簡易檢索 / 詳目顯示

研究生: 邱茗煥
Ming-Huan Chiu
論文名稱: 二性次微米高分子粒子與混合蛋白質溶液之交互作用
Interactions between Amphoteric Submicron Polymer Particles and Binary Proteins
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 李振綱
Cheng-Kang Lee
邱信程
Hsin-Cheng Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 70
中文關鍵詞: 二性次微米高分子粒子蛋白質混合恆溫吸附
外文關鍵詞: amphoteric submicron polymer particles, protein mixtures, isothermal adsorption
相關次數: 點閱:233下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用本實驗室陳俊宏學長所合成之二性乳漿粒子作為與蛋白質吸附之載體。二性乳漿粒子係以甲基丙烯酸甲酯(MMA)為疏水性單體、甲基丙烯酸(MAA)為親水性單體,V-50為陽離子起始劑,以無乳化聚合反應合成粒子表面同時具有NH2及COOH 對pH 敏感之次微米高分子粒子
    此實驗分為兩部分,其一為不同IEP(isoelectric point)之二性乳漿粒子分別與牛血清蛋白及血紅蛋白作恆溫吸附,測量粒子的濁度、粒子粒徑以及表面電位,觀察膠體粒子在不同 pH 環境下膠體粒子與蛋白質吸附之交互作用,所得到的結果為在牛血清蛋白等電點(pI = 4.7)及血紅蛋白等電點(pI =7.0)附近有最大的濁度吸收值及粒徑大小。其二為使用IEP = 7.1之二性乳漿粒子與混合蛋白質溶液(牛血清蛋白、溶菌素)在不同 pH 下做恆溫吸附,觀察二性乳漿粒子吸附混合蛋白質溶液後膠體系統濁度變化、粒徑變化及表面電位變化,藉此探討二性乳漿粒子與混合蛋白質溶液之交互作用。使用GPC測量經恆溫吸附後不同 pH 環境下殘留在懸浮液的蛋白質濃度,藉此研究二性乳漿粒子與混合蛋白質溶液之吸附行為。


    The two amphoteric latex particles with their IEP equal 5.2 and 7.1, respectively, from J. H. Chren
    These latex products was prepared by the surfactant-free emulsion polymerization and composed of methyl methacrylate(MMA)as the hydrophobic monomer, methacrylic acid(MAA) as hydrophilic monomer, and V-50 as cationic initiator.
    First, isothermal adsorption of BSA or Hemoglobin on latex particles with different IEP values(IEP = 5.2 and IEP = 7.1)were carried out the colloidal properties such as optical density, particle size, and Zeta potential measured in order to investigate the interactions between latex particles and proteins. Maximal optical density and particle size at pI value of BSA and Hemoglobin(BSA pI = 4.7, Hemoglobin pI = 7.0 ), respectively.
    Isothermal adsorption of binary protein mixture(BSA and lysozyme) on amphoteric latex particles(IEP = 7.1)at different pH values were then investigated. We measured optical density, particle size and zeta potential at the colloidal system in order to gain a better understanding of the interactions between the proteins and amphoteric latex particles.

    中文摘要…………………………………………………………………I 英文摘要…...............................................................................................II 致謝……………………………………………………………………..III 目錄……………………………………………………………………IV 圖目錄……………………………………………………...………... VIII 表目錄…………………………………………………………………...X 第一章 緒論………………………………………………………….1 1-1 研究背景及目的……………………………………………1 第二章 文獻回顧…………………………………………………….2 2-1無乳化聚合的簡介…………………………………………2 2-1-1無乳化聚合反應成核機構……………………………...…3 2-2膠體的穩定性………………………………………………4 2-2-1 膠體表面帶電的原因……………...……………………..5 2-2-2 電雙層理論(The electric double layers)……………....6 2-2-3 DLVO理論………………………………...…………….6 2-3 膠體的穩定性………………………………………………...9 2-4 聚合體粒子在蛋白質分離之應用………………………….11 2-4-1 高分子聚合體作為吸附載體之設計………………..11 2-4-2 聚合體粒子與蛋白質之作用機構…………………..12 2-4-3 pH值對蛋白質基本單元(胺基酸)帶電之影響….13 2-4-4 pH 值對蛋白質吸附之影響.........................................14 2-5 相關文獻探討………………………………………………15 2-5-1二性膠體粒子之相關文獻探討……………………..15 2-5-2膠體粒子表面電性與蛋白質吸附之影響…………….16 2-5-3膠體粒子表面官能基對蛋白質吸附之影響………..16 2-5-4牛血清蛋白(BSA)與溶菌素(lysozyme)混合液之選 擇性吸附、連續吸附於磁性粒子………………………18 第三章 實驗藥品、設備及方法……………………………………..19 3-1 試藥………………………………………………………….19 3-2 實驗儀器及設備…………………………………………….20 3-3 實驗方法…………………………………………………….21 3-3-1 兩性乳漿之製備………………………………………..21 3-3-2 二性乳漿粒子清洗步驟…………………………..23 3-3-3 不同蛋白質對相近等電點之二性乳漿粒子濁度影響..23 3-3-4 改變 pH 值以不同蛋白質與相近等電點之兩性乳漿 粒子表面電位及粒徑影響…………………..…24 3-3-5 不同 pH 值與相近等電點之蛋白質及二性乳漿粒子之 濁度影響………………………………………………24 3-3-6 不同 pH 值與相近等電點之蛋白質及二性乳漿粒子之 表面電位及粒徑之影響………………………………25 3-3-7 蛋白質混合物(BSA、lysozyme)在不同 pH 值下與兩 性乳漿粒子之濁度及表面電位之影響………………..25 3-3-8 GPC檢量線製作…………………………………..….27 3-3-9 使用GPC量測經二性乳漿粒子吸附後殘留之蛋白質 混合液度………………………….…………………….27 第四章 結果與討論…………………………………………………..30 4-1 乳漿粒子之取得…………………………………………….30 4-2 相近等電點之蛋白質與二性乳漿粒子之濁度值影響……35 4-2-1 牛血清蛋白(BSA,pI = 4.7)與二性乳漿粒子(P2,IEP = 5.2)之濁度影響……………………………35 4-2-2 血紅蛋白(Hemoglobin,pI = 7.0)與二性乳漿粒子(P1, IEP = 7.1)之濁度影響………………………………...36 4-3 相近等電點之蛋白質與二性乳漿粒子之粒徑影響………..37 4-3-1 牛血清蛋白(BSA,pI = 4.7)與二性乳漿粒子(P2,IEP = 5.2)之粒徑影響……………………………………..37 4-3-2 血紅蛋白(Hemoglobin,pI = 7.0)與二性乳漿粒子(P1, IEP = 7.1)之粒徑影響…………………………………38 4-4 相近等電點之蛋白質與二性乳漿粒子表面電位影響……...39 4-4-1 牛血清蛋白(BSA,pI = 4.7)與二性乳漿粒子(P2,IEP = 5.2)之表面電位影響………………………………39 4-4-2 血紅蛋白(Hemoglobin,pI = 7.0)與二性乳漿粒子(P1, IEP = 7.1)之表面電位影響……………………………40 4-5 混合蛋白質與二性乳漿粒子之交互作用…………………47 4-5-1 牛血清蛋白(BSA,pI = 4.7)與溶菌素(lysozyme,pI = 11.0)混合液與二性乳漿粒子(P1,IEP = 7.1)隨 pH 改 變之濁度變化……………………………………………47 4-5-2 牛血清蛋白(BSA,pI = 4.7)與溶菌素(lysozyme,pI = 11.0)混合液與二性乳漿粒子(P1,IEP = 7.1)隨 pH 改 變之粒徑變化…………………………………………49 4-5-3 牛血清蛋白(BSA,pI = 4.7)與溶菌素(lysozyme, pI = 11.0)混合液與二性乳漿粒子(P1,IEP = 7.1)隨 pH 改變之表面電位變化…………………………………49 4-5-4牛血清蛋白與溶菌素混合液與二性乳漿粒子之作用力 整理……………………………………………………54 第五章 結論……………………………………………………….….56 5-1 結論…………………………………………………….…...56 5-2 建議……………………………………………………...….57 第六章 參考文獻…………………………………………….………58

    1. M. S. El-Aasser, ”Scientific Methods for the Study of Polymer Colloids and Their Applications”, F. Candau, R. H. Ottewill(Ed), 1988,pp1-34
    2. T. Linsheng, Y. Jingwei, Z. Shufeng, Y. Jinzong, W. Yumin, “Emulsifier-Minor Emulsion Copolymerization of BA-MMA-St-MAA (or AA)-N-MA”, J. App. Polym. Sci.,2004,92,2923-2929
    3. H. Tamai, M. Hasegawa, T. Suzawa, “Surface Characterization of Hydrophilic Functional”, J. App. Polym. Sci.,1989,38,403-412
    4. B. M. E. Van der Hoff, Advances in Chemistry Series, No 34, Amer. Chem. Soc., Washington D.C., 6 (1967)
    5. R. Goodall, M. C. Wilkinson, and M. C. Hearn, J. Polym. Sci. : Polym. Chem. Ed., 15, 2193 (1977)
    6. R. A. Cox, M. C. Wilkinson, A. R. Goodall, and J. M. Creasey, J. Polym. Sci. : Polym. Chem. Ed., 15, 2311 (1977)
    7. J. W. Vanderhoff, J. Polym. Sci. : Polym. Symp., 72, 161 (1985)
    8. W. J. Priest, J. Phys. Chem., 56, 1077 (1952)
    9. R. M. Fitch (Ed), Polymer Colloids, Plenum, New York, 73 (1971)
    10. R. M. Fitch, Br. Polym. J., 15, 467 (1973)
    11. F. K. Hansen and J. Ugelstad, J. Polym. Sci : Polym. Chem. Ed., 16, 1953 (1978)
    12. 徐治平, 林天賜, 化工, 第45卷, 第2期, 14 (1998)
    13. V. K. LaMer, J. Colloid Sci., 19, 291 (1964)
    14. R. J. Hunter (Ed.), Zeta Potential in Colloid Science, Academic Press, London (1981)
    15. D. J. Shaw (Ed.), Introduction to Colloid & Surface Chemistry 4/E, Butterworth, Heinemann Press (1992)
    16. B. V. Derjaguin and L. Landau, Acta Physicochimica U.R.S.S., 14, 633 (1941)
    17. E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948)
    18. T. Satsuo, R. Ruch, “Stabilization of Colloidal Dispersion by Polymer Adsorption”, T. Satsuo, R. Ruch(Ed),New York,1980,pp65-119
    19. C.W. Kim, C. K. Rha, “Applications of Submicron-Sized Polymeric Particles in Bioseparation Processes”, Enzyme Microb. Technol., 1987,9,57-59
    20. B. Gebben, G. D. B. van Houwelingen, W. Zhang, Th. Van den Boomgaard, C. A. Smolders, “Protein Separation Using Affinity Binding”, Colloid and Surfaces B:Biointerfaces,1994,3,75-84
    21. Y. Sumi, T. Shiroya, K. Fujimoto, T. Wada, H. Handa, H.Kawaguchi, “Application of Cationic Latex Particles for Protein Separation”, Colloid and Surfaces B:Biointerfaces,1994,2,419-427
    22. J. E. Butler, “Solid Supports in Enzyme-Linked Immunosorbent Assay and Other Solid-Phase Immunoassays”, Methods,2000,22,4-23
    23. S. Slomkowski, T. Basinska, B. Miksa, New Types of Microspheres and Microsphere-related Materials for Medical Diagnostics”, Polym. Adv. Technol.,2002, 13,906-918
    24. A.I. Liapis, K.K. Unger, “Highly Selective Separations in Biotechnology”, G. Stereet (Ed),1994, 121-162
    25. F. J. Dechow, “Separation and Purification Techniques in Biotechnology”, 1989,pp416-484
    26. J. D. Andrade, “Surface and Interfacial Aspects of Biomedical Polymers--v.2 Protein Adsorption”,1985,pp1-80
    27. R. K. Scopes, “Protein Purification : Principles and Practice”,1987, pp41-71
    28. T. Suzawa, T. Murakami, “Adsorption of Bovine Serum Albumin on Synthetic Polymer Latices”, J. Colloid and Interface sci., 1980, 266-268
    29. H. Tamai, H. Ohshima, and T. Suzawa, J. Colloid and Interface Sci.,118, 176 (1992)
    30. 陳箐瓔, 碩士論文, 國立台灣工業技術學院 (1995)
    31. C. S. Chern, C. K. Lee, and C. Y. Chen, Colloids Surfaces B:Biointerfaces, 7, 55 (1996)
    32. A. Homola, R. O. James, “Preparation and Characterization of Amphoteric Polystyrene Latices”, J. Colloid and Interface sci., 1977, 59,123- 133
    33. C. S. Chern, C. K. Lee, C. J. Chang, “Electrostatic Interactions between Amphoteric Latex Particles and Proteins”, Colloid Polym Sci.,2004,283, 257-264
    34. T. Suzawa, H. Shirahama, T. Fujimoto, “Adsorption of Bovine Serum Albumin onto Homo- and Copolymer Latices”, J. Colloid and Interface sci., 1982,86,144-150
    35. J. Y. Yoon, H. Y. Park, J. H. Kim, W. S. Kim, ”Adsorption of BSA on Highly Carboxylated Microspheres-Quantitative Effects of Surface Functional Groups and Interaction Forces”, J. Colloid and Interface sci.,1996,177,613-620
    36. J. Y. Yoon, H. Y. Park, J. H. Kim, W. S. Kim, ”Interpretation of Protein Adsorption Phenomena onto Functional Microspheres” Colloid and Surfaces B:Biointerfaces.,1998,12,15-22
    37. C. S. Chern, C. K. Lee, C. Y. Chen, and M. J. Yeh, Colloids Surfaces B: Biointerfaces, 6, 37 (1996)
    38. 陳俊宏,碩士論文,國立台灣科技大學 (民國94年)
    39. Z.G. Peng, K. Hidajat, M.S. Uddin, J. Colloid and Interface Sic. (2004)
    40. T. Arai, W. Norde, Colloids Surf. 51 (1990) 17.

    QR CODE