簡易檢索 / 詳目顯示

研究生: 黃興安
Hsing-an Huang
論文名稱: 反應性濺鍍氮化鈮薄膜及其作為銅導線之阻障層的失效機制研究
Growth of NbNx Films by Reactive Sputtering and the Investigation of Failure Mechanism Barrier Layers for Copper Metallization
指導教授: 李嘉平
Chiapyng Lee
口試委員: 朱瑾
Jinn P. Chu
王文
Wun Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 116
中文關鍵詞: 氮化鈮反應性濺鍍擴散阻障層
外文關鍵詞: NbNx, Reactive Sputtering, Diffusion Barrier
相關次數: 點閱:353下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要以反應性濺鍍來成長NbNx薄膜於銅-矽基材多層膜系統中擴散阻障層失效機制的研究。觀察N2/Ar流量比對NbNx薄膜之沈積速率、N/Nb原子比、結晶結構、電阻率及表面型態之影響。實驗結果顯示,我們的NbNx薄膜的沈積速率會隨著N2/Ar流量比的增加而下降,薄膜結晶結構會依N2/Ar流量比的增加,會以 BCC α-Nb → Hexagonal β-Nb2N → Tetragonal γ-Nb4N3 → FCC δ-NbN的行徑作改變;N/Nb原子比與電阻率會隨著N2/Ar流量比的增加而增加,當N2/Ar流量比為0,此時有着24.8 μΩ-cm的最低值之薄膜電阻率。
接著以in-situ的方式成長Cu(60nm)/NbNx(25nm)/Si的多層膜系統,用來觀察不同的阻障層對於銅的阻障性質研究。研究中利用SEM、XPS、XRD、TEM及FPP等分析儀器,用來分析在多層膜系統中,不同條件的阻障層在經由熱處理後的相互擴散及反應現象,最後會求出不同條件之barrier的擴散係數及其擴散活化能;結果顯示Cu(60nm)/NbNx(25nm)/Si多層膜系統的失效溫度會隨著擴散阻障層的氮含量增加而上升,而在N2/Ar流量比為0.2時濺鍍的薄膜NbN0.803有著最好的阻障層性質,當退火時間為1小時時,其失效溫度為750~800℃。


This study is to evaluate the NbNx thin films which were deposited on silicon by reactive sputtering, and investigate the failure mechanism as diffiusion barrier for Cu/Si multilayered system. Our results showed that the deposition rate, N/Nb atomic ratio, crystalline structure, resistivity and surface morphology of NbNx thin film depended on the N2¬/Ar flow ratio. The deposition rate of NbNx thin film decreased as the N2/Ar flow ratio increased. With increasing N2/Ar flow ratio of NbNx thin film, phase transformation are identified as BCC α-Nb → Hexagonal β-Nb2N → Tetragonal γ-Nb4N3 → FCC-NbN. The N/Nb atomic ratio and resistivity increased with increased the N2/Ar flow ratio. When the N2¬/Ar flow ratio is 0, a minimum resistivity of 24.8 μΩ-cm in film was also obtained.
Then deposition the Cu(60nm)/NbNx(25nm)/Si multilayers were grown by in-situ to analyze Cu diffusion barrier properties. We utilized SEM, XPS, XRD, TEM and FPP to observe diffusin and reaction phenomenon of diffusion barrier in Cu/Si multilayered system after thermal treatment, and obtain the diffusion coefficient and diffusion activiation energy of barrier with different N2¬/Ar flow ratio. Finally, experiment results indicated that the failure temperature of Cu(60nm)/NbNx(25nm)/Si multilayered structure raised as the nitrogen concentration of diffusion barrier increased. Moreover, the barrier with N2/Ar flow ratio at 0.2 (NbN0.803)possessed the best barrier performance. It was found that the NbN0.803 film can prevent Cu-Si interaction up to 750 ℃. The Cu/NbN0.803/Si is fairly stable up to annealing at 750~800 ℃ for 1 hour.

目 錄 中文摘要 I 英文摘要 II 誌謝 IV 目錄 VI 圖索引 IX 表索引 XV 第一章 緒論 1 1.1積體電路的基本介紹與概況 1 1.2金屬導線材料的選擇 7 1.3擴散阻障層的選擇 14 1.4研究動機 18 第二章 實驗理論與文獻回顧 21 2.1薄膜基本特性 21 2.2擴散現象之文獻回顧 24 2.2.1晶格擴散 25 2.2.2差排管道擴散 28 2.2.3晶界擴散 28 2.3 NbNx之文獻回顧 30 第三章 實驗設備與程序 32 3.1實驗設備 32 3.2分析儀器 36 3.3實驗材料及藥品 37 3.4實驗流程 38 3.4.1 NbNx薄膜的材料分析 38 3.4.2 Cu(60 nm)/NbNx(25 nm)/Si多層膜系統之擴散阻障分析 39 3.4.3 Cu(60 nm)/NbNx(25 nm)/Si量測銅在NbNx薄膜的擴散係數 40 3.5研究架構 41 第四章 結果與討論 42 4.1 NbNx薄膜之材料分析 42 4.1.1 NbNx薄膜之SEM分析 42 4.1.2 NbNx薄膜之XPS分析 48 4.1.3 NbNx薄膜之XRD分析 53 4.1.4 NbNx薄膜之TEM分析 59 4.1.5 NbNx薄膜之FPP分析 61 4.1.6 NbNx薄膜之AFM分析 63 4.2 Cu(60 nm)/NbNx(25 nm)/Si多層膜系統之擴散阻障分析 67 4.2.1 Cu(60 nm)/NbNx(25 nm)/Si多層膜系統之SEM與TEM分析 68 4.2.2 Cu(60 nm)/NbNx(25 nm)/Si多層膜系統之XPS縱深分佈分析 82 4.2.3 Cu(60 nm)/NbNx(25 nm)/Si多層膜系統之XRD分析 86 4.2.4 Cu(60 nm)/NbNx(25 nm)/Si多層膜系統之FPP分析 95 4.3銅擴散係數的量測 99 第五章 結論 108 參考文獻 110 圖 索 引 圖1-1元件閘極長度與內接線寬對RC延遲時間的關係。 4 圖1-2銅導線的製作流程。 11 圖1-3銅製程與擴散阻障層的應用。 11 圖1-4銅與鈮的二元相圖。 19 圖1-5鈮與矽的二元相圖。 20 圖2-1濺射作出的金屬薄膜細微構造模型。 23 圖2-2擴散路徑示意圖。 25 圖2-3晶格擴散機構形式。 27 圖3-1磁控射頻濺鍍系統簡圖。 33 圖3-2四點探針量測簡圖。 35 圖3-3整體實驗流程圖。 41 圖4-1在不同N2/Ar流量比所沈積之NbNx薄膜的SEM橫截面圖,沈積時間為6分鐘;其中N2/Ar流量比分別為(a) 0、(b) 0.05、(c) 0.1和(d) 0.15。 44 圖4-2在不同N2/Ar流量比所沈積之NbNx薄膜的SEM橫截面圖,沈積時間為6分鐘;其中N2/Ar流量比分別為(a) 0.2、(b) 0.25、(c) 0.3和(d) 0.4。 45 圖4-3在不同N2/Ar流量比所沈積之NbNx薄膜的SEM橫截面圖,沈積時間為6分鐘;其中N2/Ar流量比分別為(a) 0.45、(b) 0.5和(c)0.55。 46 圖4-4沈積速率對N2/Ar流量比之關係圖 47 圖4-5在不同N2/Ar流量比所沈積之NbNx薄膜的XPS能譜圖(a)Widescan、(b) Nb 3d及(c) N 1s。 50 圖4-6在不同N2/Ar流量比所沈積之NbNx薄膜的XPS能譜圖(a) C 1s及(b) O 1s。 51 圖4-7由圖4-6 XPS分析之N/Nb原子比對N2/Ar流量比的關係圖。 43 圖4-8在不同N2/Ar流量比所沈積之NbNx薄膜的XRD圖譜;分別為(a) 0、(b) 0.05、(c) 0.1和(d) 0.15。 55 圖4-9在不同N2/Ar流量比所沈積之NbNx薄膜的XRD圖譜;分別為(a) 0.2、(b) 0.25、(c) 0.3和(d) 0.4。 56 圖4-10在不同N2/Ar流量比所沈積之NbNx薄膜的XRD圖譜;分別為(a) 0.45、(b) 0.5和(c) 0.55。 57 圖4-11所有不同N2/Ar流量比所沈積之NbNx薄膜的XRD疊圖。 58 圖4-12 NbN0.803薄膜在N2/Ar流量比為0.2時所得的穿透式電子顯微鏡的明視野橫截面圖與電子繞射結果。 60 圖4-13電阻率對N/Nb原子比之關係圖。 62 圖4-14 NbNx薄膜之AFM原子力顯微影像;其N2/Ar流量比分別為(a) 0.0、(b) 0.05和(c) 0.3。 64 圖4-15 NbNx薄膜之AFM原子力顯微影像;其N2/Ar流量比分別為(a) 0.4、(b) 0.45和(c) 0.55。 65 圖4-16由AFM原子力顯微鏡所量測得到的晶粒尺寸及均方根粗糙度(RRMS)對N2/Ar流量比之關係圖。 66 圖4-17 Cu/Nb/Si多層膜系統退火前及各退火溫度退火1小時後SEM表面型態;其中 (a) as-deposited、(b) 500℃、(c) 550℃_x5000、(d) 550℃ _x10000、(e) 600℃_x1000及(f) 600℃_x5000。 71 圖4-18 Cu/NbN0.369/Si多層膜系統退火前及各退火溫度退火1小時後SEM表面型態;其中 (a) as-deposited、(b) 500℃、(c) 550℃、(d) 600℃、(e) 650℃_x5000及(f) 650℃_x20000。 72 圖4-19 Cu/NbN0.533/Si多層膜系統退火前及各退火溫度退火1小時後SEM表面型態;其中 (a) as-deposited、(b) 500℃、(c) 600℃、(d) 650℃、(e) 700℃及(f) 750℃。 73 圖4-20 Cu/NbN0.533/Si多層膜系統在800℃及850℃退火1小時後SEM表面型態;其中 (a) 800℃_x1000、(b) 800℃_x5000、(c) 800℃_x50000、(d) 850℃_x1000、(e) 850℃_x5000及(d) 850℃_x15000。 74 圖4-21 Cu/NbN0.747/Si多層膜系統退火前及各退火溫度退火1小時後SEM表面型態;其中 (a) as-deposited、(b) 500℃、(c) 600℃、(d) 700℃、(e) 750℃_x5000及(f) 750℃_x50000。 75 圖4-22 Cu/NbN0.747/Si多層膜系統在800℃及850℃退火1小時後SEM表面型態;其中 (a) 800℃_x1000、(b) 800℃_x5000、(c) 800℃_x10000 (d) 850℃_x1000、(e) 850℃_x5000及(f) 850℃_x15000。 76 圖4-23 Cu/NbN0.803/Si多層膜系統退火前及各退火溫度退火1小時後SEM表面型態;其中 (a) as-deposited、(b) 600℃、(c) 700℃_x5000、(d) 700℃_x50000、(e) 750℃_x5000及(f) 750℃_x50000。 77 圖4-24 Cu/NbN0.803/Si多層膜系統在800℃及850℃退火1小時後SEM表面型態;其中 (a) 800℃_x1000、(b) 800℃_x5000、(c) 800℃_x50000、(d) 850℃_x1000、(e) 850℃_x5000及(f) 850℃_x15000。 78 圖4-25 Cu/NbN0.826/Si多層膜系統退火前及各退火溫度退火1小時後SEM表面型態;其中 (a) as-deposited、(b) 600℃、(c) 700℃及(d) 750℃。 79 圖4-26 Cu/NbN0.826/Si多層膜系統在800℃及850℃退火1小時 後SEM表面型態;其中 (a) 800℃_x1000、(b) 800℃_x5000、(c) 800℃_x50000、(d) 850℃_x1000、(e) 850℃_x5000及(f) 850℃_x20000。 80 圖4-27 Cu/NbN0.803/Si多層膜系統之穿透式電子顯微鏡橫截面圖;(a) 失效前及(b) 850℃失效後與其EDS結果。 81 圖4-28 XPS縱深分佈圖;(a) NbN0.803/Si及(b) Cu/NbN0.803/Si多 層膜系統。 84 圖4-29 退火處理試驗的Cu/NbN0.803/Si多層膜系統之XPS縱深分佈圖;(a) 750℃及(b) 850℃。 85 圖4-30 Cu/Nb/Si多層膜系統退火前及在各溫度退火1小時後的XRD圖譜。 89 圖4-31 Cu/NbN0.369/Si多層膜系統退火前及在各溫度退火1小時後的XRD圖譜。 90 圖4-32 Cu/NbN0.533/Si多層膜系統退火前及在各溫度退火1小時後的XRD圖譜。 91 圖4-33 Cu/NbN0.747/Si多層膜系統退火前及在各溫度退火1小時後的XRD圖譜。 92 圖4-34 Cu/NbN0.803/Si多層膜系統退火前及在各溫度退火1小時後的XRD圖譜。 93 圖4-35 Cu/NbN0.826/Si多層膜系統退火前及在各溫度退火1小時後的XRD圖譜。 94 圖4-36銅層片電阻變化率與退火溫度的關係圖。 97 圖4-37 Cu/NbN0.803/Si多層膜系統在750℃、不同退火時間下的銅層片電阻變化率趨勢圖。 103 圖4-38以四點探針分析方法所得的Cu/NbN0.803/Si多層膜系統在不同退火溫度下的擴散係數之阿瑞尼士關係圖。 104 圖4-39 銅在不同組成之氮化鈮薄膜的擴散係數之阿瑞尼士關係圖。 106 圖4-40銅在不同擴散阻障層薄膜的擴散係數之阿瑞尼士關係圖。 107 表 索 引 表1-1積體電路製造技術的概況與趨勢。 5 表1-2金屬之物理特性比較。 12 表4-1擴散阻障層之沈積條件與其材料特性。 67 表4-2 SEM、XRD及FPP等三種方法所量測到的Cu/NbNx/Si多層膜系統之失效溫度的比較表。 98 表4-3多層膜系統結構性質比較圖。 102 表4-4銅在不同組成之氮化鈮薄膜的擴散係數、活化能、pre-exponential因子及晶粒尺寸。 102

1. 李明逵, 矽元件與積體電路製程, p.0-4 p.16-2 p16-16 (2004).
2. 莊達人, VLSI製造技術, p.1 (2005).
3. 陳力俊, 微電子材料與製程, p.279 (2000).
4. S-P Heng et al, 1995 International Symposium on VLSI TSA, p164.
5. ITRS, Interconnect of the 2009 Edition, p.45
6. ITRS, Interconnect of the 2009 Edition, p.70-79.
7. National Technology Roadmap for Semiconductor, 1997 Edition, Semiconductor Industry Association, p.11.
8. 張勁燕, 電子材料, p176-177 (2004)
9. 張俊彥, 鄭晃忠, 積體電路製程及設備技術手冊, p.241 (1997).
10. J. D. McBrayer, R. M. Swanson and T. W. Sigmon, J. Electrochem. Soc., 133 (6), 1242 (1986).
11. S. Q. Hong, C. M. Comrie, S. W. Russell and J. W. Mayer, J. Appl. Phys., 70 (7), 3655 (1991).
12.Shacham-Diamand, Y., Li, J.,Olowlafe, J. O., Russel, S., Tamou, Y., Mayer, J. W., Proc 9 Bienn Univ. Gov. Ind. Microelectron Symp. Publ by IEEE Service Center, Piscataway, NJ, USA (IEEE cat. n 91ch3027-0), p.210-215.
13. 林俊成, RF濺鍍成長TaNx薄膜及其在積體電路之銅製程上的應用, 國立台灣科技大學化工所 (1999).
14. M. -A. Nicolet, Thin Solid Films, 52, 415 (1978).
15. K. N. Tu and R. Rosenberg, Thin Solid Films, 13, 163 (1972) .
16. E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M. -A. Nicolet, J. Appl. Phys. 70 (3), 1369 (1991).
17. J. S. Reid, E. Kolawa, R. P. Ruiz and M. -A. Nicolet, Thin Solid Films, 236, 319 (1993).
18. E. Kolawa, P. J. Pokela, J. S. Reid, J. S. Chen, R. P. Ruiz and M.-A. Nicolet, IEEE Electron Device Lett. EDL-12, 321 (1991).
19. W. Nelson, Proc. Int. Symp. Hybrid Microelectronics, 1969, Dallas, Texas, International Society of Hybrid Microelectronics, Montgomery, U.S.A., 413 (1969).
20. T. Oku, E. Kawakami, M. Uekuo, K. Takahiro, S. Yamaguchi and M. Murakami, Applied Surface Science, 99 (1996) 265.
21. S.C. Sun, M.H. Tsai, C.E. Tsai and H.T. Chiu, Proc. Symp. on VLSI Tech. Digest of Tech. Papers, (1995) 29.
22. Petra Ale´n, Mikko Ritala, Kai Arstila, Juhani Keinonen, Markku Leskela, Thin Solid Films, 491 (2005) 235 – 241
23. Zenghu Han, Xiaoping Hu, Jiawan Tian, Geyang Li, Gu Mingyuan, Surface and Coatings Technology, 179 (2004) 188–192
24. C.S. Sandu, M. Benkahoul, M. Parlinska-Wojtan, Surface & Coatings Technology, 200 (2006) 6544–6548
25. M. Benkahoul, E. Martinez, A. Karimi, R. Sanjines, F. Levy, Surface and Coatings Technology, 180 –181 (2004) 178–183
26. M. Torche, G. Schmerber, M. Guemmaz, A. Mosser, J.C. Parlebas, Thin Solid Films, 436 (2003) 208–212
27. V.N. Zhitomirsky, I. Grimberg, L. Rapoport, Thin Solid Films, 326 (1998) 134–142
28. N. Canseve, M. Danışman, K. Kazmanl, Surface & Coatings Technology, 202 (2008) 5919–5923
29. J. C. Lin and C. Lee, J. Electrochem. Soc., 147 (2), 713 (2000).
30. G. S. Chen and S. T. Chen, J. Appl. Phys., 87 (12), 8473 (2000).
31. C. C. Chang, J. S. Jeng and J. S. Chen, Thin Solid Films, 413, 46 (2002).
32. Y. L. Kuo, J. J. Huang, S. T. Lin, C. Lee and W. H. Lee, Materials Chemistry and Physics, 80, 690 (2003).
33. C. C. Chang, J. S. Chen and W. S. Hsu, J. Electrochem. Soc., 151 (11), G746 (2004).
34. B. S. Suh, Y. J. Lee, J. S. Hwang and C. O. Park, Thin Solid Films, 348, 299 (1999).
35. M. H. Lin and S. Y. Chiou, Jpn. J. Appl. Phys., 43 (6A), 3340 (2004).
36. S. Rawal, D. P. Norton, K. Kim, T. J. Anderson and L. McElwee-White, Appl. Phys. Lett., 89, 231914 (2006).
37. M. B. Takeyama, A. Noya and K. Sakanishi, J. Vac. Sci. Technol. B, 18 (3), 1333 (2000).
38. Y. Wang, F. Cao, M. Ding and D. Yang, Microelectronics Journal, 38, 910 (2007).
39. L. C. Leu, P. Sadik, D. P. Norton, L. McElwee-White and T. J. Anderson, J. Vac. Sci. Technol. B, 26 (5), 1723 (2008).
40. K. Yoshimoto, F. Kaiya, S. Shinkai, K. Sasaki and H. Yanagisawa, Jpn. J. Appl. Phys., 45 (1A), 215 (2006).
41. R. Hübner, M. Hecker, N. Mattern, V. Hoffmann, K. Wetzig, H. Heuer, Ch. Wenzel, H. -J. Engelmann, D. Gehre and E. Zschech, Thin Solid Films, 500, 259 (2006).
42. Y. Liu, S. Song, D. Mao, H. Ling and M. Li, Microelectronics Engineering, 75, 309 (2004).
43. S. Song, Y. Liu, M. Li, D. Mao, C. Chang and H. Ling, Microelectronics Engineering, 83, 423 (2006).
44. S. T. Lin and C. Lee, Applied Surface Science, 253, 1215 (2006).
45. M. B. Takeyama, T. Itoi, E. Aoyagi and A. Noya, Applied Surface Science, 216, 181 (2003).
46. 郭俞麟, 直流式磁控濺鍍成長氮化鋯鈦薄膜及其在積體電路之銅製程上的應用, 國立台灣科技大學化工所 (2003).
47. Y. L. Kuo, C. Lee, J. C. Lin, C. H. Peng, L. C. Chen, C. H. Hsieh, S. L. Shue, M. S. Liang, B. J. Daniels, C. L. Huang and C. H. Lai, Electrochemical and Solid-State Letters, 6 (9), C123 (2003).
48. Y. L. Kuo, C. Lee, J. C. Lin, C. H. Peng, L. C. Chen, C. H. Hsieh, S. L. Shue, M. S. Liang, B. J. Daniels, C. L. Huang and C. H. Lai, J. Electrochem. Soc., 151 (3), C176 (2004).
49. Y. L. Kuo, H. H. Lee, C. Lee, J. C. Lin, S. L. Shue, M. S. Liang and B. J. Daniels, Electrochemical and Solid-State Letters, 7 (3), C35 (2004).
50. Y. L. Kuo, C. Lee, J. C. Lin, Y. W. Yen and W. H. Lee, Thin Solid Films, 484, 265 (2005).
51. C. K. Hu and J. M. E. Harper, Materials Chemistry and Physics, 52, 5 (1998).
52. K. Abe, Y. Harada and H. Onoda, J. Vac. Sci. Technol. B, 17 (4), 1464 (1999).
53. R. J. Gutmann, T.P. Chow, A. E. Kaloyeros, W. A. Landford and S. P. Murarka, Thin Solid Films, 262, 177 (1995).
54. D.J. Chakrabarti and D.E. Laughlin, in ”ASM Handbook Vol. 3 Alloy Phase Diagrams”, edited by H. Baker, ASM International, Materials Park, Ohio (1991).
55. H. Okamoto, A.B. Gokhale, and G.J. Abbaschian, in ”ASM Handbook Vol. 3 Alloy Phase Diagrams”, edited by H. Baker, ASM International, Materials Park, Ohio (1991).
56. 魏炯權, 電子材料工程, p.7-2~p.7-4
57. J. C. Fisher, J. Appl. Phys., 22 (1951) 74.
58. R. E. Hoffman and D. Turnbull, J. Appl. Phys., 23 (1951) 634.
59. L. G. Harrison, Trans. Faraday Sic., 57 (1961) 1191.
60. A. Chatterjee and D. J. Fabian, Acta mater., 17 (1969) 1141.
61. J. Li, A. Dasgupta, IEEE Trans. Reliability, 43 (1994) 2.
62. J. Imahori, T. Oku, and M. Murakami, Thin Solid Films, 301 (1997) 142.
63. L. Hultman, Vacuum 57 (2000) 1.
64. M. Fenker, M. Balzer, R.V. Bu¨ chi, H.A. Jehn, H. Kappl, J.-J. Lee, Surf. Coat. Tech., 163-164 (2003) 169.
65. W.S. Rees Jr. (Ed.), a CVD of Nonmetals, VCH VerlagsgesellschaftmbH, Weinheim, 1996, p. 62.
66. K.S. Havey, J.S. Zabinski, S.D. Walck, Thin Solid Films, 303 (1997) 238.
67. Y. S. Gong, J. C. Lin and C. Lee, Appl. Surf. Sci., 92, 335 (1996).
68. 邱鴻錡, TaNx薄膜之材料及擴散阻障分析, 國立台灣科技大學化工所 (2009).
69. F. Shinoki and A. Itoh, J. Appl. Phys., 46 (8), 3381 (1975).
70. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray photoelectron spectroscopy (Physical Electronics, Inc. 1995).
71. JCPDS Card, 34-0370.
72. JCPDS Card, 75-0952.
73. JCPDS Card, 20-0803.
74. JCPDS Card, 74-1218.
75. JCPDS Card, 20-0801.
76. 葉俊佳, 鈮與氮化鈮在銅金屬化系統之擴散阻礙特性, 逢甲大學電機工程所 (2002).
77. R. Sanjine´s, M. Benkahoul, C.S. Sandu, P.E. Schmid, F. Le´vy, Thin Solid Films, 494 (2006) 190-195
78. J. S. Chen and J. L. Wang, J. Electrochem. Soc., 147 (5) (2000) 1940.
79. Ching-Yu Yang, J.S. Jeng, J.S. Chen, Thin Solid Films, 420- 421 (2002) 398-402.
80. JCPDS Card, 03-1005.
81. JCPDS Card, 37-1170.
82. JCPDS Card, 34-1043.
83. JCPDS Card, 30-0875.
84. JCPDS Card, 23-0324.
85. M. Croset and G. Velasco, J. Vac. Sci. Technol., 9 (1971) 165.
86. R. S. Mishra, H. Jones, and G. W. Greenwood, J. Materials Sci. Lett, 7 (1988) 728.
87. M. Moriyama, T. Kawazoe, M. Tanaka, M. Murakami, Thin Solid Films, 416 (2002) 136.

QR CODE