簡易檢索 / 詳目顯示

研究生: 賴怡達
Yi-Ta Lai
論文名稱: Ag@CeO2核殼奈米顆粒之界面結構研究
Study of the interface structure of Ag@CeO2 core-shell nanoparticles
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳良益
Liang-Yih Chen
宋振銘
Jenn-Ming Song
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 81
中文關鍵詞: 核殼結構X光吸收光譜界面奈米顆粒缺陷
外文關鍵詞: core-shell, XAS, interface, defect, nanoparticle
相關次數: 點閱:389下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以二階段式化學法合成Ag@CeO2核殼結構奈米顆粒,Ag奈米核以熱輔助光還原法(TAP),CeO2殼層則由熱裂解及化學還原法製備。樣品的成份、形貌、結構及價態以X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM),及X光吸收光譜(X-ray Absorption Spectroscopy,XAS)進行分析。研究結果顯示,化學還原法可成功將CeO2均勻包覆於Ag核上,但當Ag核尺寸小於20 nm,則無法形成核殼結構,XAS分析則顯示樣品中的氧空缺(Vo)與Ce3+隨著Ag和CeO2界面面積提高而增加,顯示在界面處的缺陷數量較多。本實驗進一步控制CeO2的起始濃度,使得殼層厚度下降,進而使界面面積比例上升,達到控制缺陷的目的。磁性量測結果指出具此種核殼結構之奈米顆粒,室溫鐵磁性可大幅提升。


In this research, Ag@CeO2 core-shell structure nanoparticles(NPs) were synthesized by two-step method. Ag NPs was prepared by thermal assisted photoreduction (TAP) method, and CeO2 NPs was prepared by thermal decomposition and chemical reduction(CR) method. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS) were utilizes to investigate the morphology、structure and valence state of particles. Our results showed that Ag@CeO2 core-shell NPs can be synthesized successfully by CR. However, it is noted that core-shell structure can not be found as the size of Ag core is smaller than 20 nm. XAS analysis demonstrated that the formation of Ag-CeO2 interface result in the enhancement of Vo and Ce3+. With adjusting the shell thickness, the ratio of interface/surface can be further increased. In addition, magnetic measurement indicated that NPs with core-shell structure are ferromagnetic at room temperature. Importantly, the saturation magnetization was much higher than those without core-shell structure.

摘要 I Abstract II 致謝 III 目錄 IV 圖索引 VI 表索引 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.3 研究動機與目的 4 第二章 文獻回顧與理論介紹 6 2.1 核殼奈米材料 6 2.1.1核殼奈米材料分類及介紹 6 2.1.2奧斯瓦爾德熟化(Ostwald ripening) 9 2.2金屬-金屬氧化物之核殼奈米結構 11 2.2.1 銀(Ag)奈米顆粒-二氧化鈰(CeO2)核殼奈米粒子合成 13 2.2.2 Ag奈米粒子的合成 16 2.2.3熱輔助光還原法(Thermally Assisted Photoreducition, TAP) 18 2.2.4 CeO2晶體結構及化學性質 19 2.2.5 CeO2的室溫鐵磁性特性 21 第三章 實驗方法 25 3.1 實驗流程 25 3.1.1 Ag奈米顆粒之製備 26 3.1.2 CeO2殼層沉積方式 27 3.2 性質分析 29 3.2.1 低掠角X光繞射(XRD) 29 3.2.2 紫外線可見光吸收光譜儀(UV-Vis) 31 3.3.3 掃描式電子顯微鏡(SEM) 32 3.3.4 穿透式電子顯微鏡(TEM) 32 3.3.5 X光吸收光譜 (XAS) 33 第四章 結果與討論 35 4.1 Ag奈米顆粒製備方式及結果 35 4.1.1 不同二氧化鈦薄膜製備方式 35 4.1.2 Ag奈米顆粒之SEM分析及XRD分析 36 4.2 CeO2層之製備 41 4.2.1 以熱裂解法(thermal decomposition method)製備CeO2 41 4.2.2 以化學還原法(Chemical reduction)製備CeO2 42 4.3 Ag@CeO2核殼奈米顆粒之製備與結果 44 4.3.1 以熱裂解法在Ag奈米顆粒上成長CeO2 44 4.3.2 以化學還原法在Ag奈米顆粒上成長CeO2 44 4.4改變起始CeO2濃度對 Ag@CeO2核殼奈米顆粒結構影響 47 4.4.1不同CeO2起始濃度之Ag@CeO2奈米顆粒形貌分析 47 4.4.2 改變CeO2起始濃度之結構分析 54 4.4.2.1 不同起始濃度所製成之CeO2 54 4.4.2.2 改變CeO2濃度之Ag@CeO2奈米顆粒結構分析 59 4.5界面對核殼結構奈米顆粒物理性質的影響 64 4.5.1 光學性質分析 64 4.5.2 磁性分析 65 4.6 Ag/TiO2-x/CeO2 及Ag/CeO2-x/CeO2奈米核殼顆粒之探討 66 4.6.1Ag/TiO2-x及Ag/CeO2-x奈米核殼顆粒 66 4.6.2 TiO2-x (CeO2-x)氧化層對於形成Ag/TiO2-x (CeO2-x)/CeO2核殼結構之影響 69 4.7 綜合討論與分析 73 第五章 結論 75 參考文獻 76

[1] Henglein, Arnim. Chemical Reviews 89.8, pp.1861 (1989).
[2] Hoener, Carolyn F., The Journal of Physical Chemistry 96.9 pp.3812 (1992).
[3] 陳東煌. "複合奈米粒子的製備與應用" 化工技術 120 pp.180 (2003).
[4] 陳嘉祈和呂世源. "奈米核殼粒子與奈米中空球之製備與應用" 化工技術120 pp.194 (2003)
[5] F. Caruso. Advanced Materials 13, pp.11 (2001).
[6] 柯揚船,皮特斯壯 (2004) 聚合物-無機奈米複合材料,臺北:五南。
[7] 莊浩宇,二氧化鈦奈米粒子及其金屬核殼型奈米複合材料之製備與應用研究,國立成功大學博士論文,(2009)
[8] Smith J.N., Meadows J. and Williams P.A. , Langmuir, 12, pp.3773 (1996)
[9] Kim S., Fisher B., Eisler H.J., Bawendi M., J. Am. Chem. Soc., 125, pp.11466 (2003)
[10] T. J. Silva, S. Schultz, Rev. Sci. Instrum, 67, pp.715 (1996)
[11] Kalele S.A., Ashtaputre S.S., Hebalkar N.Y., Gosavi S.W., Deobagkar D.N., Deobagkar D.D., Chem. Phys. Lett., 404, pp.136 (2005)
[12] West J.L., Halas N.J., , Annu. Rev. Biomed. Eng., 5, pp285-292 (2003)
[13] Li, Guodong, and Zhiyong Tang. Nanoscale 6.8 ,pp.3995 (2014)
[14] 梁藝礬,合成二氧化矽/銀核殼結構及其表面電漿子共振引發之光催化效應研究,國立清華大學碩士論文,2012
[15] Ghosh Chaudhuri, Rajib, and Santanu Paria. Chemical reviews 112.4 pp.2373 (2011).
[16] Skoda, M., et al. The Journal of chemical physics 130.3 ,pp.034703 (2009).
[17] Han, Mingyong, et al. Nature biotechnology 19.7 ,pp .631 (2001).
[18] Murray, CBea, David J. Norris, and Moungi G. Bawendi. Journal of the American Chemical Society 115.19 ,pp. 8706 (1993).
[19] Morriss, R. H., and L. F. Collins. The Journal of Chemical Physics 41.11 pp.3357 (1964).
[20] Toshima, N., et al. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 16.1, pp. 209 (2001).
[21] Ahn, C. H.; Choi, J. W.; Cho, H. J. Nanomagnetics for biomedical applications. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 6, pp.815 (2004)
[22] Tartaj, P. Nanomagnets for biomedical applications. In:Nalwa, H. S., ed. Encyclopedia of Nanoscience and NanotechnologyCalifornia:American Scientific Publishers, Vol. 6, pp.823(2004)
[23] Berry, Catherine C., and Adam SG Curtis. Journal of physics D: Applied physics 36.13 (2003): R198.
[24] Shinkai, Masashige. Journal of bioscience and bioengineering 94.6 (2002): 606-613.W. Ostwald, Z. Phys. Chem. 34, pp. 495 (1900).
[25] J. Aleman, A. V. Chadwick, J. He, M. Hess, K. Horie, R. G. Jones, P. Kratochvil, I. Meisel, I. Mita, G. Moad, S. Penczek, R. F. T. Stepto and R. G. Jones, Pure Appl. Chem. 79, pp.1801 (2007).
[26] I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids, 19,pp.35 (1961).
[27] C. Wagner, Z. Elektrochem. 65,pp.581, (1961).
[28] P. W. Voorhees, J. Stat. Phys., 38,pp.231 (1985).
[29] Yec, Christopher C., and Hua Chun Zeng. Journal of Materials Chemistry A 2.14 pp.4843 (2014).
[30] J. Li and H. C. Zeng, Angew. Chem., Int. Ed. 44, pp.4342(2005).
[31] Kayama, Tomoyuki, Kiyoshi Yamazaki, and Hirofumi Shinjoh. Journal of the American Chemical Society 132.38 ,pp.13154 (2010).
[32] Zhang, Nan, Xianzhi Fu, and Yi-Jun Xu. Journal of Materials Chemistry 21.22, pp.8152 (2011).
[33] Huang, Jianmei, et al. Journal of Materials Chemistry 21.44, pp.17930 (2011).
[34] Qi, Jian, et al. Energy & Environmental Science 5.10 ,pp.8937 (2012).
[35] Zhang, Jun, et al. Journal of Materials Chemistry 22.21 ,pp.10480 (2012).
[36] Mitsudome, Takato, et al. Angewandte Chemie International Edition 51.1 ,pp.136 (2012).
[37] Sun, Hang, et al. Journal of the American Chemical Society 135.24, pp.9099 (2013).
[38] Chen, Junchen, et al. Nano Research 6.12, pp.871 (2013).
[39] Liang, Fengli, Wei Zhou, and Zhonghua Zhu. ChemElectroChem 1.10, pp.1627 (2014).
[40] J. H. Hodak, A. Henglein, M. Giersig and G. V. Hartland, J. Phys. Chem. B 104, pp.11708 (2000).
[41] Reetz, Manfred T., Wolfgang Helbig, and Stefan A. Quaiser. Chemistry of materials 7.12 ,pp.2227 (1995).
[42] Gachard, Elisabeth, et al. New journal of chemistry 22.11 pp.1257 (1998).
[43] T. Yonezawa, T. Sato, S. Kurada, K. Kuge, J. Chem, Soc. Faraday Trans., 87, pp.1905 (1991).
[44] Mizukoshi, Yoshiteru, et al. The Journal of Physical Chemistry B 101.36, pp.7033 (1997).
[45] He, Baolin, et al. Journal of Molecular Catalysis A: Chemical 221.1, pp.121 (2004).
[46] Lavinia Balan, Jean-Pierre Malval, Raphaël Schneider, Dominique Burget, Mat. Chem. Phy., vol. 104, pp.417 (2007)
[47] G. A. Martı´nez-Castanon, N. Nino-Martınez,F. Martınez-Gutierrez, J. R. Martı´nez-Mendoza, Facundo Ruiz, J Nanopart Res.,Vol.10, pp. 1343 (2008)
[48] Haw-Yeu Chuang and Dong-Hwang Chen, Nanotechnology, Vol. 20, pp. 105704 (2009),
[49] Hsien-Tse Tung, Jenn-Ming Song, Yung-Tang Nien and In-Gann Chen, Nanotechnology, Vol. 19, (2008)pp. 455603
[50] Hsien-Tse Tung, Jenn-Ming Song, Teng-Yuan Dong, Weng-Sing Hwang, and In-Gann Chen, Crystal Growth & Design, Vol. 8, (2008)pp 3415
[51] Hsien-Tse Tung, In-Gann Chen, Jenn-Ming Song and Cheng-Wei Yen, J. Mater. Chem., Vol 19, pp. 2386 (2009)
[52] W. S. Liao, T. Yang, E. T. Castellana, S. Kataoka, P. S. Cremer, A rapid prototyping approach to Ag nanoparticle fabrication in the 10-100 nm Range, Adv. Mater., vol. 18, pp.2240. (2006)
[53] V. Iliev, D. Tomova, L. Bilyarska, G. Tyuliev, J. Mole. Catal. A: Chemical, vol. 263, pp 32 (2007)
[54] M. Haruta, Catal. Today, Vol 36, pp.153 (1997)
[55] J.-M. Song, Applied Surface Science, vol. 285, pp 450 (2013)
[56] S. Phokaa, P. Laokula, E. Swatsitanga, V.Promarakb, S. Seraphinc, and S.Maensiria, Materials Chemistry and Physics, Vol. 115, pp. 423 (2009).
[57] M. Sugiura, Catalysis Surveys from Asia, Vol. 7, pp. 77 (2003)
[58] X. L. Song, G. Z. Qiu and P. Qu, Rare Metal Materials and Engineering, Vol. 33, pp. 29 (2004)
[59] P. Patsalas, S. Logothetidis, L. Sygellou and S. Kennou, Physical Review B, Vol. 68, pp. 035104 (2003)
[60] Y. Liu, Z. Lockman, A. Aziz and J. MacManus-Driscoll, Journal of Physics: Condensed Matter, Vol. 20, pp. 165201 (2008)
[61] Soshin Chikazumi 著,張煦、李學養譯,“磁性物理學”,聯經出版社,(1982).
[62] X. Chen, G . Li, Y. Su, X. Qiu, L. Li and Z. Zou, Nanotechnology, Vol. 20, pp. 115606 (2009)
[63] Z. D. Dohčević-Mitrović, APPLIED PHYSICS LETTERS, Vol.96, pp. 203104 (2010)
[64] Qi-Ye Wen, Huai-Wu Zhang, Qing-Hui Yang, Yuan-Qiang Song, and John Q. Xiao, Journal of Physics: Condensed Matter, Vol. 19, pp.246205 (2007)
[65] Shih Yun Chen, J. Phys. Chem. C, Vol. 116, pp. 8707(2012)
[66] B. E. Warren, X-ray diffraction, 1969
[67] X. Zhang, D. Zhang, X. Ni, H. Zheng, Chem. Lett., 35, 10, (2006)
[68] 鄭信民、林麗娟,X光繞射應用簡介,工業材料雜誌,181,100,民國91年
[69] D. Rickerby and A. Matthews, Blackie & Son Limited, (1991)
[70] Chen, Yang, and Renwei Long. Applied Surface Science 257.20, pp.8679 (2011).
[71] Wang, Fan, et al. ACS applied materials & interfaces, 6.24, pp.22216 (2014).
[72] S.O. Kucheyev, B.J. Clapsaddle and Y.M. Wang, Physical Review B, Vol. 76, pp. 235420 (2007)
[73] L.A.J. Garvie and P.R. Buseck, Journal of Physics and Chemistry of Solids, Vol. 60, pp. 1943 (1999)
[74] C.C. Fulton, L.F. Edge and G. Lucovsky, Radiation Physics and Chemistry, Vol. 75, pp. 1934 (2006)
[75] P. Nachimuthu, W.C. Shih and R.S. Liu, Journal of Solid State Chemistry, Vol. 149, pp. 408 (2000)
[76] Jiao, Xue, et al. Analytical Methods 4.10 ,pp. 3261 (2012).
[77] Tang, Zi-Rong, Yanhui Zhang, and Yi-Jun Xu. RSC Advances 1.9 ,pp .1772 (2011).
[78] Chiu, Kuan-Chang, Tung-Han Yang, and Jenn-Ming Wu. Nanotechnology 24.22, pp. 225602 (2013).

無法下載圖示 全文公開日期 2020/08/18 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE