簡易檢索 / 詳目顯示

研究生: 陳俊元
Jyun-Yuan Chen
論文名稱: 銅在氮化鈦擴散阻障層中之擴散係數量測
Measurement of Diffusion Coefficients of Copper in TiNX Diffusion Barriers
指導教授: 李嘉平
Chia-Pyng Lee
口試委員: 顏怡文
Yee-wen Yen
林俊成
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 102
中文關鍵詞: 銅製層阻障層
外文關鍵詞: copper metallization, diffusion barrier
相關次數: 點閱:357下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要是探討以射頻磁控濺鍍(RF magnetron sputterig)之方式所沉積之TiNx阻障層抵抗銅原子擴散的能力。主要是以射頻磁控濺鍍法沉積不同氮含量之TiNx薄膜,進行晶粒大小、結晶結構、晶粒排列與化學組成等分析,並對Cu/TiNx/Si多層膜進行退火,由HRTEM等儀器對退火前後之多層膜試樣進行分析,以所獲得的分析結果及銅原子在阻障層中之擴散係數,來討論阻障層中氮含量及阻障層厚度對阻障特性的影響。
實驗結果顯示,氮含量的增加,使得具有六方最密堆積結構
之金屬鈦薄膜轉變成結構較為穩定之氮化鈦岩鹽結構(rock-salt structure),並由於氮原子的不斷提供,薄膜結構由柱狀(column)結構轉變為微結晶(nanocrystalline)結構,當提供此微晶結構足夠的熱能(高溫退火)後,則會轉變為柱狀結構。
由TEM的分析發現在多層膜系統中,主要是因為銅原子的擴散而造成阻障層之失效。以四點探針量測的片電阻值變化率來判定TiNx阻障層之失效時間(threshold time),並配合擴散平均長度
L=2(Dt)1/2的公式,可計算得到銅原子在不同組成之擴散阻障層中之擴散係數。
由HRTEM分析發現,在阻障層厚度變薄後,單位阻障層厚度之總晶界長度增加許多,銅原子在阻障層中之總擴散路徑變長,擴散係數因此而降低,因此在超大型積體電路中,採用較薄厚度之氮化鈦阻障層,既可降低阻障層的電阻值又可降低銅的擴散係數,是非常有利的作為。


The study is to evaluate the obstructing capability of TiNx films to Cu diffusion. The TiNx films were deposited by RF magnetron-sputtering system. The grain size, crystal structure, crystal arrangement, chemical composition and other characteristics of TiNx films were also analyzed. Before and after annealing, behavior for Cu/TiNx/Si multilayered samples were investigated by HRTEM and other instruments. By combining all materials analyses with how diffusion coefficients of copper in TiNx diffusion barriers, the nitrogen content and TiNx thickness affect the diffusion coefficient of Cu in TiNx films were revealed.
The experimental results indicate that the crystalline structure of TiNx film was changed from Hexagonal metal Ti to stable rock-salt TiN structure with the raise of N2/Ar flow ratio. And, microstructure changed from the column structure to nanocrystalline structure as the increase in N2/Ar flow ratio. Having sufficient energy(After annealing at high temperatrures), the nanocrystalline structure is back to column structure.
We found out that barrier failure was due to Cu atoms diffusing through the TiNx layer in Cu/TiNx/Si multilayered sample. The failure time (threshold time) of TiNx films was estimated from the sheet resistance curves by FPP. Combining failure time with formula L(the average diffusion length of atoms)= 2(Dt)1/2 got diffusion coefficients of copper in TiNx diffusion barriers.
HRTEM shows that the boundary length in thin barrier films would be more than thicker barrier films. In ULSI, the advantages of using thinner TiNx barrier include lower resistivity of diffusion barrier and diffusion coefficient of copper in TiNx diffusion barrier.

摘要………………………………………………………………………I 目錄…………………………………………………………………….III 圖索引…………………………………………………………………..V 表索引…………………………………………………………………..X 第一章 緒論……………………………………………..……….……1 第二章 文獻回顧……………………………………………………..12 2-1 擴散阻障層之擇………………………………………..12 2-2 TiNx阻障層之發展與沿革……………………………..13 2-3擴散行為………………………………………………...15 第三章 實驗設備與程序…………………………..………………..24 3.1.1 實驗設備……………………………………………..24 3.1.2 實驗材料………………………………………………26 3.2.1 薄膜製備條件與退火條件……………………………27 3.2.2 分析儀器………………………………………………28 3.3 實驗程序…………………………………………………32 3.4 銅原子於TiNx薄膜中擴散係數之量測…………………33 第四章 結果與討論………………………...……………………….36 4.1 TiNx薄膜之成長及材料分析…………………………….…36 4.1.1 N2/Ar流量比對於TiNx沉積速率、組成、結構的影響 ………………………………………………………………….36 4.1.2 TiNx阻障層之結構與晶粒大小之分析……………….37 4.2 Cu(100nm)/TiNx(25nm及10nm)/Si之介面擴散.………….45 4.2.1 Cu/TiNx/Si多層膜介面擴散前後之XRD分析…………45 4.2.2 Cu/TiNx/Si多層膜介面擴散之FPP分析………………46 4.2.3 Cu/TiNx/Si多層膜介面擴散之SEM分析………………55 4.2.3.1 氮含量未飽合(sub-stoichiometric)之TiNx….55 4.2.3.2 氮含量過飽合(super-stoichiometric)之TiNx.56 4.2.4 Cu/TiNx/Si多層膜介面擴散前後之HRTEM分析……..63 4.2.4.1 Cu/TiNx/Si多層膜之結構………………….………63 4.2.4.2 銅和矽的交互擴散與反應後Cu / TiNx(25nm) / Si 多層膜之微結構…………………………………….74 4.2.5 Cu/TiNx/Si多層膜介面擴散前後之ESCA分析……….85 4.3 銅在TiNx阻障層中之擴散係數量測……………………….89 第五章 結論……………………………………………….………….99 參考文獻…………………………..…………………………………100 圖索引 圖1-1 多層金屬導線連接結構。………………………………………7 圖1-2 2004年ITRS預測未來訊號延遲與閘極寬度之演變。…………7 圖1-3 在低線寬中,側壁散射與晶界散射提高了導線電阻。………8 圖1-4 線寬與電阻率之關係。…………………………………………8 圖1-5 鋁之電遷移模型。………………………………………………9 圖1-6 Cu-Si二元相圖。………………………………………………10 圖1-7 銅製程與擴散阻障層之應用。……………………………….11 圖2-1(a)非連續成長TiN薄膜(b)氮原子填充在晶界(c)非連 續成長TiN薄膜並以氮原子填充在晶界。……………………14 圖2-2 阻障層之微結構示意圖。…………………………………….21 圖2-3 晶格點-間隙擴散(a)kick-out model(b)Frank- Turnbull model。…………………………………………….22 圖2-4 晶界擴散之幾何示意圖。…………………………………….22 圖2-5 原子擴散穿過晶界的形式之示意圖。……………………….22 圖2-6 FCC金屬進行自擴散時擴散係數與溫度之關係。……………23 圖2-7 擴散機制與擴散動力有關之體制。………………………….23 圖3-1 射頻磁控濺鍍系統示意圖。………………………………….25 圖3-2 磁控濺鍍之陰極靶面磁力線圖。…………………………….25 圖3-3 四點探針示意圖。…………………………………………….30 圖3-4 求臨界時間(Threshold time)之示意圖。………………….35 圖4-1 薄膜沉積速率和N2/Ar流量比之關係圖。……………………39 圖4-2 ESCA組成分析圖。…………………………………………….39 圖4-3 在不同氮含量之TiNx的ESCA能譜圖。……………………...40 圖4-4 在固定厚度的堆疊結構﹝Cu(100nm)/TiNx(25nm)/Si﹞中,對 不同TiNx而言,TEM分析所獲得的繞射環(ring pattern)透露 出不同結構 (a)Ti (b)TiN0.52 (c)TiN0.95 (d)TiN1.08 (e) TiN1.13 (f)TiN1.16。……………………………………….42 圖4-5 由TEM觀察相同結構的氮化鈦薄膜(rock-salt structure , NaCl)之表面形態變化 (a)TiN0.95 (b)TiN1.08 (c) TiN1.13 (d)TiN1.16。……………………………………….44 圖4-6 在不同溫度退火一小時後,Cu(100nm)/Ti (25nm)/Si多層膜 XRD圖譜之變化。……………………………………………..48 圖4-7 在不同溫度退火一小時後,Cu(100nm)/TiN0.52(25nm)/Si多 層膜XRD圖譜之變化。…………………………………………49 圖4-8 在不同溫度退火一小時後,Cu(100nm)/TiN0.95(25nm)/Si多 層膜XRD圖譜之變化。…………………………………………50 圖4-9 在不同溫度退火一小時後,Cu(100nm)/TiN1.08(25nm)/Si多 層膜XRD圖譜之變化。…………………………………………51圖4-10在不同溫度退火一小時後,Cu(100nm)/TiN1.13(25nm)/Si多 層膜XRD圖譜之變化。………………………………………..52 圖4-11在不同溫度退火一小時後,Cu(100nm)/TiN1.16(25nm)/Si多 層膜XRD圖譜之變化。………………………………………..53 圖4-12 在不同溫度退火一小時,Cu(100nm)/TiNx(25nm)/Si多層膜 片電阻值變化率之改變。…………………………………..54 圖4-13 固定退火時間一小時,Cu(100nm)/TiN0.95(25nm)/Si系統在 不同溫度退火後,SEM之微影像照片(a)退火前(b)600℃ (c)700℃(d)800℃(e)800℃時,Cu3Si產生之孔洞。.55 圖4-14 在圖4-13(c)中,所標示之三個不同區域的EDS 圖譜(a)A 區(b)B區(c)C區。……………………………………..58 圖4-15 Cu(100nm)/TiN0.95(25nm)/Si多層膜經800℃一小時退火後 之(a)Cu3Si之橫截面影像(b)Cu3Si之EDS圖譜。……….59 圖4-16 固定退火時間一小時,Cu(100nm)/TiN1.08(25nm)/Si多層膜 在不同溫度退火後,SEM之微影像照片(a)退火前(b) 700℃(c)800℃(d)850℃。……………………….……60 圖4-17 Cu(100nm)/TiN1.13(25nm)/Si多層膜在不同溫度退火後, SEM之微影像照片(a)退火前(b)600℃,1hour(c) 800℃,1hour(d)850℃,2.5hour。……………………….61 圖4-18 Cu(100nm)/TiN1.16(25nm)/Si多層膜在不同溫度退火後, SEM之微影像照片(a)退火前(b)600℃,1hour(c) 800℃,1hour(d)850℃,2.5hour。……………………….62 圖4-19(a)銅膜中缺陷處之高解析影像(b)Cu / Ti(10nm) / Si 多層膜之高解析影像(c)Cu/ TiN0.52(10nm) /Si多層膜之 高解析影像。…………………………………………………67 圖4-20(a)Cu / TiN1.13(25nm) / Si晶格影像(b)Cu / TiN1.13 (10nm)/ Si多層膜之高解析影像(c)Cu / TiN1.13 (25nm) / Si多層膜中銅晶種層之高解析影像。………….70 圖4-21(a)Cu / TiN1.16(25nm) / Si多層膜之高解析影像(b) Cu /TiN1.16(10nm) / Si多層膜之高解析影像(c)Cu / TiN1.16(25nm)/ Si多層膜之影像。……………………….73 圖4-22 Cu / TiN1.16(25nm) / Si 多層膜經過700℃,23.5個小時退 火(a)部份銅層厚度大於100nm (b)部份銅層厚度小於100nm。 ……………………………………………………………….77 圖4-23 Cu / TiN1.16(25nm) / Si 多層膜經過700℃,23.5個小時退 火(a)銅矽化合物產生(b)圖4-23(a)中A區之微影 像(c)圖4-23(a)中B區之微影像。…………………….80 圖4-24 Cu/TiN1.08(25nm)/Si多層膜經過900℃15分鐘退火後(a) 銅膜與阻障層之介面已經不清楚(b)TiN1.08薄膜中的結構 變得較為鬆散。………………………………………………82 圖4-25 Cu(100nm)/TiN0.95(25nm)/Si多層膜經過800℃40分鐘退火 後(a)銅矽化合物產生(b)阻障層晶粒仍維持柱狀結構。 ………………………………………………………………….84 圖4-26 Cu / TiN1.16(25nm) / Si多層膜之ESCA縱深分析圖譜(a) 退火前(b)經過700℃30小時退火(c)經過700℃30小時 退火,試片不同深度之鈦的束縛能(binding energy)變 化。…………………………………………………………..88 圖4-27 Cu(100nm)/TiN1.08(25nm)/Si多層膜經過不同溫度退火後, 失效時間之變化(a)600℃(b)700℃(c)800℃(d) 850℃(e)900℃。……………………………………………94 圖4-28 退火溫度與擴散係數之關係(a)Cu(100nm)/TiNx(25nm)/Si 多層膜(b)Cu(100nm)/TiNx(10nm)/Si多層膜。…………96 圖4-29 膜厚與擴散係數之關係。……………………………………97

1.ITRS, Executive Summary of the 2003 Edition, p.39.
2.S-P Heng et al.,1995 International Symposium on VLSI TSA, p.164.
3.ITRS, Interconnect of the 2004 Update, p.3∼ p.9.
4. Werner Steinhoegl, Guenther Schindler and Manfred Engelhardt, 〝Unraveling the Mysteries Behind Size Effects in Metallization Systems〞, Infineon Technologies(2005,5,1).
5.C. Y. Chang, S. M. Sze, ULSI Technology,the McGraw-Hill, p.663,1996.
6.Abhishek Gupta, “Diffusion Characteristics Of Copper In Novel Metallic Films”, North Carolina State University.
7.張勁燕,“深次微米矽製程技術”, p.219.
8.Thaddeus B. Massalski et al.,〝Binary Alloy Phase Diagram〞,vol.1.
9.Shacham-Diamand, Y., Li, J.,Olowlafe, J.O., Russel, S., Tamou, Y., Mayer, J. W., Proc. 9 Bienn Univ. Gov. Ind. Microelectron Symp. Pabl by IEEE Service Center, Piscataway, NJ, USA(IEEE cat. n 91ch3027-0), p.210-215.
10.A. E. Kaloyeros and E. Eisenbraun, Annu. Rev. Mater. Sci. 30(2000)363.
11.M.-A. Nicolet, Thin Solid Films, 52(1978)415.
12.楊文祿、吳其昌, 深次微米元件後段金屬連線技術, 真空科技, 十二卷二期, p.44-45 ,1999.
13.W. Nelson, Proc. Int. Symp. Hybrid Microelectronics, 1969, Dallas,Texas, International Society of Hybrid Microelectronics,Montgomery,U.S.A,p.413(1969).
14.C.-K. Hu , J. M. E. Harper, Materials chemistry and Physics, 52(1998)5.
15.W.H. Teh, L.T. Koh, S.M. Chen, J. Xie, C.Y. Li, and P.D.Foo ,Electron. Lett. 37, (2001) 660.
16. S. M. Rossnagel and H. Kim, J. Vac. Sci. Technol., B 21 (6) (2003)2550.
17.Katsutaka Sasaki,Hidekazu Miyake,Statoko Shinkai,Yoshio Abe and Hideto Yanagisawa,Jpn. J. Appl. Phys.,40(2001) 4661.
18.Cheng-Shi Chen et al., J. Vac. Sci. Technol. ,B 22(3) (2004)1075.
19.Huseyin Kizil, Christoph Steinbruchel, Thin Solid Films , 449 (2004)158.
20.Mayumi B. Takeyama et al., J. Vac. Sci. Technol. ,B 22 (5)( 2004)2542.
21. R. Hubner et al.,Thin Solid Films,458 (2004) 237.
22.S. Balakumar, Tohru Hara, Rakesh Kumar, Takamasa Wakabayashi,and Minoru Uchida, Electrochemical and Solid-State Letters, 7 (8)(2004)G175.
23.H.C. Kim and T.L. Alford , Thin Solid Films , 449 (2004)6.
24.Wang SQ. , Mater. Res. Soc. Bull, 19(1994)30.
25.Uh J, Aeen M, Leusink G, Webb D, Hillman J. T hin Solid Films(1997)308.
26.Sa-Kyun Rha , Won-Jun Lee , Seung-Yun Lee , Yong-Sup Hwang ,Yoon-Jik Lee ,Dong-Il Kim , Dong-Won Kim , Soung-Soon Chun ,Chong-Ook Park , Thin Solid Films ,320 (1998) 134.
27.Ki Tae Nam, Arindom Datta, Soo-Hyun Kim, and Ki-Bum Kim,79(2001)2549.
28.Katz A, Feingold A, Pearton S, Nakahara S and Ellington M, et al., J.Appl. Phys. ,70(1991)1666.
29.張鼎張、胡榮治,金屬化學氣相沉積在積體電路技術的發展,真空科技,十二卷二期,1999, p.35-43.
30. Ho PS. , Thin Solid Films ,96(1982)301.
31. Park K, Kim K, Raaijmakers I, Ngan K., J. Appl. Phys., 80(10)(1996)5674.
32. A. E. Kaloyeros and E. Eisenbraun, Annu. Rev. Mater. Sci, 30(2000)363.
33.Shewmon PG. ,Diffusion in Solids, New York,McGraw Hill,1963.
34.J.C. Fisher , J. Appl. Phys., 22 (1951)74.
35.Y. Mishin and Chr. Herzig Mater. Sci. Eng. ,A 260 (1999)55.
36.行政院國家科學委員會精密儀器發展中心,〝真空科技與應用〞 ,2002.
37.Thaddeus B. Massalski et al.,〝Binary Alloy Phase Diagram〞,vol.1.
38. D.A. Porter and K.E. Easterling,“Phase Transformations in Metals and Alloys”,Nelson Thrones, p.130.
39. M.Moriyama, T.Kawazoe , M.T anaka , M.Murakami, Thin Solid Films, 416 (2002) 136.
40.Michel Barsoum,〝Fundamentals of Ceramics〞, McGraw- Hill ,p.197.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2006/07/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE