簡易檢索 / 詳目顯示

研究生: 林恩
En - Lin
論文名稱: 具暫態響應改善之CMOS直流直流轉換器
Design of Transient Response Enhancement Circuit for CMOS DC-DC Converters
指導教授: 羅有綱
Yu-kang Lo
劉邦榮
Pang-jung Liu
口試委員: 簡鴻鈞
Hung-chun Chien
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 98
語文別: 中文
論文頁數: 62
中文關鍵詞: 直流-直流轉換器降壓式轉換器高速轉導放大器CMOS
外文關鍵詞: DC-DC converter, Buck, high speed, OTA, CMOS
相關次數: 點閱:245下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在改善CMOS直流-直流轉換器之暫態響應。有別於傳統降壓式直流-直流轉換器系統中所使用的誤差放大器(Error Amplifier),本論文採用轉導放大器(Operational Transconductance Amplifier, OTA)來實現,優點為補償電路設計容易,因為OTA的主極點在輸出端。除此之外本論文將提出加速轉導放大器暫態響應的機制,因為改善轉導放大器的暫態響應將同時改善直流-直流轉換器的暫態響應。本論文將透過實現具頻率補償之高速緩衝器的加速機制來驗證加速轉導放大器的可行性,再將具有加速機制之轉導放大器應用於降壓式直流-直流轉換器,相較於傳統的轉導放大器將有更快速的暫態響應。
本篇論文以台積電0.35 μm 2P4M 3.3/5V CMOS製程實現,規格如下:輸入電壓為5 V,輸出電壓為3.3 V,工作頻率為1 MHz,輸出負載電流範圍為10 mA至500 mA。根據模擬結果,使用本論文所提出的加速轉導放大器將使降壓式直流-直流轉換器的回復時間由18 μs改善至6 μs。


The concept of this thesis is to improve the transition response of CMOS DC-DC converters. It adopts an operational transconductance amplifier (OTA) as an error amplifier. Owing to the dominant pole at the output, it can be compensated easily. In addition, this these proposes a mechanism for improving OTA transition response. By improving transition response of OTA, the transition response of the DC-DC converter is enhanced, too. This thesis will achieve a high speed buffer with frequency compensation to verify the feasibility of accelerating OTA. Compared to the traditional OTA, the DC-DC converter has the faster transition response when the accelerated OTA is used.
The chip is implemented by TSMC 0.35 μm 2P4M CMOS process. The specifications of the DC-DC converter are: the input voltage is 5 V, output voltage is 3.3 V, and the operating frequency is 1 MHz. The Output current range is 10 mA to 500 mA. According to the results of simulation, the recovery time of the DC-DC converter with the proposed OTA is improved from 18 μs to 6 μs.

摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 研究動機 1.3 論文概述 第二章 直流轉直流穩壓器概論 2.1 穩壓器分類 2.1.1 線性穩壓器 2.1.2 交換式穩壓器 2.2 降壓型交換式穩壓器 2.2.1 系統分析 2.2.2 工作原理 2.2.3 邊界條件與零件選用 2.3 交換式穩壓器規格介紹 2.3.1 轉換效能 2.3.2 線性調節率 2.3.3 負載調節率 2.3.4 暫態響應 第三章 具頻率補償之高速緩衝器 3.1 高速緩衝器 3.2 電路設計 3.2.1 運算放大器 3.2.2 加速電路 3.2.3 頻率補償電路 第四章 具暫態響應改善之直流-直流轉換器 4.1 系統架構 4.2 各子電路設計 4.2.1 鋸齒波產生器 4.2.2 比較器 4.2.3 功率電晶體驅動器 4.2.4 傳統及加速轉導放大器 4.2.5 LC低通濾波器 第五章 晶片佈局及模擬結果 5.1 晶片佈局 5.1.1 具頻率補償之高速緩衝器 5.1.2 具暫態響應改善之直流-直流轉換器 5.2 電路模擬結果與分析 5.2.1 具頻率補償之高速緩衝器 5.2.2 具暫態響應改善之直流-直流轉換器 5.3 規格比較列表 5.3.1 具頻率補償之高速緩衝器 5.3.2 具暫態響應改善之直流-直流轉換器 5.4 量測考量 5.4.1 具頻率補償之高速緩衝器 5.4.2 具暫態響應改善之直流-直流轉換器 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

[1] J. Xiao, A. V. Peterchev, J. Zhang, and S. R. Sanders, “A 4-μA quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2342–2348, Dec. 2004.
[2] H. Deng, X. Duan, N. Sun, Y. Ma, A. Q. Huang, and D. Chen, “Monolithically Integrated Boost Converter Based on 0.5-μm CMOS Process,” IEEE J. Solid-State Circuits, vol. 20, no. 3, pp. 628–638, May 2005.
[3] P. Li, L. Xue, P. Hazucha, T. Karnik, and R. Bashirullah, “A Delay-Locked Loop Synchronization Scheme for High-Frequency Multiphase Hysteretic DC-DC Converters.,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3131–3145, Nov. 2009.
[4] 梁適安,交換式電源供應器之理論與實務設計,二版,全華科技圖書,2008,第12-43頁。
[5] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Norwell, MA: Kluwer Academic, 2001.
[6] C. W. Lu, and K. J. Hsu, “A High-Speed Low-Power Rail-to-Rail Column Driver for AMLCD Application,” IEEE J. Solid-State Circuits, vol. 39, pp. 1313-1320, Aug. 2004.
[7] P. E. Allen and D. R. Hoolberg, CMOS Analog Circuit Design, New York: Oxford. 2002.
[8] P. C. Yu, and J. C. Wu, “A Class-B Output Buffer for Flat-Panel-Display Column Driver”, IEEE J. Solid-State Circuits, vol. 34, No.1, pp. 116-119, Jan. 1999.
[9] C. W. Lu, “High-Speed Driving Scheme and Compact High-Speed Low-Power Rail-to-Rail Class-B Buffer Amplifier for LCD Applications,” IEEE J. Solid-State Circuits, vol. 39, pp. 1938-1947, November, 2004.
[10] I. Fujimori-Chen, R. Muller, W. Fazio, A. Farrell, and D. Whitney, “A 10b 75ns CMOS Scanning-Display-Driver System for QVGA LCDs” IEEE International Solid-State Circuits Conference, pp. 171-173, Feb. 2008.
[11] Tetsuro Itakura, Hironori Minamizaki, Tetsuya Saito, and Tadashi Kuroda, “A 402-Output TFT-LCD Driver IC With Power Control Based on the Number of the Colors Selected,” IEEE J. Solid-State Circuits, vol. 38, pp. 503-510, Mar. 2003.
[12] Cheung Fai Lee and Philip K. T. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter With On-Chip Current-Sensing Technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, Jan. 2004.
[13] Yuan Yen Mai and Philip K. T. Mok, “A Constant Frequency Output-Ripple-Voltage-Based Buck Converter Without Using Large ESR Capacitor” IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 55, no. 8, August 2008.
[14] K. H. Chen, C. J. Chang, and T. H. Liu, “Bidirectional Current-Mode Capacitor Multipliers for On-Chip Compensation,” IEEE Trans. Power Electron, vol. 23, no. 1, pp.180-188, Jan. 2008.
[15] Xiaohua Fan, Chinmaya Mishra, and Edgar Snchez, ”Single Miller Capacitor Frequency Compensation Technique for Low-Power Multistage Amplifiers,” IEEE J. Solid-State Circuits, vol. 40, no. 3, Mar. 2005.

無法下載圖示 全文公開日期 2016/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE