簡易檢索 / 詳目顯示

研究生: 呂婷以
Ting-yi Lu
論文名稱: 以常壓電漿噴射束製備二氧化矽薄膜於AZ91D鎂合金及其抗腐蝕性
Preparation of Silicon Oxide Thin Film on AZ91D Magnesium Alloys by Atmospheric Pressure Plasma Jet and its anti-corrosion behavior
指導教授: 郭俞麟
Yu-lin Kuo
口試委員: 王朝正
Chaur-jeng Wang
黃駿
Chun Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 107
中文關鍵詞: 鎂合金常壓電漿噴射束氧化矽無機抗腐蝕
外文關鍵詞: Silicon oxide
相關次數: 點閱:238下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鎂及其合金近年來由於其優越的機械性質、回收再利用性佳,符合業界量產製程經濟效益之需求,使之成為常用之結構材料。然而鎂及其合金在大氣環境下耐蝕性較差,導致應用於室外或人體環境上的限制,其製品也因此而降低安全係數,使得於海事應用上仍有顧慮,侷限未來發展。
因此本研究使用常壓電漿噴射束沉積氧化矽薄膜於AZ91D鎂合金,探討當改變前驅物載氣流量對於薄膜物理與化學性質之影響,並使用電化學量測驗證薄膜耐蝕性。本製程結合常壓電漿處理時間快速、製程乾淨,也無須耗費高成本添置與維護真空設備等優點,與二氧化矽優異之光電性質,沉積無機氧化矽透明薄膜於鎂合金基材,藉以提升鎂合金之耐蝕能力,希望未來可以拓展鎂合金之的應用範圍。
研究結果顯示,氧化矽薄膜的表面自由能較原始AZ91D下降且非極性力佔有較大比重,顯示為不易吸附水氣之疏水膜,薄膜時效性至少維持56天。氧化矽薄膜之表面形貌經由SEM影像顯示表面平坦均勻,由奈米級氧化矽顆粒組成,隨載氣流量增加顆粒間交連越加緻密。由AES與ESCA證實氧化矽薄膜內部不含碳,氧矽比非常接近2.0為氧化矽無機薄膜,且由AES縱深分析得知薄膜厚度由45~99奈米不等,薄膜厚度不與載氣流量增加而呈現性變化。從APPJ鍍膜過程可以觀察到載氣流率對鍍膜品質的影響:當前驅物濃度較高時,電漿灰化現象顯著,導致沉積率下降。FT-IR官能基鑑別中發現Si-O-Si- cage 結構對於薄膜孔隙度有相當大的影響,判斷為其影響薄膜耐蝕性的關鍵。最後由電化學極化曲線量測氧化矽薄膜之腐蝕行為,可以發現隨著載氣流量增加,氧化矽薄膜之腐蝕電位提高、腐蝕電流密度降低,增強鎂合金基材之耐蝕性。其中以O1800有最佳耐蝕性,與AZ91D鎂合金(Ecorr= -1.46 V(Ag/AgCl), Icorr= 22.06 μA/cm2)相比,腐蝕電位明顯提升(Ecorr= -1.28 V(Ag/AgCl))、腐蝕電流顯著下降(Icorr= 1.24 μA/cm2),證實以常壓電機噴射束沉積氧化矽薄膜於AZ91D鎂合金上有良好的耐腐蝕效果,利於延長鎂合金製品之使用壽命,有望拓展鎂合金之應用範圍。


Magnesium alloys are used in many industries because of their excellent mechanical properties. Their high strength/weight ratio and excellent machinability make magnesium alloys ideal construction materials. In addition, the high recyclability of magnesium makes it very cost-effective for use in industrial manufacturing. However, poor corrosion resistance restricts the applications of magnesium and its alloys in marine environments and in biological applications. The ability to increase the corrosion resistance of magnesium and its alloys is crucial to increase the range of applications.
This research aims to overcome this drawback by increasing corrosion resistance. We deposited silicon oxide (SiOx) thin film as an anticorrosion layer using atmospheric pressure plasma jet (APPJ) on AZ91D magnesium alloys. This process combines the benefits of the APPJ process and SiOx thin film. With a high deposition rate and clean dry process, the APPJ process is an excellent candidate for surface coating treatment.
The results show that after ageing the SiOx thin films for at least 56 days, the SFE(surface free energy) of deposited SiOx thin films was lower compared to AZ91D alloy, and this resulted in a more hydrophobic surface, which helped to prevent corrosion. The surface morphologies of SiOx thin films were uniformly smooth and consisted of nano-scale silicon oxide particles, which agglomerated more closely with increasing O2 carrier gas flow rate. According to the results of ESCA and AES, the thin films were demonstrated to be carbon-free inorganic SiOx thin films and the O/Si ratio was extremely close to 2.0. From the AES depth profile, the thickness of the SiOx thin films ranged from 45 to 99 nm. The thickness was not directly proportional to the O2 carrier gas flow rate and this was attributed to the lack of energy such that the dissociation of the precursor monomer was inadequate, i.e. in the power deficient regime. The functional groups identified from FT-IR revealed that the degree of porosity of SiOx thin films depended on the cage structure, and this affected the corrosion resistance of SiOx thin films. The carrier gas flow rate evidently affected the quality of SiOX thin films in the APPJ process: 1. monomer deficient regime at lower carrier gas flow rate resulted in a hydrophilic surface; 2. power deficient regime at higher carrier gas flow rate resulted in a lower deposition rate. After corrosion measurement by potentiodynamic polarization tests in 3.5 wt% NaCl solution, the deposited SiOx thin film (O1800) revealed superior corrosion resistance in terms of corrosion potential (Ecorr= -1.28 V(Ag/AgCl)) and corrosion current (Icorr = 1.24 μA/cm2) compared to the AZ91D alloy (Ecorr= -1.46 V(Ag/AgCl), Icorr = 22.06 μA/cm2).

誌謝 I 中文摘要 II Abstract III 目錄 V 圖索引 VIII 表索引 XI 第一章 緒論 1 1.1 前言 1 1.2 常壓電漿技術 2 1.3 防蝕表面塗層與二氧化矽薄膜 3 1.4 研究動機 3 第二章 文獻回顧 5 2.1 鎂金屬及其合金 5 2.1.1 鎂金屬之特性 5 2.1.2 鎂合金之應用 8 2.1.3 鎂合金的表示方式 9 2.1.4 鎂金屬的腐蝕機制 11 2.1.5雜質容許極限(Tolerance limit) 14 2.1.6 不同元素對鎂金屬的影響 15 2.1.7 第二相對鎂金屬的腐蝕影響 18 2.2 表面處理技術 21 2.3 電漿概述 23 2.3.1 電漿定義 23 2.3.2 電漿基本原理 24 2.3.3 電漿基本反應 29 2.4 常壓電漿簡介 30 2.4.1 常壓電漿基本特性 30 2.4.2 常壓電漿鍍膜相關研究 35 第三章 實驗設備與程序 38 3.1 實驗目的 38 3.2 實驗藥品與耗材 40 3.3 實驗步驟 42 3.3.1 基材準備 42 3.3.2 實驗設備系統 42 3.3.3 實驗參數 44 3.3.4試片命名 44 3.3.5實驗分析及儀器原理 45 第四章 結果與討論 53 4.1氧化矽薄膜於鎂合金之特性分析 53 4.1.1 水滴接觸角與表面自由能計算 53 4.1.2 SEM表面形貌觀察 58 4.1.3 AES薄膜縱深分析 61 4.1.4 ESCA 薄膜化學成分分析 65 4.1.5 FT-IR鍍膜表面官能基鑑別 71 4.2鍍膜機制 76 4.3氧化矽薄膜之腐蝕行為分析 81 第五章 結論與未來工作 84 第六章 參考文獻 86

[1] 陳俊欽, "鋁鋅複合噴覆塗層對AZ31 鎂合金表面性質之影響," 大同大學材料
工程研究所碩士論文, 2003.
[2] 陳樹友, "鎂合金於AlCl3-EMIC離子液體中鍍鋁層之耐蝕性研究," 成功大學材
料科學及工程學系碩士論文, 2007.
[3] H. Inoue, K. Sugahara, A. Yamamoto, and H. Tsubakino, "Corrosion rate of magnesium and its alloys in buffered chloride solutions," Corrosion Science, vol. 44, pp. 603-610, 2002.
[4] C. R. S. Mathieu, J. Hazan, and P. Steinmetz, "Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys," Corrosion Science, vol. 44, pp. 2737-2756, 2002.
[5] C. D. Yim and K. S. Shin, "Semi-solid processing of Magnesium alloys," Materials transactions, vol. 44, pp. 558-561, 2003.
[6] A. L. Rudd, C. B. Breslin, and F. Mansfeld, "The corrosion protection a orded by rare earth conversion coatings applied to magnesium," Corrosion Science vol. 42, pp. 275-288, 2000.
[7] C. Blawert, W. Dietzel, E. Ghali, and G. Song, "Anodizing treatments for Magnesium alloys and their effect on corrosion resistance in various environments," Advanced Engineering Materials, vol. 8, pp. 511-533, 2006.
[8] Y. I. Choi, S. Salman, K. Kuroda, and M. Okido, "Synergistic corrosion protection for AZ31 Mg alloy by anodizing and stannate post-sealing treatments," Electrochimica Acta, vol. 97, pp. 313-319, 2013.
[9] F. Chen, H. Zhou, B. Yao, Z. Qin, and Q. Zhang, "Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces," Surface and Coatings Technology, vol. 201, pp. 4905-4908, 2007.
[10] Y. K. Pan, C. Z. Chen, D. G. Wang, X. Yu, and Z. Q. Lin, "Influence of additives on microstructure and property of microarc oxidized Mg–Si–O coatings," Ceramics International, vol. 38, pp. 5527-5533, 2012.
[11] L. Bardos and H. Barankova, "Cold atmospheric plasma: Sources, processes, and applications," Thin Solid Films, vol. 518, pp. 6705-6713, 2010.
[12] S. H. Yang, C. H. Liu, C. H. Su, and H. Chen, "Atmospheric-pressure plasma deposition of SiOx films for super-hydrophobic application," Thin Solid Films, vol. 517, pp. 5284-5287, 2009.
[13] A.M. Mahajan, L.S. Patil, D.K. Gautam, "Influence of process parameters on the properties of TEOS–PECVD-grown SiO2 films," Surface & Coatings Technology, 188–189 (2004) 314– 318.
[14] 莊東漢, "材料破損分析," 五南圖書出版公司, 2007.
[15] A.S. Handbook, ASM International, (1999) 3-43.
[16] H.Proffit, "Magnesium and Magnesium Alloys," AMS Hanbook, vol. 2., pp. 798-799
[17] S. O. J. H. Nordlien, N . Masuko and K. Nisancioglu, "A TEM investigation of naturally formed oxide films on pure magnesium," Corrosion Science, vol. Vol. 39, pp. 1397-1414, 1997.
[18] M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solution," NACE, Houston, TX, USA, 1974.
[19] G.L. Song, A. Atrens, Adv. Eng. Mater. 5 (2003) 837–858.
[20] A. L., "Olsenm presented at Deutscher Verband Fur Materialdorshung u, Prufung e. V., " Berlin, Germany 1991.
[21] 陳學翰 and 王建義, "Be、Sc 微量添加對LAZ1110 機械性質之影響," 鎂合金
產業通訊, vol. 40 期, pp. 34-42, 民國97.
