簡易檢索 / 詳目顯示

研究生: 邱靖友
Ching-Yu Chiu
論文名稱: 微量Sb和SiC奈米顆粒對於鎂基複合材料機械性質之影響
Effect of micro-addition of Sb and SiC nanoparticles on the mechanical properties of magnesium-based metal matrix composite
指導教授: 丘群
Chun Chiu
口試委員: 林新智
Hsin-Chih Lin
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 105
中文關鍵詞: AZ91 鎂合金碳化矽鎂基複合材料機械性質熱處理
外文關鍵詞: AZ91 magnesium alloy, Sb, SiC, Magnesium-based metal matrix composite, Mechanical properties, Heat treatment
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以AZ91合金作為基材,添加微量元素銻 ( Sb ) 和奈米粒徑之碳化矽 ( SiC ) 顆粒。透過攪拌鑄造法製成鎂基複合材料,分別 製成單一添加與混合添加之合金材料,並進行成分分析、顯微結構的觀察、機械性質測試,探討同時添加Sb和SiC顆粒對 AZ91合金之變化以及經熱處理過後機械性質的影響。
    研究結果顯示,同時添加Sb及SiC之鎂基複合材料,其相組成為?-Mg、Mg3Sb2、Al8Mn5、Mg17Al12及SiC。從晶粒尺寸可發現同時添加Sb和SiC可造成細晶強化之效果,鎂基複合材料之晶粒尺寸因異質成核從177.8 ??下降至120.5 ??,經固溶及時效熱處理後晶粒尺寸會些微提升至140.8 ??。硬度值相比於AZ91,從原本62.71 HV提升至73.84,經固溶及時效熱處理後提升至84.33 HV。但由於添加SiC陶瓷顆粒會傾向出現在晶界上並有團聚之狀況發生,AZ91複合材料之抗拉強度無法像添加Sb明顯提升,從126.9 MPa上升至147.8 MPa。降伏強度則從39.9 MPa提升至47.9 MPa,延伸率從1.3 %上升至4.4 %。經固溶及時效熱處理後抗拉強度和降伏強度分別為149.2 MPa及60.8 MPa,延伸率為4.5 %。
    使用攪拌鑄造無法將SiC顆粒均勻分散,造成有部分團聚的現象。
    由於使用重力鑄造,在冷卻過程中會有許多孔洞,對於拉伸試驗有明顯的影響。後續進行固溶及時效熱處理晶粒尺寸雖些微提升,但Mg17Al12連續相重新析出較小並分布於基材中造成散佈強化,材料機械強度皆有所提升。


    In this study, AZ91 magnesium-based metal use as the matrix, and antimony (Sb) and silicon carbide (SiC) nanoparticle have been synthesized to prepare magnesium-based composite by stir casting method, then conduct the analysis of composition, microstructure observation and mechanical properties test, in order to explore the influence of adding Sb and SiC simultaneously into AZ91 magnesium-based metal, and the mechanically influence after doing heat treatment.
    The results show that the Sb and SiC added magnesium-based metal was consist of ?-Mg, Mg3Sb2, Al8Mn5, Mg17Al12 and SiC, and the grain size showed that the addition of Sb and SiC could cause fine grain strengthening. The grain size of the magnesium-based composite material decreased from 177.8 ?? to 120.5 ??. After doing solid solution and aging heat treatment, the grain size slightly increased to 140.8 ??. To compare with AZ91, the hardness increased from 62.71 HV to 73.71 HV, and reach to 84.33 HV after doing aging heat treatment. Since that ceramic particles tend to agglomerate on the grain boundary, and AZ91 composite material has pores during casting, the tensile strength increase from 127.9 MPa to 130.3 MPa and the yield strength increase from 39.9 MPa to 47.9 MPa. The elongation decreased from 3.9 % to 3.6 %. After doing solid solution and aging heat treatment, the tensile strength and yield strength were 165.2 MPa and 60.8 MPa respectively, and the elongation was 3.7 %.
    The SiC particles were not evenly dispersed by stir casting, resulting in partial agglomeration. Due to the gravity casting, there were many holes during the cooling process, which has an obvious effect on the tensile test. Even though the grain size slightly increased after doing solid solution and aging heat treatment, Mg17Al12 continuously becomes smaller and distribute in the base material causing dispersion strengthening that improving the mechanical strength.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 前言 1 第二章 文獻回顧 3 2.1 鎂與鎂合金的介紹及優缺點 3 2.1.1 鎂的介紹 3 2.1.2 鎂合金的介紹 3 2.1.3 鎂合金添加的合金元素 4 2.1.4 鎂合金命名規則 5 2.2 鎂合金之強化 7 2.2.1 鎂合金強化之方法 7 2.2.2 鎂合金強化機制 8 2.3 鎂基金屬複合材料 12 2.4 鎂合金強化方式之文獻回顧 13 2.5 研究動機 15 第三章 實驗方法 17 3.1 實驗計畫 17 3.2 實驗材料 18 3.3 熔煉及熱處理設備 19 3.3.1 攪拌鑄造熔煉爐 19 3.3.2 鎂合金材料製備步驟 19 3.3.3 熱處理製程 20 3.4 分析儀器與試片製備 22 3.4.1 試片製備 22 3.4.2 光學顯微鏡 23 3.4.3 X光繞射儀 24 3.4.4 高解析度場發射掃描式電子顯微鏡 26 3.4.5 維克式硬度計 27 3.4.6 拉伸試驗機 28 第四章 結果與討論 30 4.1 顯微組織觀察與成分分析 30 4.1.1 AZ91 合金原材 30 4.1.2 鎂基複合材料 35 4.1.3 鎂基複合材料熱處理 52 4.2 晶粒尺寸分析 65 4.3 機械性質測試 67 4.3.1 維克式硬度試驗 67 4.3.2 拉伸試驗 70 4.3.3 拉伸破斷面觀察 73 4.4 實驗結果與討論 76 第五章 結論 80 參考文獻 82

    [1]E. Aghion, B. Bronfin, and D. Eliezer, "The role of the magnesium industry in protecting the environment. Journal of materials processing technology", Journal of materials processing technology, vol. 117, pp. 381-385, 2001.
    [2]M. Easton, M. Beer, A. Barnett, M. Davies, C. Dunlop, G. Durandet, and P. Beggs, " Magnesium alloy applications in automotive structures ", Magnesium for Automotive Applications, vol. 60, pp. 57-62, 2008.
    [3]Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y. Jung, and J. Zhang, " Additive manufacturing of metallic materials: A", Journal of Materials Engineering and Performance, vol. 27, pp. 1-13, 2018.
    [4]B. L. Mordike, and T. Ebert, "Magnesium: properties—applications—potential", Materials Science and Engineering: A, vol. 302, pp. 37-45, 2001.
    [5]A. A. Luo, "Recent magnesium alloy development for elevated temperature applications", International materials reviews, vol. 49, pp. 13-30, 2004.
    [6]A. Yamashita, Z. Horita, and T. G. Langdon, "Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation", Materials Science and Engineering: A, vol. 300, pp. 142-147, 2001.
    [7]K. U. Kainer, "Magnesium alloys and technology", John Wiley & Sons, 2003
    [8]J. Chen, L. Tan, X. Etim, I. P, M. Ibrahim, and K. Yang, "Mechanical properties of magnesium alloys for medical application: A", Journal of the Mechanical Behavior of Biomedical Materials, vol. 87, pp. 68-79, 2018.
    [9]Q. Wang, K. Spencer, N. Birbilis, and M. X. Zhang, "The influence of ceramic particles on bond strength of cold spray composite coatings on AZ91 alloy substrate", Surface and Coatings Technology, vol. 205, pp. 50-56, 2010.
    [10]P. Yavari, F. A. Mohamed, and T. G. Langdon, "Creep and substructure formation in an Al-5% Mg solid solution alloy", Acta Metallurgica, vol. 29, pp. 1495-1507, 1981.
    [11]G. P. M. Leyson, and W. A. Curtin, "Friedel vs. Labusch: the strong/weak pinning transition in solute strengthened metals", Philosophical Magazine, vol. 93, pp. 2428-2444, 2013.
    [12]L. Y. Bushby, A. J. and D. J. Dunstan, "The Hall–Petch effect as a manifestation of the general size effect", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 472, pp. 2190, 2016.
    [13]S. O. Ojediran, and O. Ajaja, "The Bailey-Orowan equation", Journal of materials science, vol. 23, pp. 4037-4040, 1998.
    [14]T. Tański, and P. Snopiński, "Effect of the Processing Conditions on the Microstructural Features and Mechanical Behavior of Aluminum Alloys", ALUMINIUM ALLOYS, vol. 137, 2017.
    [15]H. Li, W. Liu, "Nanoprecipitates and their strengthening behavior in Al-Mg-Si alloy during the aging process", Metallurgical and Materials Transactions : A, vol. 48, pp. 1990-1998, 2017.
    [16]J. F. Nie, "Precipitation and hardening in magnesium alloys", Metallurgical and Materials Transactions : A, vol. 43, pp. 3891-3939, 2012.
    [17]F. Guinea, J. H. Rose, J. R. Smith, and J. Ferrante, "Scaling relations in the equation of state, thermal expansion, and melting of metals", Applied physics letters, vol. 44, pp. 53-55, 1984.
    [18]L. Dezi, F. Gara, G. Leoni, and A. M. Tarantino, "Time-dependent analysis of shear-lag effect in composite beams", Journal of Engineering Mechanics, vol. 127, pp. 71-79, 2001.
    [19]N. Khanna, P. Shah, N. M. Agrawal, C. Khatkar, S. K. Pusavec and M. Sarikaya, "Application of environmentally-friendly cooling/lubrication strategies for turning magnesium/SiC MMCs", Silicon, vol. 13, pp. 2445-2459, 2021.
    [20]A. Luo, "Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites", Metallurgical and Materials Transactions : A, vol. 26, pp. 2445-2455, 1995.
    [21]L. A. Dobrzański, T. Tański, L. Čížek, and Z. Brytan, "Structure and properties of magnesium cast alloys", Journal of Materials Processing Technology, vol. 192, pp. 567-574, 2007.
    [22]Q. Wang, W. Chen, W. Ding, Y. Zhu, and M. Mabuchi, "Effect of Sb on the microstructure and mechanical properties of AZ91 magnesium alloy", Metallurgical and Materials Transactions : A, vol. 32, pp. 787-794, 2001.
    [23]K. K. Deng, K. Wu, Y. W. Wu, K. B. Nie, and M. Y. Zheng, "Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites", Journal of Alloys and Compounds, vol. 504, pp. 542-547, 2010.
    [24]K. K. Deng, X. J. Wang, Y. W. Wu, X. S. Hu, K. Wu, and W. M. Gan, "Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite", Materials Science and Engineering : A, vol. 543, pp. 158-163, 2012.
    [25]M. Manoharan, S. C. V. Lim, and M. Gupta, "Application of a model for the work hardening behavior to Mg/SiC composites synthesized using a fluxless casting process", Materials Science and Engineering : A, vol. 333, pp. 243-249, 2002.
    [26]A. Boby, K. K. Ravikumar, U. T. S. Pillai, and B. C. Pai, "Effect of antimony and yttrium addition on the high temperature properties of AZ91 magnesium alloy", Procedia Engineering, vol. 55, pp. 98-102, 2013.
    [27]P. Poddar, V. C. Srivastava, P. K. De, and K. L. Sahoo, "Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process", Materials Science and Engineering : A, vol. 460, pp. 375-364, 2007.
    [28]C. L. Condron, S. M. Kauzlarich, F. Gascoin, and G. J. Snyder, "Thermoelectric properties and microstructure of Mg3Sb2", Journal of Solid State Chemistry, vol. 179, pp. 2252-2257, 2006.
    [29]R. L. Fleischer, "High-strength, high-temperature intermetallic compounds", Journal of materials Science, vol. 22, pp. 2281-2288, 1987.
    [30]N. K. Bhoi, H. Singh, and S. Pratap "Developments in the aluminum metal matrix composites reinforced by micro/nano particles–a review", Journal of Composite Materials, vol. 54, pp. 813-833, 2020.
    [31]Abd El-Rehim, A. F., Zahran, H. Y., Habashy, D. M., and Al-Masoud, H. M, "Simulation and Prediction of the Vickers Hardness of AZ91 Magnesium Alloy Using Artificial Neural Network Model", Crystals, vol. 10, pp. 290, 2020.
    [32]C. H. Caceres, C. J. Davidson, J. R. Griffiths, and C. L. Newton, "Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy", Materials Science and Engineering : A, vol. 325, pp. 344-355, 2002.
    [33]Y. Guangyin, S. Yangshan, and D. Wenjiang, "Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy", Materials Science and Engineering : A, vol. 308, pp. 38-44, 2001.
    [34]R. Günther, C. Hartig, and R. Bormann, "Grain refinement of AZ31 by (SiC) P: Theoretical calculation and experiment", Acta Materialia, vol. 54, pp. 5591-5597, 2006.
    [35]J. Gubicza, M. Kassem, G. Ribárik, and T. Ungár, "The microstructure of mechanically alloyed Al–Mg determined by X-ray diffraction peak profile analysis", Materials Science and Engineering : A, vol. 372, pp. 115-122, 2004.
    [36]C. H. Cáceres, and D. M. Rovera, "Solid solution strengthening in concentrated Mg–Al alloys", Journal of Light Metals, vol. 1, pp. 151-156, 2001.
    [37]O. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander, and H. E. Ekström, "Strengthening mechanisms in solid solution aluminum alloys", Metallurgical and Materials Transactions : A, vol. 37, pp. 1999-2006, 2006.
    [38]M. Ishii, J. Hiraishi, and T. Yamanaka, "Structure and lattice vibrations of Mg-Al spinel solid solution", Physics and Chemistry of Minerals, vol. 8, pp. 64-68, 1982.
    [39]A. H. Feng, and Z. Y. Ma, "Microstructural evolution of cast Mg–Al–Zn during friction stir processing and subsequent aging", Acta Materialia, vol. 57, pp. 4248-4260, 2009.
    [40]G. M. Han, Z. Q. Han, A. A. Luo, and B. C. Liu, "Microstructure characteristics and effect of aging process on the mechanical properties of squeeze-cast AZ91 alloy", Journal of Alloys and Compounds, vol. 641, pp. 56-63, 2015.
    [41]H. Liu, R. Ye, and G. Liu, "Effects of the addition of Ca and Sb on the microstructure and mechanical properties of AZ91 magnesium", Materials Science and Engineering : A, vol. 587, pp. 262-267, 2013.
    [42]M. Y. Zheng, K. Wu, S. Kamado, and Y. Kojima, "Aging behavior of squeeze cast SiCw/AZ91 magnesium matrix composite", Materials Science and Engineering : A, vol. 348, pp. 67-75, 2003.
    [43]A. Boby, A. Srinivasan, A. Pillai, U. T. S, and B. C. Pai, "Mechanical and wear properties of Sb-and Y-added Mg-9Al-1Zn (AZ91) alloy", Metallurgical and Materials Transactions : A, vol. 46, pp. 4234-4246, 2015.
    [44]J. F. Huang, H. Y. Yu, H. Cui, J. P. He, and J. S. Zhang, "Precipitation behaviors of spray formed AZ91 magnesium alloy during heat treatment and their strengthening effect", Materials & design, vol. 30, pp. 440-444, 2009.
    [45]A. Srinivasan, U. T. S. Pillai, and B. C. Pai, "Effects of elemental additions (Si and Sb) on the ageing behavior of AZ91 magnesium alloy", Materials Science and Engineering : A, vol. 527, pp. 6543-6550, 2010.
    [46]A. Kumar, S. Kumar, N. K. Mukhopadhyay, A. Yadav, and J. Winczek, "Effect of SiC reinforcement and its variation on the mechanical characteristics of AZ91 composites", Materials, vol. 13, pp. 4913, 2020.
    [47]M. Tan, Z. Lu, and G. Quan, "Effects of hot extrusion and heat treatment on mechanical properties and microstructures of AZ91 magnesium alloy", Energy Procedia, vol. 16, pp. 457-460, 2012.
    [48]J. U. Lee, S. H. Kim, J. Y. and S. H. Park, "Effects of homogenization time on aging behavior and mechanical properties of AZ91 alloy", Materials Science and Engineering : A, vol. 714, pp. 49-58, 2018.
    [49]Y. Guangyin, W. Qudong, and D. Wenjiang, "High temperature deformation behavior of permanent casting AZ91 alloy with and without Sb addition", Journal of materials science, vol. 37, pp. 127-132, 2002.
    [50]A. Kumar, S. Kumar, N. K. Mukhopadhyay, A. Yadav, and J. Winczek, "Effect of SiC reinforcement and its variation on the mechanical characteristics of AZ91 composites", Materials, vol. 13, pp. 4913, 2020.
    [51]Y. Z. Lü, Q. D. Wang, W. J. Ding, X. Q. Zeng, and Y. P. Zhu, "Fracture behavior of AZ91 magnesium alloy. Materials Letters", Materials Letters, vol. 44, pp. 265-268, 2000.
    [52]A. Montajabnia, B. Pourbahari, and M. Emamy, "The microstructure and tensile properties of a newly developed Mg–Al/Mg3Sb2 in situ composite in as-cast and extruded conditions", Metals and Materials International, vol. 24, pp. 1009-1111, 2018.
    [53]Z. Trojanová, V. Gärtnerová, A. Jäger, M. Chalupová, P. Palček, and P. Lukáč, "Mechanical and fracture properties of an AZ91 Magnesium alloy reinforced by Si and SiC particles", Composites Science and technology, vol. 69, pp. 2256-2264, 2009.
    [54]S. K. Shaha, F. Czerwinski, W. Kasprzak, and D. L. Chen, "Tensile and compressive deformation behavior of the Al–Si–Cu–Mg cast alloy with additions of Zr, V and Ti", Materials & Design, vol. 59, pp. 352-358, 2014.
    [55]D. H. StJohn, M. A. Qian, W. Kasprzak, and J. A. Taylor, "Grain refinement of magnesium alloys: a review of recent research, theoretical developments, and their application", Metallurgical and materials transactions : A, vol. 44, pp. 2935-2949, 2013.
    [56]N. Balasubramani, A. Srinivasan, U. T. S. Pillai, and B. C. Pai, "Grain refinement of magnesium alloys: a review of recent research, theoretical developments, and their application", Metallurgical and materials transactions : A, vol. 457, pp. 275-281, 2007.
    [57]T. P. D. Rajan, E. Jayakumar, and B. C. Pai, "Developments in solidification processing of functionally graded aluminium alloys and composites by centrifugal casting technique", Transactions of the Indian Institute of Metals, vol. 65, pp. 531-537, 2012.
    [58]S. M. H. Karparvarfard, S. K. Shaha, S. B. Behravesh, H. Jahed, and B. W. Williams, "Microstructure, texture and mechanical behavior characterization of hot forged cast ZK60 magnesium alloy", Journal of Materials Science & Technology, vol. 33, pp. 907-918, 2017
    [59]S. F. Hassan, and M. Gupta, "Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing", Journal of Alloys and Compounds, vol. 429, pp. 176-183, 2007.
    [60]K. B. Nie, X. J. Wang, K. Wu, X. S. Hu, M. Y. Zheng, and L. Xu, "Microstructure and tensile properties of micro-SiC particles reinforced magnesium matrix composites produced by semisolid stirring assisted ultrasonic vibration", Materials Science and Engineering : A, vol. 528, pp. 8709-8714, 2011.
    [61]S. Ganguly, S. T. Reddy, J. Majhi, P. Nasker, and A. K. Mondal, "Enhancing mechanical properties of squeeze-cast AZ91 magnesium alloy by combined additions of Sb and SiC nanoparticles", Materials Science and Engineering : A, vol. 528, pp. 8709-8714, 2011.
    [62]K. Nie, K. Deng, X. Wang, and K. Wu, "Characterization and strengthening mechanism of SiC nanoparticles reinforced magnesium matrix composite fabricated by ultrasonic vibration assisted squeeze casting", Journal of Materials Research, vol. 32, pp. 2609-2620, 2017.

    無法下載圖示 全文公開日期 2024/09/27 (校內網路)
    全文公開日期 2024/09/27 (校外網路)
    全文公開日期 2024/09/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE