簡易檢索 / 詳目顯示

研究生: 顏佑陞
Yu-Sheng Yen
論文名稱: 靜脈瘻管塑形模具及支架的開發與驗證
Development and Verification of Venous Fistula Shaping Molds and Stents
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 陳盈君
Ying-Chun Chen
鄧秉敦
Ping-Tun Teng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 88
中文關鍵詞: 動靜脈瘻管動靜脈吻合角度聚乳酸支架鎂合金支架
外文關鍵詞: Arteriovenous, arteriovenous anastomotic angle, polylactic acid stent, magnesium alloy stent
相關次數: 點閱:171下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自體動靜脈瘻管(arteriovenous fistula, AVF)為洗腎病患中,最常使用之血管通路,因其具有較長的使用時間以及較少的併發症。然而AVF術後成熟化的過程中,常因紊流產生的內皮細胞增生、過小的初始靜脈直徑或靜脈不適當的扭轉,使得通過的血流量不足,導致成熟化失敗。而紊流被認為是不當的動靜脈吻合角度所產生。目前治療AVF狹窄的方式之一,是透過植入金屬支架對狹窄處進行擴張。但治療完成後,支架會永久留在血管中,可能引起血栓或造成限縮可下針進行血液透析區域等不良影響。
    本研究將透過3D列印機製作靜脈瘻管塑形模具,配合聚乳酸(polylactic acid, PLA)支架、鎂合金支架與人工血管進行血管塑形實驗,以驗證是否能達到控制動靜脈吻合角度及避免靜脈不適當扭轉的目的。實驗結果顯示,PLA支架配合內徑為6 mm、彎曲角度為40°之模具,以加熱塑形之實驗流程進行實驗,能將人工血管內徑擴張至4.520.05 mm且彎曲角度達36.371.2°。鎂合金支架配合內徑為6 mm、彎曲角度為50°之模具進行塑形實驗,能將人工血管擴張至內徑4.480.04 mm,且彎曲角度達35.020.79°。本研究設計之靜脈瘻管塑形模具,配合具有良好生物相容性及可降解性之支架(PLA、鎂合金)能將靜脈瘻管塑形至利於成熟化之幾何形狀(內徑>4 mm、彎曲角度介於30°~46.5°),達到加速動靜脈瘻管成熟及提升成熟化比例之目的,且支架在完成協助動靜脈瘻管成熟化之目的後,將降解並為人體吸收,避免未來可能引起血栓或其他不良影響。


    Arteriovenous fistula (AVF) is the most commonly used vascular pathway for hemodialysis, due to its longer duration of use and fewer complications. However, in the process of AVF maturation, endothelial hyperplasia caused by turbulent blood flow, too small initial vein diameter and improper twisting of the vein often result in insufficient blood flow rate and failure of maturation. However, the flow disturbance is considered caused by improper arteriovenous anastomotic angle (AV angle). One of the current ways to treat AVF stenosis is to implant a metal stent to dilate the narrow part of AVF. However, after the treatment, the stent will remain permanently in the AVF, and may cause thrombosis or shrinkage of the hemodialysis area.
    In this study, the 3D printing equipment will be used to make a venous fistula shaping mold, and the blood vessel shaping experiment will be performed with polylactic acid (PLA) stent, magnesium alloy stent and artificial blood vessel, so as to verify if the goal of this study, to control the AV angle and avoid improper twisting of the vein, can be achieved. The experimental results showed that the experiment was carried out on the PLA stent with the heating and shaping process and the shaping mold with an inner diameter 6 mm and a bending angle of 40° could dilate the inner diameter of the artificial blood vessel to 4.520.05 mm and bend the angle of the artificial blood vessel to 36.371.2°. When the experiment was carried out on the magnesium alloy stent with the shaping mold with an inner diameter 6 mm and a bending angle of 50° could dilate the inner diameter of the artificial blood vessel to 4.480.04 mm and bend the angle of the artificial blood vessel to 35.020.79°. The venous fistula shaping mold combined with good biocompatible and biodegradable stents (PLA and magnesium alloy), both developed in this study, can shape the venous fistula to a geometric shape, inner diameter >4 mm, bending angle between 30° and 46.5°, conducive to AVF maturation, so as to accelerate the maturation of arteriovenous fistula and increase the success rate of maturation. In addition, after completing the purpose of assisting the maturation of arteriovenous fistula, the stent will be degraded and absorbed by the human body to avoid thrombosis or other adverse effects in the future.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 3 第二章 文獻回顧 7 2.1自體動靜脈瘻管 7 2.1.1不同種類的自體動靜脈瘻管 8 2.1.2自體動靜脈瘻管成熟化因素 8 2.1.3輔助瘻管成熟化之醫療器具 10 2.2生物可降解支架 11 2.2.1生物可降解材料 12 2.2.2聚乳酸(Polylactic Acid, PLA) 12 2.2.3聚乳酸機械性質與黏彈性 12 2.2.4鎂合金(magnesium alloy) 14 2.1生物可降解支架製程 14 2.1.1支架製程回顧 14 2.3.2旋轉軸式3D列印技術 16 第三章 實驗規劃 19 3.1靜脈瘻管塑形模具設計與製作 21 3.1.1動物試驗AVF支架植入手術流程 21 3.1.2模具設計 23 3.1.3模具製作過程 26 3.2 PLA支架製造 28 3.2.1支架幾何結構 28 3.2.2支架列印路徑生成 30 3.2.3擠出量計算 32 3.3人工靜脈製作 32 3.4實驗驗證 34 3.4.1靜脈瘻管塑形模具概念驗證 34 3.4.2目標尺寸驗證 37 3.4.3人工血管實驗驗證 38 3.4.4鎂合金支架實驗驗證 39 第四章 實驗結果與討論 40 4.1靜脈瘻管塑形模具概念驗證及實驗結果 40 4.1.1 常溫塑形PLA支架之實驗結果 40 4.1.2加熱塑形PLA支架之實驗結果 42 4.2彎曲40°靜脈瘻管塑形模具實驗結果 47 4.3人工血管實驗驗證及結果 50 4.3.1人工血管製作結果 50 4.3.2 PLA支架置入人工血管實驗結果 51 4.3.3比較有無加熱對人工血管擴張實驗之影響 55 4.3.4 PLA之支架人工血管扭轉實驗驗證 56 4.4鎂合金支架實驗結果 57 4.4.1鎂合金支架之目標尺寸實驗驗證結果 57 4.4.2鎂合金支架置入人工血管實驗驗證 62 4.4.3鎂合金支架之人工血管扭轉實驗驗證 65 第五章 結論與未來展望 66 5.1結論 66 5.2未來展望 67 參考文獻 69

    1. 衛生福利部中央健康保險署. 國人全民健康保險就醫疾病資訊. 2020.Available from:https://www.nhi.gov.tw/Content_List.aspx?n=D529CAC4D8F8E77B&topn=23C660CAACAA159D.
    2. United States Renal Data System, 2022 Annual Report,2022.Available from:https://usrds-adr.niddk.nih.gov/2022/end-stage-renal-disease/11-international-comparisons.
    3. National Institute of Diabetes and Digestive and Kidney Diseases, What is chronic kidney disease?,2017.Available from: https://www.niddk.nih.gov/health-information/kidney-disease/chronic-kidney-disease-ckd/what-is-chronic-kidney-disease.
    4. Kidney Disease in Taiwan, 2021 Annual report, 2021.Available from: https://lib.nhri.edu.tw/NewWeb/nhri/ebook/39000000472774/#p=%20.
    5. Lawson, J.H., L.E. Niklason, and P. Roy-Chaudhury, Challenges and novel therapies for vascular access in haemodialysis. Nature Reviews Nephrology, 16(10): p. 586-602. 2020.
    6. Quencer, K.B. and M. Arici, Arteriovenous fistulas and their characteristic sites of stenosis. American Journal of Roentgenology, 205(4): p. 726-734. 2015.
    7. Bashar, K., et al., Arteriovenous fistula in dialysis patients: factors implicated in early and late AVF maturation failure. The Surgeon, 14(5): p. 294-300. 2016.
    8. Siddiqui, M.A., S. Ashraff, and T. Carline, Maturation of arteriovenous fistula: analysis of key factors. Kidney Research and Clinical Practice, 36(4): p. 318. 2017.
    9. Lauvao, L.S., et al., Vein diameter is the major predictor of fistula maturation. Journal of Vascular surgery, 49(6): p. 1499-1504. 2009.
    10. Yang, C.-Y., et al., The anastomotic angle of hemodialysis arteriovenous fistula is associated with flow disturbance at the venous stenosis location on angiography. Frontiers in Bioengineering and Biotechnology, 8: p. 846. 2020.
    11. Sadaghianloo, N., et al., Increased reintervention in radial-cephalic arteriovenous fistulas with anastomotic angles of less than 30 degrees. Journal of Vascular surgery, 62(6): p. 1583-1589. 2015.
    12. Roy-Chaudhury, P., et al., Biology of arteriovenous fistula failure. Journal of Nephrology,. 20(B): p. 150. 2007
    13. University of Colorado Anschutz Medical Campus,Hemodialysis access.2023;Available from: https://medschool.cuanschutz.edu/surgery/divisions-centers-affiliates/transplant/patient-care/dialysis-access-surgery/hemodialysis.
    14. Nephrology,AV Fistulas, 2017; Available from:https://abdominalkey.com/av-fistulas/.
    15. Newsroom. Study: One-fifth of U.S. surgeons still ‘overusing’ riskier procedure to create kidney dialysis access. 2019; Available from:https://www.hopkinsmedicine.org/news/newsroom/news-releases/study-one-fifth-of-us-surgeons-still-overusing-riskier-procedure-to-create-kidney-dialysis-access.
    16. Fila, B., et al., Arteriovenous fistula for haemodialysis: The role of surgical experience and vascular access education. Nefrología (English Edition),. 36(2): p. 89-94. 2016
    17. Yao, H., et al., Recent advances in cardiovascular stent for treatment of in-stent restenosis: Mechanisms and strategies. Chinese Journal of Chemical Engineering,. 37: p. 12-29. 2021
    18. Yao, H., et al., Recent advances in cardiovascular stent for treatment of in-stent restenosis: Mechanisms and strategies. Chinese Journal of Chemical Engineering,. 37: p. 12-29. 2021
    19. Ene-Iordache, B., et al., Effect of anastomosis angle on the localization of disturbed flow in ‘side-to-end’fistulae for haemodialysis access. Nephrology Dialysis Transplantation,. 28(4): p. 997-1005. 2013
    20. Nikam, M., et al., Prospective controlled pilot study of arteriovenous fistula placement using the novel Optiflow device. Journal of Vascular Surgery,. 61(4): p. 1020-1025. 2015
    21. Shahverdyan, R., P. Tabbi, and G. Mestres, Multicenter European real-world utilization of VasQ anastomotic external support device for arteriovenous fistulae. Journal of Vascular Surgery, 75(1): p. 248-254. 2022.
    22. McMahon, S., et al., Bio-resorbable polymer stents: a review of material progress and prospects. Progress in Polymer Science,. 83: p. 79-96. 2018
    23. Im, S.H., et al., Current status and future direction of metallic and polymeric materials for advanced vascular stents. Progress in Materials Science, p. 100-922. 2022
    24. Moravej, M. and D. Mantovani, Biodegradable metals for cardiovascular stent application: interests and new opportunities. International Journal of Molecular Sciences, 12(7): p. 4250-4270. 2011
    25. Papanicolaou, G. and S. Zaoutsos, Viscoelastic constitutive modeling

    of creep and stress relaxation in polymers and polymer matrix composites, in Creep and fatigue in polymer matrix composites., Elsevier. p. 3-59. 2019
    26. Letcher, T. and M. Waytashek. Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer. in ASME international mechanical engineering congress and exposition. American Society of Mechanical Engineers. 2014.
    27. Grasso, M., et al., Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens. Rapid Prototyping Journal, 2018.
    28. Chen, Y., et al., Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterialia,.10(11): p. 4561-4573. 2014
    29. Pan, C., Y. Han, and J. Lu, Structural design of vascular stents: A review. Micromachines,. 12(7): p. 770. 2021
    30. Khalaj, R., et al., 3D printing advances in the development of stents. International Journal of Pharmaceutics,. 609: p. 121-153. 2021
    31. Hua, W., et al., 3D printing of biodegradable polymer vascular stents: A review. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022: p. 20-100.
    32. 徐顥澄, 可吸收鎂合金動靜脈廔管支架開發,機械工程系. 2021, 國立臺灣科技大學: 台北市. p. 120.
    33. 張耀邦, 新型主動脈瘤支架設計及製作並以仿真主動脈瘤血管模型進行功能驗證,機械工程系. 2021, 國立臺灣科技大學:台北市. p. 136.
    34. Engers, M., et al., Development of a realistic venepuncture phantom. Current Directions in Biomedical Engineering, 2020. 6(3): p. 402-405.
    35. Tiwari, N., et al., Morphology of dorsal venous arch of hand: a cadaveric study. Journal of College of Medical Sciences-Nepal, 2019. 15(2): p. 139-143.

    無法下載圖示 全文公開日期 2033/08/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE