簡易檢索 / 詳目顯示

研究生: 廖翔舟
Hsiang-Chou Liao
論文名稱: PBAT/MA交聯薄膜物性之研究與PBAT生物分解條件的探討
PBAT/MA crosslink films physical and to confer PBAT biodegradable conditions
指導教授: 楊銘乾
MING-CHIEN YANG
口試委員: 李振綱
CHENG-KANG LEE
楊台鴻
TAI-HORNG YOUNG
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 73
中文關鍵詞: PBAT膜糞生產鹼桿菌順丁烯二酸酐交聯生物分解
外文關鍵詞: PBAT, Alcaligens faecalis, Maleic anhydride, crosslinking, biodegradable
相關次數: 點閱:252下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文第一部份進行PBAT與順丁烯二酸酐(MA)交聯(crosslink)之研究。對不同MA添加比例與薄膜性質分析,分別探討其交聯後薄膜之物理性質、化學性質與酵素分解性質,以作為生物可分解塑膠覆蓋膜之應用。第二部分將以糞生產鹼桿菌(Alcaligens faecalis) 分解PBAT膜(Poly(butylene adipate-co-terephthalate),研究糞生產鹼桿菌生長週期與PBAT薄膜之分解條件。
    PBAT與MA交聯後之薄膜,由IR觀察可知OH吸收峰消失,由拉力測試可知應力與楊氏系數皆增加,由AFM觀察可知粗糙度降低,由TGA與DSC可知材料之熱穩定性質增加且Tm無明顯上升,由SAXS可知PBAT/MA交聯薄膜不會改變原本PBAT之結晶結構。整體而言,PBAT與MA交聯後可提高PBAT薄膜之機械性質,增加在生物可分解環保薄膜方面之應用。糞生產鹼桿菌(Alcaligens faecalis)在NB培養基環境下於培養11小時後出現最大菌數,且在礦物質培養基(MM)環境下,兩週內將PBAT分解2.6%(重量損失百分率)。


    First part of this dissertation is to study the crosslink reaction between PBAT and MA in order to apply to the study of the biodegradable membrane by analyzing the physical property, chemical property and biolysis of the membrane after adding different MA proportion o PBAT. Second part is to study the life cycle of Alcaligens faecalis and resolving condition of PBAT membrane by resolving the PBAT membrane (Poly (butylene adipate-co-terephthalate) by Alcaligens faecalis.
    Under NB medium environment, the amount of Alcaligens faecalis reaches the maximum germs after 11 hours of culture. And Under the mineral medium (MM) environment, 2.6% (the percentage of loss of weight) of PBAT is resolved in two weeks. As of the PBAT membrane after crosslink reaction with MA, -OH peak disappears (observed by IR); both stress and Yang's modulus increase (by tension test); the roughness is reduced (observed by AFM); the heat stability property of the material increase while Tm does not to rise (by TGA and DSC); the original crystallization structure of PBAT is invariant after the crosslink reaction of PBAT/MA (by SAXS). In general, after PBAT/MA crosslink reaction, the mechanical property of PBAT membrane is improved so that expand the application in the biodegradable environmental protection membrane.

    目錄 頁數 中文摘要 II 英文摘要 III 誌謝 IV 目錄 V 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 3 第二章 文獻回顧 5 2.1 文獻與理論基礎 5 2.1.1 生物分解性聚酯高分子材料 5 2.1.2 順丁烯二酸酐(Maleic anhydride) 7 2.1.3 糞生產鹼桿菌(Alcaligenes facialis) 9 2.2 高分子薄膜材料改質(Film modification) 15 2.3 薄膜表面型態結構與機械性質分析 19 2.3.1 熱重分析儀(Thermal Gravimetric Analysis TGA) 20 2.3.2 掃描式微差熱分析儀(Differential Scanning Calorimetry DSC) 21 2.3.3 萬能拉力測試機(Tensilon) 22 2.3.4 衰減式全反射傅立葉紅外線光譜儀(FTIR) 26 2.3.5 原子力顯微鏡之原理(AFM) 28 2.3.6 X射線光電子能譜儀(WAXS) 30 第三章 實驗材料與方法 31 3.1 實驗材料與原理 31 3.2 實驗儀器與設備 32 3.3 實驗流程 32 3.4 實驗步驟 33 3.4.1 PBAT與順丁烯二酸酸酐(MA)交聯薄膜之製備 34 3.4.2 紅外線光譜儀測定(ATR-FTIR) 35 3.4.3 拉力測試(Tensile properties) 35 3.4.4 酵素分解 35 3.4.5 熱分析(Thermal analysis) 35 3.4.6 高解析廣角度X光散射儀 36 3.4.7 原子力顯微鏡(AFM) 36 3.5 Alcaligenes faecalis糞生產鹼桿菌之生長週期 37 3.6 PBAT與PBAT/MA之Alcaligenes faecalis細菌分解 38 3.6.1 PBAT薄膜 38 3.6.2 生物分解塑膠之培養基製作 38 3.6.3 PBAT之細菌分解 39 第四章 結果與討論 41 4.1 PBAT與順丁烯二酸酐(MA)交聯薄膜 41 4.1.1 紅外線光譜儀(IR)分析 41 4.2 拉力測試(Tensilon) 43 4.3 原子力顯微鏡(AFM) 46 4.4 酵素分解 52 4.5 熱分析 53 4.5.1 熱重分析儀(TGA) 53 4.5.2 掃描式微差熱分析(DSC) 54 4.6 廣角X射線光電子能譜分析(WAXS) 55 4.7 PBAT與PBAT/MAn之Alcaligenes faecalis細菌分解 56 4.7.1 Alcaligenes faecalis細菌培養 56 4.7.2 Alcaligenes faecalis細菌分解PBAT 60 第五章 結論(Conclusion) 61 第六章 參考文獻(Reference) 63 作者簡介 73

    [1] 1. F. Le Digabel,1 N. Boquillon,2 P. Dole,3 B. Monties,3 L. Averous4
    [2] Thitisilp Kijchavengkul , Rafael Auras , Maria Rubino , Mathieu Ngouajio , R. Thomas Fernandez .,Assessmant of alphatic-aromatic copolyester biodegradable mulch films. Part I: Field study., Chemosphere 10.074 2007.
    [3] Hocking PJ,Marchessault RH. Biopolyester. In Chemistry and Technology of Biodegradable Polymers, Ed by Griffin GJL,New York: Blackie Academic & Professional, 1994,pp.48-96.
    [4] U.Witt ,T.Einig , M.Yamamoto , I.Kleeberg , W.-D.Deckwer , R.-j.Muller .Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotocxicological impact of degradation intermediates,Chemosphere 44(2001)289-299
    [5] N. R. Kring, and J. G. Holt. 1984. Gram-negative aerobic rods and cocci other genera. Bergey's manual of systematic bacteriology. Volume 1:361-373.
    [6] 楊辰夫譯,1979,非醱酵性革蘭陰性桿菌,臨床微生物診斷學,p153。
    [7] 張國明、張謙行、陳修聖、呂煦宗編譯,1889,種種致病性細菌,醫用微生物學,p455。
    [8] James M. Jay著,方繼等編譯,1999,食品微生物之分類,作用及重要性、食品中影響微生物生長之內在及外來因子,現代食品微生物學,p20、47~48、52。
    [9] 高正雄譯着,LSI時代-電漿化學.,1999.
    [10] 高有志,生醫級聚碳酸酯型聚胺酯之微相分離性質研究,國立中興大學化學工程研究所,碩士論文, 2002,20-21.
    [11] K.D. Jandt, Atomic force microscopy of biomaterials surfaces and interfaces, Surface Science, 491 ,2001, 303-332.
    [12] 陳信隆、鄭有舜,小角X光散射在奈米高分子結構上之應用,科儀新知第29卷第2期,2007.
    [13] Gerhard Sschroll , HANS-JÜRGEN BUSSE , GÜNTER PARRER , SABINE RÖLLEKE , WERNER LUBITZ and EWALD B. M. DENNER., Alcaligenes faecalis subsp. parafaecalis subsp. nov., a Bacterium Accumulating Poly-b-hydroxybutyrate from Acetone-butanol Bioprocess Residues.,Systematic and applied microbiology 24(2001), 37–43
    [14] Marc Rehfuss , James Urban., Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor., Systematic and applied microbiology 28 (2005) 421–429
    [15] Yan Jiang , Jianping Wen , Jing Bai , Xiaoqiang Jia , Zongding Hu ., Biodegradation of phenol at high initial concentration by Alcaligenes faecalis.,Journal of hazardous material., 147 (2007) 672–676
    [16] Hung-Soo Joo, Mitsuyo Hirai, and Makoto Shoda., Characteristics of Ammonium Removal by Heterotrophic Nitrification-Aerobic Denitrification by Alcaligenes faecalis No. 4., The Society for Biotechnology, Japan .,Vol. 100, No.2, 184–191. 2005
    [17] Hung-Soo Joo, Mitsuyo Hirai, and Makoto Shoda., Improvement in Ammonium Removal Efficiency in Wastewater Treatment by Mixed Culture of Alcaligenes faecalis No. 4 and L1., The Society for Biotechnology, Japan ., Vol. 103, No. 1, 66–73. 2007
    [18] Yuji Oda , Naoya Odia , Teizi Urakami , Kenzo Tonomura ., Polycarprolactone depolymerase produced by the bacterium Alcaligenes faecalis ., FEMS microbiology letters ., 152(1997) 339-343
    [19] Hung-Soo Joo, Mitsuyo Hirai, Makoto Shoda ., Piggery wastewater treatment using Alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification ., WATER RESEARCH 40(2006) 3029–3036
    [20] R.Z. Sayyed , S.B. Chincholkar ., Purification of siderophores of Alcaligenes faecalis on Amberlite XAD ., Bioresource Technology ., 97(2006) 1026–1029
    [21] Kyriacos Petratos , Maria Papadovasilaki , Zbigniew Dauter ., The crystal structure of apo-pseudoazurin from Alcaligenes faecalis S-6 ., FEBS Letters ., 368 (1995) 432-434
    [22] Yoshihiro Someya, Yuichi Sugahara, Mitsuhiro Shibata ., Nanocomposites Based on Poly(butylene adipate-coterephthalate) and Montmorillonite ., J Appl Polym Sci 95: 386–392, 2005
    [23] Herrmann R, Schmidmaier, Ma¨rkl GB, Resch A, Ha¨hnel I, Stemberger A, Alt E. Antithrombic coatings of stents using a biodegradable drug delivery technology. Thromb Haemost 1999; 82:51-7.
    [24] Hu SG, Tsai CE. A Correlation between Interfacial Free Energy and Albumin Adsorption in Ionic Poly(acrylonitrile-acrylamide-acrylic acid)Hydrogels. J Appl Polym Sci 1996; 58: 1809-17.
    [25] Ishihara K, Fukumoto K, Iwasaki Y, Nakabayashi N, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization, Biomaterials 1999; 20: 1545-51.
    [26] Jackson LS, Wang XJ, Dudrick SD, Gersten GD. Catheter-directed thrombolysis and/or thrombectomy with selective endovascular stenting as alternatives to systemic anticoagulation for treatment of acute deep vein thrombosis. Am J Surg 2005; 190: 864-8.
    [27] Kanabar V, Hirst SJ, O’Connor BJ, Page CP. Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle. Br J Pharmacol 2005; 146: 370-7.
    [28] Kang IK, Kwon OH, Kim MK, Lee YM, Sung YK, In vitro blood compatibility of functional group-grafted and heparin immobilized polyurethanes prepared by plasma grow discharge, Biomaterials. 18 (1997) 1099-1107.
    [29] Kang IK, Kwon OH, Lee YM, Sung YK. Preparation and surface characterization of function group-grafted and heparin-immobilized polyurethane prepared by plasma glow discharge. Biomaterials 1996; 17: 841-7.
    [30] Khademhosseini A, Suh KY, Yang JM, Eng G, Yeh J, Levenberg S, Langer R. Layer-by-layer deposition of hyaluronic acid and poly-l-lysine for patterned cell co-cultures. Biomaterials 2004; 25: 3583-92.
    [31] Lawson JH, Olsen D B, Hershgold E, Kolff J, Hadfield K, Kolff WJ. A comparsion of polyurethane and silastic artificial hearts in 10 long survival experiments in calves. Trans Am Soc Artif Intern Organs 1975; 21: 368-73.
    [32] Li Y, Leung P, Yao L, Song QW, Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect. 2006; 62: 58-63.
    [33] Lin WC, Liu TY, Yang MC. Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials 2004; 25: 1947-57.
    [34] Lin WC, Yu DG, Yang MC. Blood compatibility of thermoplastic polyurethane membrane immobilized with water-soluble chitosan/dextran sulfate. Colloids and Surfaces B: Biointerfaces 2005; 44: 82-92.
    [35] Liu X, Gao C, Shen J, Ohwald HM. Multilayer microcapsules as anti-cancer drug delivery vehicle: Deposition, sustained release, and in vitro bioactivity. Macromol. Biosci. 2005; 5: 1209-19.
    [36] Liu XF, Guan YL, Yang DZ, Li Z, Yao KD. Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 2001; 79: 1324-35.
    [37] Liu Y, He T, Gao C. Surface modification of poly(ethylene terephthalate) via hydrolysis and layer-by-layer assembly of chitosan and chondroitin sulfate to construct cytocompatible layer for human endothelial cells.Colloids Surf B Biointerfaces 2005; 46: 117-26.
    [38] Michel M, Izquierdo A, Decher G, Voegel JC, Schaaf P, Ball V. Layer by layer self-assembled polyelectrolyte multilayers with embedded phospholipid vesicles obtained by spraying: integrity of the vesicles. Langmuir. 2005; 21: 7854-9.
    [39] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 1983; 65: 55-63.
    [40] Osterberg E, Bergstrom K, Holmberg K, Schuman TP, Riggs JA, Burns NL, Van Alstine JM, Harris JM. Protein-rejecting ability of surface-bound dextran in end-on and side-on configurations: comparison to PEG. J Biomed Mater Res 1995; 29: 741-7.
    [41] Park JC, Hwang YS, Lee JE, Park KD, Matsumura K, Hyon SH, Suh H. Type I atelocollagen grafting onto ozone-treated polyurethane films: Cell attachment, proliferation, and collagen synthesis. J Biomed Mater Res 2000; 52: 669-77.
    [42] Park KD, Kim SW, Heparin immobilization onto segmented polyurethane: effect of hydrophilic spacers, J Biomed Mater Res 1988; 22: 977-984.
    [43] Park KD, Kim WG, Jacobs HJ, Okano T, Kim SW, Blood compatibility of SPUU-PEO-Heparin graft copolymers, J Biomed Mater Res1992; 26: 739-56.
    [44] Richert L, Lavalle P, Payan E, Shu ZX, Prestwich GD, Stoltz JF, Scha P, Voegel JC, Picart C. Layer by Layer buildup of polysaccharide films: physical chemistry and cellular adhesion aspects. Langmuir 2004; 20: 448-58.
    [45] Shen C, Russel WB, Auzerais FM. Materials, Interfaces and Electrochemical Phenomena Colloidal gel filtration: Experiment and Theory. AIChE Journal 1993; 40: 1876-91.
    [46] Son WK., Youk JH, Lee TS, Park WH. Preparation of Antimicrobial Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles. Macromol. Rapid Commun. 2004; 25: 1632-7.
    [47] Sondi I, Salopek-Sondi B.. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275:177–82.
    [48] Tan Q, Ji J, Barbosab MA, Fonseca Carlos, Shen J. Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant. Biomaterials 2003; 24: 4699-705.
    [49] Thierry B, Winnik FM, Merhi Y, Silver J, Tabrizian M. Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 2003; 4: 1564-71.
    [50] Thierry B, Winnik FM, Merhi Y, Tabrizian M. Nanocoatings onto arteries via layer-by-layer deposition: toward the in vivo repair of damaged blood vessels. J Am Chem Soc 2003; 125: 495-9
    [51] Uchida Y, Izume M, Ohtakara A. Chitin and Chitosan, Elsevier Applied Science, London and New York, 1988, p.373.
    [52] Wang Y, Wang X, Hu C. Layer-by-Layer Self-Assembled Ultrathin Multilayer Films of Lanthanide Polyoxometalates and Poly(allylamine Hydrochloride) and Their Photoluminescent Properties. J Colloid Interface Sci 2002; 249: 307-15.
    [53] Winterton LC, Andrade JD, Feijen J, Kim SW. Heparin interaction with protein with protein-adsorbed surfaces. J Coll Interface Sci 1986; 111: 314-42.
    [54] Wu Q, Chen ZC, Lu DS, Lin XF. Chemo-enzymatic synthesis of raffinose-branched polyelectrolytes and self-assembly application in microcapsules. Macromol Biosci 2006; 6: 78-83.
    [55] Yang MC, Lin WC. Protein adsorption and platelet adhesion of polysulfone membrane immobilized with chitosan and heparin conjugate, Polymers for Adv Tech 2003; 14: 103-13.
    [56] Ye S, Wang C, Liu X, Tong Z. Deposition temperature effect on release rate of indomethacin microcrystals from microcapsules of layer-by-layer assembled chitosan and alginate multilayer films. J Control Release 2005; 106:319-28.
    [57] Zamore AM. Process for producing an implantable apparatus comprising a biomedical device coated with crosslinked TPU. United States Patent: 6,558,732.

    無法下載圖示 全文公開日期 2013/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE