簡易檢索 / 詳目顯示

研究生: 林佳宜
Chia-yi Lin
論文名稱: 溶膠-凝膠法合成氧化鎢奈米薄膜與其光電特性研究
Synthesis and characterization of tungsten oxide thin film by Sol-Gel method and its optoelectronic properties
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 張守進
Shoou-Jinn Chang
周賢鎧
Shyan-Kay Jou
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 95
中文關鍵詞: 氧化鎢奈米薄膜溶膠-凝膠法光檢測器
外文關鍵詞: Photodetector, Tungsten oxide nano thin film, Sol-Gel method
相關次數: 點閱:367下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以溶膠-凝膠法製備氧化鎢奈米薄膜金半金光檢測器之光電特性研究。實驗中,氧化鎢薄膜光檢測器的暗/光電流及光響應在回火後有顯著的改善,而拒斥比可提升2個數量級,同時我們可得到氧化鎢薄膜在600℃回火後製作之光檢測器(PD_600)有最佳的光響應特性。
PD_600光檢測器分別置於氧氣、大氣、真空、氧氣-大氣-氧氣及氧氣-真空-氧氣五種氣體環境下,觀察氣體環境對光電流之影響。我們可觀察到PD_600光檢測器在真空環境下相較於在大氣及氧氣環境下有較好的光響應,但在切換氣體的環境下,氧氣-大氣-氧氣環境對氧化鎢薄膜光檢測器的光響應有較好的增加效果。比較大氣與氧氣-大氣-氧氣環境對光響應之影響,我們可觀察出在氧氣-大氣-氧氣環境下光響應可提升0.5個數量級。而比較真空與氧氣-真空-氧氣環境對光響應的影響,我們可觀察出兩者對於提升光響應無明顯增加,故PD_600光檢測器在真空環境下的光響應特性較穩定。
最後探討不同回火溫度對氧化鎢薄膜光檢測器在氧氣、大氣、真空、氧氣-大氣-氧氣及氧氣-真空-氧氣的環境下觀察光響應之變化。由實驗結果證實在600℃回火的光檢測器在任何氣體環境下確實有較佳的光響應特性。


In this thesis, the effects of different annealed temperatures and gases environments on the performance of W18O49-based metal-semiconductor- metal (MSM) photodetectors (PDs) were thoroughly studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmittance, and photoluminescence (PL) spectra revealed that the sol-gel prepared W18O49 film became more porous and more crystallization as annealed temperature ncreased. The PD of W18O49 film annealed at 600oC (PD_600) possessed the better performance with photo-to-dark current contrast ratio and rejection ratio of 6.5×102 and 407.8, respectively.
PD_600 was further studied versus different gases environments, pure O2, air, vacuum, O2-Air-O2 (OAO), and O2-Vacuum- O2 (OVO). Ultraviolet (UV) light was used as the source for measuring the photocurrent. It was observed that in O2 gases environment, the adsorption of O2 molecules may capture electrons in the bulk W18O49 film surface and reduced both of the dark and photocurrent. Similar phenomenon was observed in other conditions. The maximum photo-response of PD_600 measured in air, vacuum, OAO, and OVO were 45.7, 75.2, 28.0, and 82.9 respectively.
Finally, PDs with different annealed temperature treatment were inspected in various gases environments. In air environment, PD with W18O49 annealed at 600oC performed the highest photocurrent properties. The photo-responses among the different environmental tests suggested that the W18O49-based PD with 600oC-annealed film was promising for the application on light sensing.

Contents Chapter 1 Introduction 1-1 General background..........................................................................1 1-2 Motivation................................................................................2 1-3 Organization....................................................................2 Chapter 2 Background and Literature Review 2-1 Characteristic of tungsten oxides...........................................4 2-2 General methods of tungsten oxides syntheses....................................4 2-2-1 The sol-gel method.......................................................................5 2-2-2 Hydrothermal and solvethermal method.......................................7 2-2-3 Other synthesis methods...............................................................8 2-3 Applications of tungsten oxides..............................................8 2-4 Photodetectors based on various materials................................10 2-5 Theory of metal-semiconductor contact….........................................11 2-5-1 Theory of metal-semiconductor contact.....................................11 2-5-2 Current transport mechanism......................................................15 2-6 Theory of photodetectors.................................................................18 2-6-1 Metal-Semiconductor-Metal (MSM) photodetectors.................18 2-6-2 Current transport mechanism......................................................19 2-6-3 Parameters of photodetectors......................................................20 Chapter 3 Experiment and Measurement Systems 3-1 Synthesis of tungsten oxide thin film by Sol-Gel method.................34 3-2 Field Emission Scanning Electron Microscope (FESEM) ................35 3-3 X-ray Diffraction System (XRD) ......................................................37 3-4 Optical transmittance measurement system.......................................38 3-5 Photoluminescence (PL) Spectrum System.......................................38 3-6 Current-Voltage (I-V) Measurement System.....................................39 Chapter 4 Characterization of Tungsten Oxide Thin Film prepared by Sol-Gel Method 4-1 Introduction........................................................................................44 4-2 Results and discussion.......................................................44 4-2-1 Surface morphology and structural characteristics analysis.......44 4-2-2 Optical and electrical properties analyses...................................46 4-3 Summary............................................................................................50 Chapter 5 The 600℃ AnnealedW18O49 Photodetectors with Various Gas Conditions 5-1 Introduction........................................................................................57 5-2 Theory of gas sensing UV photodetectors.........................................57 5-3 Photocurrent measurement in uniform gas environment.................58 5-3-1 O2 environment...........................................................................58 5-3-2 Air environment..........................................................................59 5-3-3 Vacuum environment..................................................................60 5-4 Photocurrent measurement in gas changing environment..................61 5-4-1 O2-Air-O2 environment...............................................................61 5-4-2 O2-Vacuum-O2 environment.......................................................62 5-5 Summary............................................................................................63 Chapter 6 The Effects of Different Annealing Temperatures on W18O49 Photodetectors with Various Gas Conditions 6-1 Introduction........................................................................................70 6-2 Photocurrent measurement of different photodetectors in uniform gas environment....................................................................................70 6-2-1 O2 environment...........................................................................70 6-2-2 Air environment..........................................................................71 6-2-3 Vacuum environment..................................................................72 6-3 Photocurrent measurement of different photodetectors in gas changing environment.......................................................................72 6-3-1 O2-Air-O2 environment...............................................................72 6-3-2 O2-Vacuum-O2 environment......................................................73 6-4 Summary............................................................................................73 Chapter 7 Conclusion and Future Works 7-1 Conclusion..........................................................................................80 7-2 Future works.......................................................................................82 Reference..........................................................................83

[Reference]

Chapter 1
[1] S. Sun, X. Chang, and Z. Li, “Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires”, Mater. Res. Bull., 45 (2010) 1075–1079.
[2] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl. Phys. Lett., 84 (2004) 3654-3656.
[3] S. Fardindoost, A. I. Zad, F. Rahimi, and R. Ghasempour, “Pd doped WO3 films prepared by sol–gel process for hydrogen sensing”, Inter. J. Hydrogen Energy, 35 (2010) 854-860.
[4] F. Xie, H. Lu, X. Xiu, D. Chen, P. Han, R. Zhang, and Y. Zheng, “Low dark current and internal gain mechanism of GaN MSM photodetectors fabricated on bulk GaN substrate”, Solid-State Electronics, 57 (2011) 39-42.

Chapter 2
[1] C. G. Granqvist, “Electrochromic tungsten oxide films: Review of progress 1993-1998”, Sol. Energy Mater. Sol. Cells, 60 (2000) 201-262.
[2] P. M. Woodward, A. W. Sleight, and T. Vogt, “Ferroelectric Tungsten Trioxide”, J. Solid State Chem., 131 (1997) 9-17.
[3] E. Salje and K. Viswanathan, “Physical properties and phase transitions in WO3”, Acta Crystallogr., A 31 (1975)356-359.
[4] W. L. Kehl, R. G. Hay, and D. Wahl, “The Structure of Tetragonal Tungsten Trioxide”, J. Appl. Phys., 23 (1952) 212-215.
[5] E. Salje, “The orthorhombic phase of WO3”, Acta Crystallogr. B, 33 (1977) 547-577.
[6] S. Tanisaki, “Crystal Structure of Monoclinic Tungsten Trioxide at Room Temperature”, J. Phys. Soc. Jpn., 15 (1960) 573-581.
[7] B. O. Loopstra and H. M. Rietveld, “Further refinement of the structure of WO3”, Acta Crystallogr. B, 25 (1969) 1420-1421.
[8] R. Diehl, G. Brandt, and E. Salje, “The crystal structure of triclinic WO3”, Acta Crystallogr. B, 34 (1978) 1105-1111.
[9] P. M. Woodward, A. W. Sleight, and T. Vogt, “Structure Refinement of Triclinic Tungsten Trioxide”, J. Phys. Chem. Solids, 56 (1995) 1305-1315.
[10] E. Salje, “Structural phase transitions in the system WO3-NaWO3 ”, Ferroelectrics, 12 (1976) 215-217.
[11] R. Solarska, B. D. Alexander, and J. Augustynski, “Electrochromic and structural characteristics of mesoporous WO3 films prepared by a sol-gel method”, J. Solid State Electrochem., 8 (2004) 748-756.
[12] L. Zhuang, X. Xu, and H. Shen, “A study on the gasochromic properties of WO3 thin films”, Surf. Coat. Techol., 167 (2003) 217-220.
[13] J. Livage, and D. Ganguli, “Sol–gel electrochromic coatings and devices: A review”, Sol. Energy Mater. Sol. Cells, 68 (2001) 365-381.
[14] M. Henry, J.P. Jolivet, J. Livage, Structure and Bonding, Springer-Verlag, Berlin, Vol. 77, p. 155, 1992.
[15] J. Livage, and G. Guzman, “Aqueous precursor for electrochromic tungsten oxide hydrates”, Solid State Ionics, 84 (1996) 205-211.
[16] P.K. Biswas, N.C. Pramanik, M.K. Mahapatra, D. Ganguli, and J. Livage, “Optical and electrochromic properties of sol–gel WO3 films on conducting glass”, Mater. Lett., 57 (2003) 4429-4432.
[17] S.A. Agnihotry, N. Sharma and M. Deppa, “Ion Exchange Derived Precursor Materials for Deposition of WO3 Electrochromic Films: Spectroscopic Investigations”, J. Sol-Gel Sci. Techol., 24 (2002) 265- 270.
[18] W. Cheng, E. Baudrin, B. Dunna, and J. I. Zink, “Synthesis and electrochromic properties of mesoporous tungsten oxide”, J. Mater. Chem., 11 (2001) 92-97.
[19] A. Cremonesi, D. Bersani, P. P. Lottici, Y. Djaoued, and P. V. Ashrit, “WO3 thin films by sol-gel for electrochromic applications”, J. Non-Cryst. Solids, 345&346 (2004) 500-504.
[20] I. Karakurt, J. Boneberg, and P. Leiderer, “Electrochromic switching of WO3 nanostructures and thin films”, Appl. Phys. A, 83 (2006) 1-3.
[21] P. Judeinstein and J. Livage, “Sol-gel synthesis of WO3 thin films”, J. Mater. Chem., 1(4) (1991) 621-627.
[22] O. Pyper1, R. Schollhorn1, J. J. T. M. Donkers, and L. H. M. Krings, “Nanocrystalline structure of WO3 thin films prepared by the sol-gel technique”, Mater. Res. Bull., 33(7) (1998) 1095-1101.
[23] M .G. Hutchins, N. A. Kamel, N. E. Kadry, A. A. Ramadan, and K. Abdel-Hady, “Preparation and Properties of Electrochemically Deposited Tungsten Oxide Films”, Phys. stat. sol. (a), 175 (1999) 991-1002.
[24] B. Munro, S. Kramer, P. Zapp, and H. Krug, “Characterization of electrochromic WO3-Layers prepared by sol-gel nanotechnology”, J. Sol-Gel Sci. Techol., 13 (1998) 673-678.
[25] C. O. Avellaneda, and L. O. S. Bulhoes, “Intercalation in WO3 and WO3:Li films”, Solid State Ionics, 165 (2003) 59-64.
[26] A. Patra, K. Auddy, D. Ganguli, J. Livage, and P. K. Biswas, “Sol–gel electrochromic WO3 coatings on glass”, Mater. Lett., 58 (2004) 1059-1063.
[27] Z. A. E. P. Vroon and C. I. M. A. Spee, “Sol-gel coating on large area glass sheets for electrochromic device”, J. Non-Cryst. Solids, 218 (1997) 189-195.
[28] K. D. Lee, “Preparation and electrochromic properties of WO3 coating deposited by the sol-gel method”, Sol. Energy Mater. Sol. Cells, 57 (1999) 21-30.
[29] L. H. M. Krings, and W. Talen, “Wet chemical preparation and characterization of electrochromic WO3”, Sol. Energy Mater. Sol. Cells, 54 (1998) 27-37.
[30] S. Sun, Z. Zou, and G. Min, “Synthesis of bundled tungsten oxide nanowires with controllable morphology”, Mater. Character., 60 (2009) 437-440.
[31] H. G. Choi, Y. H. Jung, and D. K. Kim, “Solvothermal Synthesis of Tungsten Oxide Nanorod/Nanowire/Nanosheet”, J. Am. Ceram. Soc., 88 (6) (2005)1684-1686.
[32] X. C. Song, Y. F. Zheng, E. Yang, and Y. Wang, “Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4 ”, Mater. Lett., 61 (2007) 3904-3908.
[33] X. Su, F. Xiao, Y. Li, J. Jian, Q. Sun, and J. Wang, “Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process ”, Mater. Lett., 64 (2010) 1232-1234.
[34] J. H. Ha, P. Muralidharan, and D. K. Kim, “Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts ”, J. Alloys Compd., 475 (2009) 446-451.
[35] C. C. Liao, F. R. Chen, and J. J. Kai. “Annealing effect on electrochromic properties of tungsten oxide nanowires”, Sol. Energy Mater. Sol. Cells, 91 (2007) 1258-1266.
[36] K. Hong, M. Xie, R. Hu, and H. Wu. “Synthesizing tungsten oxide nanowires by a thermal evaporation method”, Appl. Phys. Lett., 90 (2007) 173121.
[37] M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S. Zou, and H. J. Gao. “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films”, Appl. Phys. Lett., 86 (2005) 141901.
[38] F. Galléa, Z. Li, and Z. Zhanga. “Growth control of tungsten oxide nanostructures on planar silicon substrates”, Appl. Phys. Lett., 89 (2006) 193111.
[39] S. J. Wang, C. H. Chen, R. M. Ko, Y. C. Kuo, C. H. Wong, C. H. Wu, K. M. Uang, T. M. Chen, and B. W. Liou, “Preparation of tungsten oxide nanowires from sputter-deposited WCx films using an annealing/oxidation process”, Appl. Phys. Lett., 86 (2005) 263103.
[40] S. B. Ogale, P. G. Bilurkar, N. Male, S. M. Kantrker, N. Parikh and B. Patnaik, ”Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation”, J. Appl. Phys., 72 (8) (1992) 3765-3769.
[41] R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review”, Sol. Energy Mater. Sol. Cells, 94 (2010) 87–105.
[42] C. C. Liao, F. R. Chen, and J. J. Kai, “WO3-x nanowires based electrochromic devices”, Sol. Energy Mater. Sol. Cells, 90 (2006) 1147–1155.
[43] D. Schweiger, A. Georg, W. Graf, and V. Wittwer, “Examination of the kinetics and performance of a catalytically switching (gasochromic) device”, Sol. Energy Mater. Sol. Cells, 54 (1998) 99-108.
[44] T. Siciliano, A. Tepore, G. Micocci, A. Serra, D. Manno, and E. Filippo, “WO3 gas sensors prepared by thermal oxidization of tungsten”, Sensors Actuat. B, 133 (2008) 321–326.
[45] B. Cao, J. Chen, X. Tang and W. Zhou, “Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection”, J. Mater. Chem., 19 (2009) 2323–2327.
[46] K. Huang, Q. Zhang, F. Yang, and D. He, “Ultraviolet Photoconductance of a Single Hexagonal WO3 Nanowire”, Nano Res., 3 (2010) 281–287.
[47] L. Zou, Q. Zhong, Q. Liu, “Preparation and Characterization of Microporous Nano- Tungsten Trioxide and Its Photocatalytic Activity after Doping Rare Earth”, J. Rare Earth, 24 (2006) 60-66.
[48] M. T. Chang, L. J. Chou, Y. L. Chueh, Y. C. Lee, C. H. Hsieh, C. D. Chen, Y. W. Lan, and L. J. Chen, “Nitrogen-Doped Tungsten Oxide Nanowires: Low-Temperature Synthesis on Si, and Electrical, Optical, and Field-Emission Properties”, small, 3 No. 4 (2007) 658-664.
[49] C. G. Granqvist, Handbook of Inorganic Electrochromic Material, Elsevier, Amsterdam,1995
[50] J. Zhou, L. Gong, S. Z. Deng, J. Chen, J.C. She, N. S. Xu, R.S. Yang, and Z. L. Wang, “Growth and field-emission property of tungsten oxide nanotip arrays”, Appl. Phys. Lett., 87 (2005) 223108.
[51] Y. H. He, S. L. Wang, B. Y. Huang, C. T. Liu, and P. K. Liaw, “Novel tungsten oxide microneedles with nanosized tips”, Appl. Phys. Lett., 88 (2006) 223107.
[52] Y. B. Li, Y. Bando, and D. Golberg, “Quasi-Aligned Single-Crystalline W18O49 Nanotubes and Nanowires”, Adv. Mater., 15 (2003) 1294-1296.
[53] F. Xie, H. Lu, X. Xiu, D. Chen, P. Han, R. Zhang, and Y. Zheng, “Low dark current and internal gain mechanism of GaN MSM photodetectors fabricated on bulk GaN substrate”, Solid-State Electron., 57 (2011) 39-42.
[54] P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors”, Appl. Phys. Lett., 88 (2006) 153107.
[55] S. J. Chang, T. K. Lin, Y. K. Su, Y. Z. Chiou , C. K. Wang , S. P. Chang, C. M. Chang, J. J. Tang, and B. R. Huang, “Homoepitaxial ZnSe MSM photodetectors with various transparent electrodes”, Mater. Sci. Eng. B, 127 (2006) 164-168.
[56] C. A. Smith, H. W. H. Lee, V. J. Leppert and S. H. Risbud, “Ultraviolet-blue emission and electron-hole states in ZnSe quantum dots”, Appl. Phys. Lett., 75 No. 12 (1999) 1688-1690.
[57] K. Yoshimura, H. Watanabe, Y. Yamada, T. Taguchi, F. Sasaki, S. Kobayashi, and T. Tani, “Two-photon absorption of biexcitons in ZnS-based quantum wells”, J. Cryst. Growth, 184/185 (1998) 682-685.
[58] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches”, Adv. Mater., 14 No. 2 (2002) 158-160.
[59] W. J. Wang, C. X. Shan, H. Zhu, F. Y. Ma, D. Z. Shen, X. W. Fan and K. L. Choy, “Metal–insulator–semiconductor–insulator–metal structured titanium dioxide ultraviolet photodetector”, J. Phys. D: Appl. Phys., 43 (2010) 045102.
[60] J Y Zhang, Y X Chen, T L Guo, Z X Lin and T H Wang, “Sub-band-gap photoconductivity of individual α-Si3N4 nanowires”, Nanotechnology, 18 (2007) 325603 .
[61] D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, 1998.
[62] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.
[63] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed., New York, Oxford University Press, 1988, ch. 1.
[64] W. Schottky, “Halbleitertheorie der Sperrschicht,” Naturwissenschaften, 26 (1938) 843.
[65] E. R. Rhoderick, “Metal-Semiconductor Contacts”, IEE Proc., 129 (1982) 1-24.
[66] C. J. Wei, H. J. Klein, and H. Beneking, “Symmetrical mott barrier as a fast photodetector”, Electron. Lett., 17 (1981) 688-690.
[67] M. Marso, M. Horstmann, M. Hardtdegen, P. Kordos, and H. Luth,, “Electrical behavior of the InP/InGaAs based MSM-2DEG diode,” Solid-State Electron., 41 (1997) 25-31.
[68] P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed., Prentice Hall, New Jersey, 1997.
[69] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN” J. Appl. Phys., 83 (1998) 6148-6160.
[70] X. Wang, X. Wang, B. Wang, H. Xiao, H. Liu, J. Wang, Y. Zeng, and J. Li, “High responsivity ultraviolet photodetector based on crack-free GaN on Si (111)” Phys. Stat. Sol. (c), 4 (2007) 1613-1616.
[71] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “Back-Illuminated GaN Metal-Semiconductor-Metal UV Photodetector with High Internal Gain” Jpn. J. Appl. Phys., 40 (2001) L505-L507.
[72] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors” Appl. Phys. Lett., 79 (2001) 1417-1419.
[73] K. Leung, A. F. Wright, and E. B. Stechel, “Charge accumulation at a threading edge dislocation in gallium nitride,” Appl. Phys. Lett., 74 (1999) 2495-2497.
[74] Dissertation of NCKU: Ai-Ni Tu, “Fabrication and Investigation of InGaN-based Metal-Semiconductor-Metal Photodetectors”, 2009, Chap. 2.2.3

Chapter 3
[1] Book, Robert Edward Lee, Scanning Electron Microscopy and X-ray Microanalysis, p.94 and p.5, 1993.
[2] P. Ruterana, M. Albrecht and J. Neugebauer, Nitride Semiconductors : handbook on materials and devices, Wiley-VCH, 2003.
[3] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett., 68 (1996) 643.
[4] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, D. H. Lim and A. Yoshikawa, “Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers”, Appl. Phys. Lett., 77 (2000) 2557.
[5] Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou and D. J. Smith, “Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy”, Appl. Phys. Lett., 86 (2005) 043108.
[6] Dissertation of NCKU: Chih-Hung Hsiao, “Growth of II-VI Compound Semiconductors and their Optoelectronic Properties”, 2010, chap. 2-3-4
[7] Book, Robert Edward Lee, Scanning Electron Microscopy and X-ray Microanalysis, p.339, 1993
[8] Dissertation of NCKU: Ai-Ni Tu, “Fabrication and Investigation of InGaN-based Metal-Semiconductor-Metal Photodetectors”, 2009, Chap. 2.2.3

Chapter 4
[1] M. Zayat, R. Reisfeld, H. Minti, “Gasochromic Effect in Platinum-Doped Tungsten Trioxide Films Prepared by the Sol-Gel Method”, J. Sol–Gel Sci. Technol., 11 (1998) 161-168.
[2] B. Orel, N. Groselj, U. Opara Krasovec, M. Gaberscek, P. Bukovec, R. Reisfeld, “Gasochromic effect of palladium doped peroxopolytungstic acid films prepared by the sol-gel route”, Sens. Actuat. B, 50 (1998) 234-245.
[3] K. J. Chen, T. H. Fang, F. Y. Hung, L. W. Ji, S. J. Chang, S. J. Young and Y. J. Hsiao, “The crystallization and physical properties of Al-doped ZnO nanoparticles”, Appl. Surf. Sci., 254 (2008) 5791–5795.
[4] K. J. Chen, F. Y. Hung, S. J. Chang1 and S. J. Young, “Optoelectronic Characteristics of UV Photodetector Based on ZnO Nanopillar Thin Films Prepared by Sol-Gel Method”, Materials Transactions, 50, No. 4 (2009) 922-925.
[5] J. H. Ha, P. Muralidharan, and D. K. Kim, “Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts ”, J. Alloys Compd., 475 (2009) 446-451.
[6] W. D. Yu, X. M. Li and X. D. Gao, “Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn,Mg)O channel”, Appl. Phys. Lett., 84 (2004) 2685-2660.
[7] Y. C. Liu, Y. W. Chen, C. L. Shao and S. X. Lu, “Structural, optical and photoelectric properties of ZnO:In and MgxZn1−xO nanofilms prepared by sol-gel method ”, J. Sol-Gel Sci. Techn. 39 (2006) 57–62.
[8] S. J. Young, L. W. Ji, S. J. Chang and Y. K. Su, “ZnO metal-semiconductor-metal ultraviolet sensors with various contact electrodes”, J. Cryst. Growth, 293 (2006) 43–47.
[9] S. Sun, X. Chang, and Z. Li, “Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires”, Mater. Res. Bull., 45 (2010) 1075–1079.
[10] Dissertation of NCKU: Chih-Hung Hsiao, “Growth of II-VI Compound Semiconductors and their Optoelectronic Properties”, 2010, chap. 2-3-4.

Chapter 5
[1] Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements”, Appl. Phys. Lett., 86 (2005) 123117.
[2] Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires”, Appl. Phys. Lett., 94 (2009) 023110.
[3] B. Cao, J. Chen, X. Tang and W. Zhou, “Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection”, J. Mater. Chem., 19 (2009) 2323–2327.
[4] K. Huang, Q. Zhang, F. Yang, and D. He, “Ultraviolet Photoconductance of a Single Hexagonal WO3 Nanowire”, Nano Res., 3 (2010) 281–287.

無法下載圖示 全文公開日期 2016/06/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE