簡易檢索 / 詳目顯示

研究生: 陳瑞金
Jui-Chin CHEN
論文名稱: 金屬鹽後處理與電漿處理對棉織物以二羥甲基二羥基乙烯尿/丙烯酸改質架橋劑進行耐久皺摺、吸臭、抗菌等機能性加工之研究
The study of Metallic Salts After-Treatment and Plasma Treatment on the Multi-functional Crosslinked Cotton Fabrics with Combined Dimethyloldihydroxyethyleneurea and Acrylic Acid
指導教授: 顏明雄
MENG-SHUNG YEN
洪伯達
PO-DA HONG
口試委員: 張豐志
Feng-Chih Chang
陳幹男
Kan-Nan Chen
汪輝雄
Huei-Hsiung Wang
陳耿明
Keng-Ming CHEN
王英靖
Ing-Jing Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 109
中文關鍵詞: 耐久皺摺吸臭抗菌樹脂加工金屬鹽後處理電漿處理架橋構造
外文關鍵詞: odor absorption, after-treatment, resin finishing, crosslinking structure
相關次數: 點閱:332下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為賦予棉織物耐久皺摺、吸臭、抗菌等多機能性,本研究以DMDHEU-AA改質架橋劑為樹脂加工劑,利用金屬鹽後處理及導入電漿製程對棉織物樹脂加工進行探討。首先於樹脂加工後以三種不同金屬鹽對加工物進行後處理研究,實驗結果發現在同一架橋劑濃度下,不同金屬鹽後處理織物之乾抗皺角(DCRA)、濕抗皺角(WCRA)、強力保持率(TSR)及吸水高度(WR)等物性其大小順序依序皆為:Ag+1>Cu+2>Al+3;在維持同一樹脂加工布之TSR下,經過金屬鹽後處理之加工織物(DMDHEU-AA-Me)之DCRA、WCRA均大於未經金屬鹽後處理織物(DMDHEU-AA)。另外,在同一加工布之架橋密度(CL/AGU)下,各金屬鹽後處理DMDHEU-AA-Me織物之DCRA及TSR亦均大於DMDHEU-AA加工織物,其大小順序依序亦為:Ag+1>Cu+2>Al+3;加工織物之WCRA方面,則DMDHEU-AA-Me織物小於DMDHEU-AA加工織物。經由IR圖譜分析,可明顯看出纖維素之-OH基團與金屬鹽間具有配位鍵所形成之相互作用力,此種相互作用力有別於樹脂加工時之鍵結,因此可增進加工棉織物的皺摺回復角與抗張強力。由IR圖譜中亦顯示,各種不同金屬離子的鍵結強度大小順序依序仍為:Ag+1>Cu+2>Al+3。另外就加工織物其他機能性方面,以金屬鹽後處理之加工織物(DMDHEU-AA-Me)亦具可大幅提昇抗菌及吸臭效果,且具有良好的耐水洗性。
    為進一步改善棉織物之樹脂加工物性與機能性,本研究其次於棉織物樹脂加工製程中導入電漿處理。研究時分別以DMDHEU及DMDHEU-AA改質架橋劑為樹脂加工劑,改變加工溶液之樹脂加工劑濃度,利用pad-dry-cure及pad-dry-plasma-cure等二種加工製程對棉織物進行樹脂加工,探討射頻低溫電漿(RF low temperature plasma)處理對樹脂加工物性及架橋構造之影響。實驗數據顯示,電漿處理之導入可提高加工棉織物的架橋劑反應量。就相同的架橋劑而言,在同一氮含量下,pad-dry-plasma-cure加工布的DCRA、WCRA及TSR均高於pad-dry-cure加工織物。物性平衡方面,在同一WCRA或同一DCRA下,pad-dry-plasma-cure 加工織物之TSR較pad-dry-cure加工織物為高。此外,在相同的架橋劑及相同濃度下,發現pad-dry-plasma-cure加工織物之架橋密度(CL/AGU)及架橋長度(the length of crosslink)均高過於pad-dry-cure加工織物;同時發現在同一架橋密度(CL/AGU)下,pad-dry-plasma-cure 加工織物之DCRA、WCRA及TSR亦均高於pad-dry-cure加工織物。綜合上述,電漿製程不僅可以促進纖維素分子與架橋劑的反應,相對的亦可提高耐久防皺加工棉布之乾、濕抗皺角及經紗強力保持率等物性。
    本研究最後利用C. I. Direct Red 81及C. I. Direct Red 80二支直接染料對加工織物進行染色,探討電漿處理對加工布中藥劑分佈及其對抗菌性之影響。經過比較pad-dry-cure及pad-dry-plasma-cure二種加工棉織物之染色動力及藥劑分佈之染色實驗,結果發現pad-dry-plasma-cure加工織物於染色最初期間之染料吸附值、平衡吸附值、速率常數及結構擴散阻抗常數等數值均低於pad-dry-cure加工織物;加工織物之染色活化能(activation energy)大小順序則為pad-dry-plasma-cure>pad-dry-cure。另外,經過電漿處理與金屬後處理之加工布(pad-dry-plasma-cure-Me)比經過pad-dry-cure加工及金屬後處理之加工布(pad-dry-cure-Me)具有較高的抗菌性,此顯示出pad-dry-plasma-cure加工織物之架橋劑表面分佈較高於pad-dry-cure加工織物。


    In this study, we used three metallic salts to after-treat the DMDHEU-AA crosslinked cotton fabrics, and find that the DCRA, WCRA, TSR and MR values of the crosslinked and after-treated fabrics are in the order of Ag+ > Cu+2 > Al+3 at a same DMDHEU-AA concentration in padding bath. The DCRA and WCRA of the crosslinked and after-treated fabrics are higher than those of the DMDHEU-AA crosslinked fabrics, and those for crosslinked and after-treated fabrics are in the order of Ag+ > Cu+2 > Al+3 at a given values of TSR. For a given CL/AGU, DCRA and TSR values for the crosslinked and after-treated fabrics are higher than those for the DMDHEU-AA crosslinked fabrics, and those for crosslinked and after-treated fabrics are in the order of Ag+ > Cu+2 > Al+3; but WCRA values of the various treated fabrics show that the values for the crosslinked and after-treated fabrics are lower than those for the DMDHEU-AA crosslinked fabrics, and those for crosslinked and after-treated fabrics are in the order of Ag+ > Cu+2 > Al+3. IR spectra clearly show the interaction between the -OH group of the cellulose and the metallic ions, which are different from each other on the bonding state for the various metallic ions, and the strength of the bonding for the various metallic ions are in the order of Ag+ > Cu+2 > Al+3. All crosslinked and after-treated fabric samples have good values of odor absorption, anti-bacteria, and washing fastness.
    In addition, the low temperature plasma treatment was applied for finishing the cotton fabrics, and the effect of plasma treatment on the durable press finishing of cotton fabric was studied. Both DMDHEU alone and DMDHEU-AA crosslinking agents were used to finish cotton fabrics with various processes by changing agent concentrations in the bath. Experimental data indicate that the plasma treatment within the pad-dry-plasma-cure process can induce the cotton fabrics surface binding of more crosslinking agents than the samples without plasma treatment. For the same crosslinking agents, we find that the DCRA, WCRA and TSR values of the pad-dry-plasma-cure fabrics are higher than the pad-dry-cure fabrics at a given value of nitrogen content. In addition, the values of TSR for the pad-dry-plasma-cure process are also higher than those for the pad-dry-cure process at a given DCRA or WCRA. For all the four treated processes, the N content, DCRA and WCRA values of the DMDHEU-AA-treated fabrics are all higher than those of the DMDHEU-treated fabrics at a same resin concentration in the bath, but the TSR values are inverse in all cases. For the same crosslinking agents, we also find that the numbers of CL/AGU and CL length of pad-dry-plasma-cure fabrics are higher than the pad-dry-cure fabrics at a same DMDHEU concentration in the bath. And at a same CL/AGU value, the DCRA, WCRA and TSR values of the pad-dry-plasma-cure fabrics are higher than those for the pad-dry-cure fabrics. Those results show that the plasma treatment can not only introduce the crosslinking reaction between the resins and cellulose molecules, but also can clearly improve physical properties such as tensile strength and wrinkle recovery angle.
    In this study, we also used the combined DMDHEU and acrylic acid crosslinking agent to treat cotton fabric under a pad-dry-plasma-cure process to study the pore property, anti-bacterial property, and agent distribution. For both direct dyes used, we find that the values of dye absorptions, equilibrium absorption and the rate constants, structural diffusion resistance constants for the pad-dry-plasma-cure treated fabrics are lower than those for pad-dry-cure treated fabrics at the initial dyeing time duration, but the activation energies for the two finished fabrics (dyed with the same direct dye) are ranked pad-dry-plasma-cure> pad-dry-cure. The carboxylic acid group of acrylic acid could react with copper sulfate to bind the copper ion on the treated fabric surface, which could improve the anti-bacterial ability significantly. The surface distribution of crosslinking agent on the finished fabrics is somewhat higher for pad-dry-plasma-cure process than for pad-dry-cure process.

    第一章、前言 1-1 序言 1-2 過去相關研究 1-2-1 棉織物防皺加工之相關研究 1-2-2 織物之吸臭加工 1-2-3 織物抗菌防臭加工 1-2-4 低溫電漿在纖維高分子加工之相關運用 1-3 本研究之目的 第二章、樹脂加工理論及電漿化學原理 2-1 棉織物樹脂加工相關理論 2-1-1 棉纖維素與N-methylol樹脂之架橋反應理論 2-1-2 棉織物之乾濕防皺理論 2-1-3 架橋結合對加工布強力損失之原因 2-2電漿化學原理 2-2-1 電漿 2-2-2 電漿的生成 2-2-3 低溫電漿化學 第三章、不同金屬鹽後處理對DMDHEU-AA加工織物之性質及架橋構造之影響 3-1 序言 3-2 實驗方法 3-2-1 實驗材料 3-2-2 改質架橋劑DMDHEU-AA的製備 3-2-3 織物處理加工 3-2-4 加工布物性之測試 3-2-5 架橋構造分析與計算 3-2-6 抗菌實驗 3-2-7 NH3氣吸收率 3-2-8 紅外線吸收光譜測定 3-3 結果與討論 3-3-1 金屬鹽後處理對加工布物性之影響 3-3-2 加工織物架橋結構與物性的關係 3-3-3 金屬離子與纖維素分子間之交互作用 3-3-4 加工織物抗菌性及吸臭性 3-4 結論 第四章、電漿製程對DMDHEU-AA樹脂加工棉織物架橋構造及物性影響之研究 4-1 序言 4-2 實驗方法 4-2-1 實驗材料 4-2-2 改質架橋劑DMDHEU-AA的製備 4-2-3 織物處理加工 4-2-4 加工布物化性之測試 4-2-5 架橋構造分析與計算 4-3 結果與討論 4-3-1 各種加工織物之物性關係 4-3-2 各種加工織物之架橋構造與物性之關係 4-4 結論 第五章、電漿製程對DMDHEU-AA樹脂加工棉織物孔洞構造及抗菌性之影響 5-1 序言 5-2 實驗方法 5-2-1 實驗材料 5-2-2 改質架橋劑DMDHEU-AA的製備 5-2-3 織物處理加工 5-2-4 加工織物之染色實驗 5-2-5 加工藥劑分佈之實驗 5-2-6 加工織物金屬鹽後處理 5-2-7 Cu金屬含量檢測 5-2-8 抗菌性實驗 5-3 結果與討論 5-3-1 電漿製程對加工織物孔洞結構之影響 5-3-2 電漿製程對加工織物抗菌性之影響 5-3-3 電漿製程對加工織物藥劑分佈之影響 5-4 結論 總結 參考文獻 作者簡歷 論文及著述 授權書

    參考文獻
    1. ASIATIC FIBER CORPORATION, e-mail:afct9693@ms6.hinet.net
    2. J. C. Chen, and C. C. Chen, Textile Res. J., Vol. 71, 514(2001).
    3. J. C. Chen, Textile Res. J., Vol. 71, 609(2001).
    4. J. C. Chen, W. H. Yao, C. H. Chen and C. C Chen., J. Polym. Sci., Vol. 82, 1580(2001).
    5. J. C. Chen, W. H. Yao, C. H. Chen and C. C Chen., Textile Res. J., Vol. 72, 50(2002).
    6. L. Segal, J. D. Timpa, Textile Res. J., Vol. 43, 468(1973).
    7. S. K. Jain, Am. Dyestuff Reptr., Vol. 64, 30(1975).
    8. J. R. Frick, JR., Textile Res. J., Vol. 56, 124(1986).
    9. 顏明雄,纖維學會誌,Vol. 43,305(1987).
    10. P. C. Mehta and J. R. Mody, Textile Res. J., Vol. 30, 532(1960).
    11. 顏明雄,纖維學會誌,Vol. 37,18(1981).
    12. W. A. Reeves, C.Hamalainen, H. H. St. Mard, and A. S. Cooper, Textile Res. J., Vol. 37, 76(1967).
    13. N. f. Getchell, Textile Res. J., Vol. 34, 247(1964).
    14. N. R. S. Hollies, Textile Res. J., Vol. 37, 277(1967).
    15. N. R. Bertoniere, S. P. Rowland, Textile Res. J., Vol. 46, 311(1976).
    16. N. R. Bertoniere, M. K. Block, S. P. Rowland, Textile Res. J., Vol. 48, 664(1978).
    17. N. R. Bertoniere, S. P. Rowland, Textile Res. J., Vol. 51, 9(1981).
    18. S. P. Pandey, P. Nair, Textile Res. J., Vol. 51, 332(1981).
    19. E. Honold, J. N. Grani, Textile Res. J., Vol. 41 52(1971).
    20. S. P. Rowland, S. M. Stark, V. O. Ciron, J. I. S. Mason, Textile Res. J., Vol. 41, 57(1971).
    21. N. R. Bertoniere, L. F. Martin, F. A. Blouin, S. P. Rowland, Textile Res. J., Vol. 42, 734(1972).
    22. 白井汪芳,油化學,39,825(1990.
    23. 全球功能性化學纖維之開發與展望,台灣人纖,第28期,92年1月。
    24. D. L. Cho, C. N. Choi, H. J. Kim, A. K. Kim, J. H. Go, J. Polym. Sci., Vol. 82, 839(2001).
    25. Environmental Testers Gas Dectors GV-100S.
    26. T. Yamamoto, S. Uchida, Y. Kurihara, and I. Nakayama, Jpn. Pat. 94-2046819(1994).
    27. K. Sugiura, H. Inoue, S. Maekawa, H. Kato, and T. Omauea, Jpn. Pat. 91-57823(1991).
    28. 石田宗雄,抗菌鍵盤,中華民國專利公報第318237號(1997.10.21)。
    29. 岩元俊朗,具有抗菌性之FR901379物質及其相關聯物質及其製法,中華民國專利公報第172724號(1991.11.11)。
    30. 林渡 義裕,抗菌性纖維、樹脂及其製造方法,中華民國專利公報第187166號(1992.7.11)。
    31. 高橋雄一,抗菌軟化劑組成物,中華民國專利公報第287211號(1996.10.1)。
    32. 藤原 護朗,抗菌性纖維及其製法,以及使用抗菌性纖維之纖維製材料及抗菌性水處理用元件,中華民國專利公報第254974號(1995.8.21)。
    33. 西川公一,含有天然石之塑膠或橡膠之抗菌性發泡體,中華民國專利公報第342402號(1998.10.11)。
    34. 山本達雄,抗脫色性及分散性優之除臭化裝品組合物,中華民國專利公報第333455號(1998.6.11)。
    35. K. Akihiko, I. Tomiki and Takeshiendo, J. Polym. Sci. Part A Polym.Chem.,31, 3031(1993).
    36. J. S. Park, J. H. Kim, Y. C. Nho, O. h. Kwon, J. Appl. Polym. Sci. Vol. 69, 2213(1998).
    37. T. J. Franklin and G. A. Snow, in Biochemisty of Antimicrobial Action, Chapman and Hall, London, P. 58(1981).
    38. 王建章,甲殼素纖維及甲殼素醫用纖維之製造方法,中華民國專利公報第339366號(1998.9.1)。
    39. S. Younsook, Y. Dong, M. Kyunghye, J. Polym. Sci. Vol.74, 12(1999).
    40. W. B. Hugo and A. R. Longworth, J. Pharm. Pharmacol., Vol.18, 569(1966).
    41. M. G. McCord, Y. J. Hwang, Y. Qiu, L. K. Hughes, M. A. Bourham, Journal of Applied Polym. Sci., Vol. 88, 2038(2003).
    42. T. L. Ward, R. R. Benerito, Textile Research Journal, Vol. 52, 256(1982).
    43. R. M. A. Malek, I. Holme, Iranian Polymer Journal, Vol. 12, 271(2003).
    44. K. K. Wong, X. M. Tao, C. W. M. Yuen, and K. W. Yeung, Textile Research Journal, Vol. 69, 864(2003).
    45. J. Zhang, R. France, A. Radomyselskiy, S. Datta, J. Zhao and O. W. Van, Journal of Applied Polymer Science, Vol. 88, 1473(2003).
    46. N. V. Bhat and Y. N. Benjamin, Textile Research Journal, Vol. 69, 38(1999).
    47. Y. J. Kim, I. K. Kang, M. W. Huh, S. C. Yoon, Biomaterials, Vol. 21, 121(2000).
    48. Y. C. Tyan, J. D. Liao, Y. T. Wu, R. Klauser, Journal of Biomaterials Applications, Vol. 17, 153(2002).
    49. Y. Tamada and Y. Ikada, Polymer, Vol. 34, 2208(1993).
    50. F. Poncin-Epaillard, B. Chavet and J. Brosse, European Polymer Journal, Vol. 26, 333(1990).
    51. Zubaidi and H. Toshihiro, Journal of Applied Polymer Science, Vol.61, 1579(1996).
    52. C. Zaisheng and Q. Yiping, Textile Research Journal, Vol. 73, 670(2003).
    53. J. A. G. Pierce, R. M. Reinhardt, R. M. H. Kullman, Textile Research Journal, Vol. 45, 420(1976).
    54. 顏明雄,波宏明,纖維學會誌,Vol. 31, 420(1975)。
    55. 增田俊朗,鹽伬和男,新版纖維加工技術,P.24,地人書館,昭和58年。
    56. A. R. Wilson, M. P. Rita, H. C. Leon, Textile Research Journal, Vol. 30, 179(1960).
    57. J. L. Gardon, R. Steele, Textile Research Journal, Vol. 31, 160(1961).
    58. F. Bueche, J. Polymer Sci. Vol. 24, 189(1957).
    59. F. Bueche, J. Polymer Sci. Vol. 33, 259(1958).
    60. V. B. Herman, Plasma Science and Technology. Cornell University Press Ltd., Chap.2, p. 19(1982).
    61. V. B. Herman, Fundamentals of Plasma Chemistry and Technology. Technomic Publishing AG, Chap.Ⅵ, p. 55(1988).
    62. V. B. Herman, Plasma Science and Technology. Cornell University Press Ltd., Chap.2, p. 24(1982).
    63. A. Grill, Cold Plasma in Materials Fabrication, IEEE Press, (1994).
    64. B. F. I, Plasmas: Laboratory and Cosmic, Van Nostrand, (1966).
    65. D. B. Brewis, Surface Analysis and Pretreatment of Plastics and Metals, Macmillan, New York, Chap.9, P. 199(1982).
    66. K. Gargan, E. Kronfli, K. V. Lovell, Radiate Phys Chem Vol. 36, 757(1990).
    67. P. A. Dworjanyn, J. L. Garnett, M. A. Kfan, X. Maojun, M. P. Qian and Y. C. Nho, Radiate Phys Chem Vol. 42, 731(1993).
    68. J. S. Park, J. H. Kim, Y. C. Nho, O. h. Kwon, J. Appl. Polym. Sci. Vol. 69, 2213(1998).
    69. J. C. Chen, and C. C. Chen, Textile Res. J., Vol. 64, 142(1994).
    70. H. H. Hsiung and C. C. Chen, Textile Res. J., Vol. 65, 607(1995).
    71. H. L. Chang and C. C. Chen, Textile Res. J., Vol. 66, 803(1996).
    72. C. V. Steven, B. F. Smith, Textile Res. J., Vol. 40, 749(1970).
    73. U. Meyer,K. Muller, H. Zollinger, Textile Res. J., Vol. 46, 756(1976).
    74. J. K. Frick, B. A. Kottes Andrew, J. D. Reid, Textile Res. J., Vol. 29, 314(1959).
    75. J. K. Frick, B. A. Kottes Andrew, J. D. Reid, Textile Res. J., Vol. 30, 495(1960).
    76. O. Kazuto, Textile Process Technol, Vol. 38, 239(2003).
    77. R. T. O’Connor, E. F. Du Pre, E. R. McCall, Anal Chem Vol. 29, 998(1957).
    78. R. J. Harper, Jr, J. S. Bruno, W. A. Reeves, Textile Res. J., Vol. 38, 292(1968).
    79. R. M. Silverstein, G. C. Bassler, T. C. Infrared Spectrometric Identification of Organic Compounds, 3rd ed., Wiley, New York, P. 136(1974).
    80. R. B. Stone, and J. R. Barrett, Textile Bull Vol. 88, 65(1962).
    81. H. Z. Jung, T. L. Ward and R. R. Benerito, Textile Res. J. Vol. 47, 217(1977).
    82. Zubaidi and T. Hirotsu, J. Appl. Polym. Sci. Vol. 61, 1579(1996).
    83. N. R. Bertoniere, W. D. King and S. P. Rowland, Textile Res. J. Vol. 51, 242(1981).
    84. H. Tonami, Y. Nakamura and S. Matsukawa, Sen-i Gakkashi Vol. 36, 50(1980).
    85. C. C. Chen, Textile Res. J. Vol. 59, 464(1989).
    86. H. L. Chang and C. C. Chen, Textile Res. J. Vol. 66, 803(1996).
    87. J. C. Chen, W. H. Yao, C. H. Chen and C. C. Chen, Textile Res. J. Vol. 71, 1063(2001).
    88. J. G. Frick, B. A. Kottes Andrew and J. D. Reid, Textile Res. J. Vol. 29, 314(1959).
    89. J. G. Frick, B. A. Kottes Andrew and J. D. Reid, Textile Res. J. Vol. 30, 495(1960).
    90. N. R. Bertoniere, F. A. Blouin, L. F. Martin and S. P. Rowland, Textile Res. J. Vol. 44, 140(1974).
    91. M. Tahara, Y. Nakashima, K. Miyazaki and T. Takagishi, Seni Kikai Gakkai Shi Vol. 49, 56(1996).
    92. J. Zhang, P. France, A. Radomyselskiy, S. Datta, J. Zhao and O. William, J. App. Polym. Sci. Vol. 88, 1473(2003).
    93. J. R. Chen, J. Appl. Polym. Sci., Vol. 62, 1325(1996).
    94. T. Goto, T. Wakita, T. Nakanishi and Y. Ohta, Seni Kikai Gakkai Shi Vol. 48, 133(1992).
    95. N. R. Bertoniere and W. D. King, Textile Res. J. Vol. 59, 608(1989).
    96. N. R. Bertoniere and W. D. King, Textile Res. J. Vol. 62, 349(1992).
    97. N. R. Bertoniere, L. F. Martin, F. A. Blouin and S. P. Rowland, Textile Res. J. Vol. 42, 734(1972).
    98. F. A. Blouin, L. F. Martin and S. P. Rowland, Textile Res. J. Vol. 40, 959(1970).
    99. J. Chrastil, Textile Res. J. 60, 413(1990).
    100. J. Chrastil, R. M. Reinhardt and E. J. Blanchard, Textile Res. J. Vol. 60, 441(1990).
    101. H. H. Hsiung and C. C. Chen, Textile Res. J. Vol. 67, 77(1997).
    102. J. J. De Boer, Textile Res. J. Vol. 50, 648(1980).
    103. J. C. Chen, W. H. Yao, C. H. Chen and C. C. Chen, Textile Res. J. Vol. 72, 55(2002).
    104. T. Y. Liang, J. Y. Hwang, D. S. Ju and C. C. Chen, Textile Res. J. Vol. 62, 547(1992).
    105. W. Y. Chen, M. Y. Liaw, G. W. Lan and C. C. Chen, Textile Res. J. Vol. 63, 535(1993).
    106. R. M. A. Malek and I. Holme, Iranian Polymer Journal Vol. 12, 271(2003).
    107. S. P. Roland, N. R. Bertoniere and W. D. King, Textile Res. J. Vol. 54, 318(1984).

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE