒子表面電位(ζ) 及粒徑(dp) 之影響…………………………………………………28 3-3-7 BSA 及 Lysozyme 濃度檢量線之測定………………29 3-3-8 在不同pH值與離子強度下,乳漿粒子對 BSA 之恆 溫吸附實驗. …………………………………………29 3-3-9 在不同pH值與離子強度下,乳漿粒子對 Lysozyme 之恆溫吸實驗…………………………………………30 3-3-10 蛋白質電泳分析…………………………………… 31 3-3-11 蛋白質混和溶液(BSA 及 Lysozyme)之濃度分佈 比例之檢量線測定………………………………… 32 3-3-12 蛋白質混和溶液(BSA 及 Lysozyme)在不同之pH 值與離子強度下與乳漿粒子之恆溫吸附實驗…… 33 第四章 結果與討論…………………………………………………40 4-1 乳漿粒子之鑑定……………………………………………40 4-1-1 乳漿粒子之合成製備…………………………………40 4-1-2 pH值對乳漿粒子表面電位之影響……………………40 4-1-3 pH值對乳漿粒子粒徑之影響…………………………41 4-1-4 pH值對乳漿粒子濁度之影響…………………………41 4-1-5 NaCl濃度對乳漿粒子之表面電位及粒徑之影響……41 4-2 單一蛋白質溶液與乳漿粒子之交互作用…………………42 4-2-1 在不同的離子強度下隨著溶液中pH值的改變,單一 蛋白質吸附對乳漿粒子表面ζ電位之影響………… 42 4-2-2 在不同的離子強度下隨著溶液中pH值的改變,單一 蛋白質吸附對乳漿粒子粒徑之影響…………………44 4-2-3 在不同的離子強度下隨著溶液中pH值的改變,單一 蛋白質吸附對乳漿粒子濁度之影響…………………45 4-2-4 在不同的離子強度下隨著溶液中pH值的改變,單一 蛋白質吸附對乳漿粒子吸附量之影響………………47 4-3 雙蛋白質混合溶液與乳漿粒子之交互作用………………49 4-3-1 在不同的離子強度下隨著溶液中pH值的改變,雙蛋 白質混合溶液吸附對乳漿粒子表面ζ電位之影響… 50 4-3-2 在不同的離子強度下隨著溶液中pH值的改變,雙蛋 白質混合溶液吸附對乳漿粒子粒徑變化之影響……51 4-3-3 在不同的離子強度下隨著溶液中pH值的改變,雙蛋 白質混合溶液吸附對乳漿粒子濁度變化之影響……52 4-3-4 在不同的離子強度下隨著溶液中pH值的改變,雙蛋 白質混合溶液吸附對乳漿粒子吸附量變化之影響…53 第五章 結論…………………………………………………………74 5-1 結論…………………………………………………………74 5-2 建議…………………………………………………………76 第六章 參考文獻……………………………………………………78 附錄…………………………………………………………………… 81

1. 徐治平, 林天賜, 化工, 第45卷, 第2期, 14 (1998).
2. V. K. LaMer, J. Colloid Sci., 19, 291, (1964).
3. M. W. Thompson, “Polymer Colloids”, R. Buscall, T. Corner, J. F. Stageman(Ed), 1-43, (1985).
4. D. Myers, “Surfaces Interfaces and Colloids : Principles and Applications”, 214-248, (1999).
5. T. Satsuo, R. Ruch, “Stabilization of Colloidal Dispersion by Polymer Adsorption”, T. Satsuo, R. Ruch(Ed),New York, 65-119, (1980).
6. H. Tamai, A. Fujii, T. Suzawa, “Colloidal Stability of Polymer Latices Coated with Bovine Serum Albumin”, J. Colloid and Interface sci., 118, 176-181, (1987).
7. R. J. Hunter (Ed.), “ Zeta Potential in Colloid Science”, Academic Press, London, (1981).
8. D. J. Shaw (Ed.), “ Introduction to Colloid & Surface Chemistry 4/E”, Butterworth, Heinemann Press, (1992).
9. 蘇家豪, 碩士論文, 國立成功大學化學工程研究所, (2003).
10. R. J. Hunter (Ed.), “Zeta Potential in Colloid Science”, Academic Press, London, (1981).
11. Boyer, R.F., “Chapter 5:Protein architecture and biological function”, in Biochemistry, Brooks/Cole Publishing Company, (1999).
12. Nölting, B., “Chapter 3 : Physical interaction that determine the properties of protein” , in Protein Folding Kinetic, Springer-Verlag Berlin Heidelberg, New York, (1999).
13. Campbell, M. K., “Chapter 4:The three-dimensional structure of protein”, in Biochemistry, Campbell, M. K.,Saunders College Publishing, (1995).
14. Fleming, A., “On a remarkable bacteriolytic element found in tissues and secretions”, Proc. Roy. Soc. Lond.,B93,306, (1922).
15. Proctor, V. A., and Cunningham, F. E. “The chemistry of lysozyme and its use as a food preservative and a pharmaceutical”, CRC Crit. Rev. Food Sci. Nutr.,26,359, (1988).
16. Rothwarf, D. M., and Scheraga, H. A. “Role of non-native and hydrophobic interactions in the folding of hen egg white lysozyme”, Biochemistry., 35, 13797, (1996).
17. Berges, H., Kassab, E., Conte, D., Adjadj, E., and Houee-Levin, C. “Ab-Initio calculations on arginine-disulfide complexes modeling the one-electron reduction of lysozyme. comparison to an experimental reinvestigation.”, J. Phys. Chem., 101, 7809, (1997).
18. Hamaguchi, K. “Conformation and enzymatic activity of lysozyme”, Tampakushitsu. Kakusan Kosa., 13, 98, (1968).
19. Jr Peters T, Serum albumin, Adv Protein Chem., 37, 161-245, (1985).
20. Foster, J. F. Albumin Structure, Function and Uses, 53-84. Pergamon, OxfordFoster, (1977)
21. Duracher, R. Veyret, A. Elaissari, C. Pichot,”Adsorption of Bovine Serum Albumin Protein onto Amino-Containing Thermosensitive Core-Shell”, Polym Int., 53, 618-626, (2004).
22. D. Andrade, “Surface and Interfacial Aspects of Biomedical Polymers--v.2 Protein Adsorption”, 1-80, (1985).
23. Suzawa, T. Murakami, “Adsorption of Bovine Serum Albumin on Synthetic Polymer Latices”, J. Colloid and Interface sci., 266-268, (1980).
24. R. K. Scopes, “Protein Purification : Principles and Practice”, 41-71,(1987).
25. H. Shirahama, T. Suzawa, “Adsorption of Bovine Serum Albumin onto Styrene/2-Hydroxyethyl Methacrylate Copolymer Latex”, J. Colloid and Interface sci., 416-421, (1985).
26. H. Shirahama, K. Takeda, and T. Suzawa, “Adsorption of Bovine Serum Albumin onto Polystyrene Latex : Effects of Coexistent Electrolyte Anions”, J. Colloid and Interface sci., 552-556, (1986).
27. T. Suzawa, H. Shirahama, and T. Fujimoto, “Effect of Urea on the Adsorption of Bovine Serum Albumin onto Polymer Latices”, J. Colloid and Interface sci., 498-503, (1983).
28. M. van der Veen, N. Willem, M. C. Stuart, “Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme”, Colloids and Surfaces B : Biointerfaces., 33-40, (2004).

QR CODE