[22] N. S. McIntyre and C. Chen, "Role of impurities on Mg surface under ambientexposure conditions," Corrosion science, vol. 40, p. 1697, 1998.
[23] K. Nisancioglu, O. Lunder, T. Aune, presented at 47th World Magnesium Conference, Cannes, France 1990.
[24] G. Song, A. Atrens, M. Dargusch, Corros. Sci. 41 (1999) 249–273.
[25] K. Huber, "Anodic formation of coatings on magnesium, Zinc and cadmium," Journal of the electrochemical society, vol. 10, pp. 376-382, 1953.
[26] O. Khaselev and J. Yahalom, "The anodic behavior of binary Mg-Al alloys in KOH-Aluminate solution," Corrosion science, vol. 40, pp. 1149-1160, 1998.
[27] M. Takaya, "Anodizing of magnesium alloys in KOH-Al(OH)3 solutions," Aluminum, vol. 65, pp. 1244-148, 1989.
[28] S. J. Kim, R. Ichino, and M. Okido, "Characterization of anodic films formed on
Mg-Al alloys in alkaline bath," Materials science forum, vol. 3427, pp. 426-432, 2003.
[29] A. L. Yerokhin, L.O.Snizhko, N.L.Gurevina, A.Leyland, A.Pilkington, and A.Matthews, "Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminum alloy," Surface and Coatings Technology, vol. 177-178, pp. 779-783, 2004.
[30] Y. Ma, X. Nie, D. O. Northwood, and H. Hu, " Corrosion and erosion properties of silicate and phosphate coatings on magnesium," Thin Solid Films, vol. 469–470, pp. 472–477, 2004.
[31] 陳仲宜, "淺談微弧氧化技術在輕金屬表面處理之應用," 2007.
[32] Y.M. Wang, F.H. Wang, M.J. Xu, B. Zhao, L.X. Guo, J.H. Ouyang, " Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application, " Applied Surface Science 255 (2009) 9124–9131.
[33] R. H. Unger, "Thermal spray coating, in ASM handbook," corrosion, p. 459, 1987.
[34] Ch. Voulgaris, E. Amanatides, D. Mataras, S. Grassini, E. Angelini, and F. Rosalbino, "RF power and SiOxCyHz deposition efficiency in TEOS/O2 discharges for the corrosion protection of magnesium alloys," Surface and Coatings Technology, vol. 200, pp. 618-6622, 2006.
[35] H. Hoche, J. Schmidt, S. Gros, T. Trosmann, and C. Berger, "PVD coating and substrate pretreatment concepts for corrosion and wear protection of magnesium alloys," Surface and Coatings Technology, vol. 205, pp. S145-S150, 2011.
[36] Y. T, "Method for plating magnesium alloy," pp. 209-212, 2007.
[37] H. O. Pierson, "Handbook of Refractory Carbides and Nitrides," Noyes publications,
New Jersey, pp. 100-115, 1996
[38] I. Vlassiouk, P. Fulvio, H. Meyer, N. Lavrik, S. Dai, P. Datskos, et al., "Large scale atmospheric pressure chemical vapor deposition of graphene," Carbon, vol. 54, pp. 58-67, 2013.
[39] C. Sella, J. Leceur, Y. Sampeur, and P. Catania, "Layers of high speed steel with
microstructures characteristics of heat-treated materials," Surface and Coatings Technology, pp. 287-289, 1993.
[40] A. Grill, "Cold plasma in materials fabrication-from fundamentals to application,"
IEEE Press, NY, 1994.
[41] 陳克紹 and 曹永偉, "薄膜技術," 金文書局, 台北, 1986.
[42] B. Chapman, "Glow Discharge: Sputtering and Plasma Etching," Wiley-Interscience, New York, 1980.
[43] J. R. Roth, "Industrial Plasma Engineering," Principles, of Physics Publishing, London, vol. 1, 1995.
[44] S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, "Stable glow plasma at atmospheric pressure," Journal of Physics D: Applied Physics, vol. 21, pp. 836-840, 1988.
[45] T. Yokoyama, M Kogoma, T Moriwaki, S. Okazaki, and T. Yokoyama, "The mechanism of the stabilisation of glow plasma at atmospheric pressure," Journal of Physics D: Applied Physics, vol. 23, pp. 1125-1128, 1990.
[46] J. Y. Jeong, S. E. Babayan, J. P. V. J. Tu, R. F. Hicks, and G. S. Selwyn, "Etching materials with an atmospheric-pressure plasma jet," Plasma Sources Science and Technology, vol. 7, pp. 282–285, 1998.
[47] S. E. Babayan, J. Y. Jeong, V. J. Tu, A. Schutze, M. Moravej, G. S. Selwyn, et al.,
"Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet," PLASMA SOURCES SCIENCE AND TECHNOLOGY, vol. 10, pp. 573–578, 2001.
[48] J. Park, I. Henins, H. W. Herrmann, G. S. Selwyn, and R. F. Hicks, "Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source," Journal of Applied Physics, vol. 89, p. 20, 2001.
[49] W. C. S.Y. Moon, "Driving frequency effects on the characteristics of atmospheric pressure capacitive helium discharge," Applied physics letters, vol. 93, 2008.
[50] M. Goldman and N. Goldman, "Corona discharges," Gaseous Electronics,Eds. New York: Academic vol. 1, pp. 219-290, 1978.
[51] U. Kogelschatz, "Filamentary, Patterned, and Diffuse Barrier Discharges," IEEE Transactions on Plasma Science, vol. 30, pp. 1400-1408, 2002.
[52] J. R. Roth, "Industrial Plasma Engineering Philadelphia," Taylor & Francis Group 1, 1995.
[53] M. Hur and S. H. Hong, "Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod- and well-type cathodes," Journal of Physics D: Applied Physics, vol. 35, pp. 1946-1954, 2002.
[54] N. Jidenko, C. Jimenez, F. Massines, and J. P. Borra, "Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition," Journal of Physics D: Applied Physics, vol. 40, pp. 4155-4163, 2007.
[55] R. Morent, N. D. Geyter, S. V. Vlierberghe , P. Dubruel, C. Leys, and E. Schacht, "Organic–inorganic behaviour of HMDSO films plasma-polymerized at atmospheric pressure," Surface and Coatings Technology, vol. 203, pp. 1366–1372, 2009.
[56] L. Cao, T. P. Price, M. Weiss, and D. Gao, "Super water-and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films," Langmuir, vol. 24, pp. 640-1643, 2008.
[57] W. A. Zisman, "Relation of the equilibrium contact angle to liquid and solid constitution," vol. 43, pp. 1-51, 1964.
[58] D.Y. Kwok and A. W. Neumann, "Contact angle measurement and contact angle interpretation," Advances in Colloid and Interface Science, vol. 81, pp. 167-249, 1999.
[59] S. Siboni, C. Della Volpe, D. Maniglio, and M. Brugnara, "The solid surface free energy calculation; II. The limits of the Zisman and of the "equation-of-state" approaches," J Colloid Interface Sci, vol. 271, pp. 454-72, Mar 15 2004.
[60] P. Zdenka, S. K. Karin, S. S. Majda, and K. Tatjana, "Determining the surface free energy of cellulose materials with the powder contact angle method," Textile Research Journal, vol. 74, pp. 55-62, 2004.
[61] http://sindatek.com/Bmyl.htm.
[62] F. Grzegorzewski, S. Rohn, A. Quade, K. Schroder, J. Ehlbeck, O. Schluter, et al.,
"Reaction chemistry of 1,4-Benzopyrone derivates in non-equilibrium Low-temperature plasmas," Plasma Processes and Polymers, vol. 7, pp. 466-473, 2010.
[63] 簡郡邑, "以常壓電漿輔助化學氣相沉積氧化矽薄膜於AZ31 鎂合金上之抗腐蝕特性研究, " 國立台灣科技大學 機械工程系碩士學位論文, 2013
esca
[64] N. Koshizaki, H. Umehara, T. Oyama, “ XPS characterization and optical properties of Si/SiO2, Si/Al2O3 and Si/MgO co-sputtered films”, Thin Solid Films 325 (1998) 130–136.
[65] L. J. Ward, W. C. E. Schofield, J. P. S. Badyal A. J. Goodwin and P. J. Merlin, “Atmospheric Pressure Glow Discharge Deposition of Polysiloxane and SiOx Films” , Langmuir 2003, 19, 2110-2114.
[66] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc., 1995.
[67] C. Huang , C. H. Liu , C.H. Su, W. T. Hsu , and S. Y. Wu, "Investigation of atmospheric-pressure plasma deposited SiOx filmson polymeric substrates," Thin Solid Films, vol. 517, pp. 5141-5145, 2009.
[68] V. Raballand, J. Benedikt, and A. v. Keudell, "Deposition of carbon-free silicon dioxide from pure hexamethyldisiloxane using an atmospheric microplasma jet," Applied Physics Letters, vol. 92, p. 091502, 2008.
[69] Y. Ding, Q. Pan, J. Jin, H. Jia, and H. Shirai, "Silicon oxide synthesized using an atmospheric pressure microplasma jet from a tetraethoxysilane and oxygen mixture," Thin Solid Films, vol. 518, pp. 3487-3491, 2010.
[70] X. Y. Xu, L. Li, S. G. Wang, L. L. Zhao, and T. C. Ye, "Deposition of SiOx ilms with a capacitively-coupled plasma at atmospheric pressure," Plasma Sources Science and Technology, vol. 16, pp. 372-376, 2007.
[71] G. Socrates, "Infrared characteristic group frequencies — tables and charts," John Wiley and Sons Ltd., pp. 241-246, 2001.
[72] Marek Nocun , Katarzyna Cholewa-Kowalska, Maria Ła˛czka, "Structure of hybrids based on TEOS-cyclic forms of siloxane system, " Journal of Molecular Structure 938 (2009) 24–28
[73] Chou J S and Lee S C, “Effect of porosity on infrared‐absorption spectra of silicon dioxide”, J. Appl. Phys. 77 1805, 1995
[74] Alfred Grill and Deborah A. Neumayer, " Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization, " Journal of Applied Physics 94, 6697 (2003); doi: 10.1063/1.1618358
[75] G R Nowling, M Yajima, S E Babayan, M Moravej, X Yang, W Hoffman and R F Hicks, “Chamberless plasma deposition of glass coatings on plastic”, Plasma Sources Sci. Technol. 14 477–484 , 2005
[76] A. Sonnenfeld, T. M. Tun, L. Zaj’ıˇckov’, K. V. Kozlov, H. E. Wagner, J. F. Behnke, and R. Hippler, “Deposition Process Based on Organosilicon Precursors in Dielectric Barrier Discharges at Atmospheric Pressure—A Comparison”, Plasmas and Polymers, Vol. 6, No. 4, December 2001.
[77] A.C. Ritts, C.H. Liu, Q.S. Yu, “SiOx plasma thin film deposition using a low-temperature cascade arc torch”, Thin Solid Films 519 (2011) 4824–4829.
[78] T.C. Chang , Y.S. Mor , P.T. Liu, T.M. Tsai, C.W. Chen, Y.J. Mei, S.M. Sze, The effect of ammonia plasma treatment on low-k methyl-hybridosilsesquioxane against photoresist stripping damage, Thin Solid Films 398 –399 (2001) 632–636

QR CODE