簡易檢索 / 詳目顯示

研究生: 梁如澤
Ru-ze Liang
論文名稱: 以多層奈米碳管披覆之PET透明導電薄膜製備及性質研究
Preparation and properties of the transparent conductive PET films coated with modified multiwall carbon nanotubes
指導教授: 許應舉
Ying-gev Hsu
口試委員: 林河木
none
陳耿明
none
陳建光
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 61
中文關鍵詞: 奈米碳管表面改質
外文關鍵詞: carbon nanotube, surface modification
相關次數: 點閱:381下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

將多層奈米碳管(multiwall carbon nanotube, MWNT)表面化學改質,以提升其在水中之分散性;將分散均勻之改質奈米碳管懸浮液,均勻噴塗於透明Poly(ethylene terephthalate)(PET)表面,以達到製備具有高透明性、高導電性及電磁遮蔽效應薄膜的目的。MWNT以混酸(硫酸/硝酸(v/v=3:1))進行氧化反應,讓其表面產生羧酸基之改質奈米碳管—MWNT-COOH ,再利用疊氮酸 (hydrazoic acid) 將其羧酸基胺化成MWNT-NH2後,使之與4-乙氧基苯甲醯氯(4-ethoxybenzoyl chloride) 反應成表面具有-NHC(=O)C6H4OC2H5基團之改質奈米碳管—MWNT-NHC(=O)C6H6OC2H5(以MWNT-Amide表示)。另一面,將MWNT-COOH依次與先與亞硫醯氯(SOCl2)和聚乙二醇單甲醚( poly(ethylene glycol) monomethyl ether , mPEG)反應,得到MWNT-mPEG。所有改質奈米碳管均以FT-IR、Raman來分析鑑定其化學結構。將MWNT-COOH、MWNT-NH2、MWNT-Amide及MWNT-mPEG等改質奈米碳管在水中之懸浮液,於超音波震盪後,以顯微鏡觀察其分散現象,並以DLS來分析其粒徑分布;以定速噴霧的方式將懸浮液均勻分散於透明PET薄膜上,經80℃熱壓處理後,則前述各種改質之奈米碳管緊緊黏附及固定於PET表面而形成透明PET導電薄膜─PET/MWNT薄膜;以FESEM、AFM觀察PET/MWNT薄膜之表面形態及改質奈米碳管分佈情形,並用四點探針和UV-Vis光譜儀分別測定薄膜之表面電阻及透光性;其電磁屏蔽效果則以網路訊號分析儀測試之。


The multiwall carbon nanotube (MWNT) was well dispersed in water via surface chemical modification of the nanotube and was spreaded evenly onto the poly(ethylene terephthalate)(PET) film to achieve a highly transparent, conductive, and electromagnetic shielding film. The MWNT was treated with a mixed H2SO4 and HNO3 solution (3:1 in volume) to afford MWNT-COOH. The MWNT-COOH was then reacted with hydrazoic acid to afford MWNT-NH2. The MWNT-NH2 was immediately reacted with 4-ethoxybenzoyl chloride to yield the MWNT-NHC(=O)-C6H6OC2H5 (called MWNT-Amide). On the other hand, the MWNT-COOH was reacted subsequently with SOCl2 and poly(ethylene glycol) monomethyl ether (mPEG) to yield the MWNT-mPEG. The dispersive property and particle size distribution of the modified MWNT in water were investigated by photooptical microscopes and dynamic light scattering meter. These highly dispersive modified nanotube solutions were sprayed at constant speed onto the PET films and were fixed on the PET surface via heat compression at 80℃. The surface morphology of the transparent conductive PET film (called PET/MWNT film) was investigated by the FESEM and the AFM. The conductivity and the optical transmittance of the film were recorded by four-point probe and UV-Vis spectroscopy, respectively. The EMI shielding effectiveness of the PET/MWNT film was evaluated by internet signal analyzer.

中文摘要--------------------------------------------------I 英文摘要-------------------------------------------------II 誌謝-----------------------------------------------------III 附圖索引-------------------------------------------------------------------------- V 附表索引----------------------------------------------------VIII 1. 前言-----------------------------------------------------------------------------1 2. 文獻回顧-------------------------------------------5 2-1. 奈米碳管-----------------------------------------------------------------5 2-2-1. 奈米碳管改質----------------------------------------------5 2-2-2. 以奈米碳管製備導電材料之研究---------------------------6 2-2-3. 奈米碳管薄膜之研究----------------------------------------7 3. 基本原理--------------------------------------------9 3-1. 奈米碳管表面改質---------------------------------------------------9 3-1-1. 奈米碳管酸化機制---------------------------------------------9 3-1-2. 奈米碳管胺化機制--------------------------------------------10 3-1-3. 奈米碳管醯胺化機制-----------------------------------------11 3-1-4. 奈米碳管酯化機制--------------------------------------------11 4. 實驗部份--------------------------------------------------------------------12 4-1. 實驗藥品---------------------------------------------------------------12 4-2. 實驗設計與流程------------------------------------------------------13 4-3. 儀器與設備------------------------------------------------------------14 4-4. 實驗方法---------------------------------------------------------------16 4-4-1. 奈米碳管改質----------------------------------------------------16 4-4-1-1. MWNT-COOH之製備-----------------------------------16 4-4-1-2. MWNT-NH2之製備----------------------------------------16 4-4-1-3. 4-乙氧基苯甲酸醯氯化------------------------------------17 4-4-1-4. MWNT-Amide之製備------------------------------------17 4-4-1-5. MWNT-COCl之製備--------------------------------------17 4-4-1-5. MWNT-mPEG之製備-------------------------------------18 4-4-2. MWNT懸浮液分散性觀察-------------------------------------18 4-4-3. 加入界面活性劑之MWNT懸浮液分散性觀察------------18 4-4-4. 透明導電性PET薄膜(PET/MWNT)之製備-----------------19 4-5. 實驗樣品測試方法與條---------------------------------------------20 5. 結果與討論-----------------------------------------------------------------21 5-1. 奈米碳管表面改質---------------------------------------------------21 5-1-1. 改質奈米碳管之紅外線光譜分析--------------------------23 5-1-2. 改質奈米碳管表面之拉曼光譜分析-----------------------25 5-1-3. 奈米碳管表面改質之型態觀察與EDX分析-------------27 5-1-4. 奈米碳管溶劑分散性分析-----------------------------------29 5-2. 改質奈米碳管在含有界面活性劑水溶液中之分散性-------32 5-3. 水溶液中界面活性劑濃度與MWNT-COOH分散性的關係----------------------------------------------------------------------34 5-4. MWNT-mPEG在水中之分散效果-----------------------------36 5-5. PET/MWNT-mPEG導電薄膜製備與表面型態觀察--------40 5-5-1改質型奈米碳管/PET表面形態------------------------------40 5-5-2. 以AFM觀察PET/MWNT-mPEG薄膜表面形態--------42 5-5-3 以FESEM觀察PET/MWNT-mPEG薄膜表面形態------43 5-6. PET/MWNT導電薄膜表面電性質-------------------------------45 5-6-1. 不同MWNT官能基之PET/MWNT薄膜導電測定-----45 5-6-2. 界面活性劑對薄膜導電性質的影響-----------------------47 5-6-3. MWNT-mPEG表面密度對PET/MWNT-mPEG薄膜導電性的影響----------------------------------------------------------49 5-7. PET/MWNT導電薄膜電磁屏蔽----------------------------------51 5-8. PET/MWNT導電薄膜之透光度--------------------------------53 5-8-1. PET經熱壓之透光度變化------------------------------------53 5-8-2. 不同改質MWNT官能基之PET/MWNT薄膜透光度----------------------------------------------------------------------55 5-8-3. PET/MWNT-mPEG導電薄膜表面不同MWNT-mPEG密度之透光度----------------------------------------------------56 6. 結論--------------------------------------------------------------------------57 7. 參考文獻--------------------------------------------------------------------58

1. S. Iijima, Nature, 1991, 354, 56
2. H. Dai, E. W. Wong, C. M. Lieber, Science, 1996, 272, 523
3. E. S. Snow, J. P. Novak, M. D. Lay, E. H. Houser, F. K. Perkins, P. M. Campbell, J. Vac. Sci. Technol. B, 2004, 22, 1990
4. M. D. Lay, J. P. Novak, E. S. Snow, Nano. Lett., 2004, 4, 603.
5. M. Shirashi, T. Takenobu, T. Iwai, Y. Iwasa, H. Kataura, M. Ata, Chem. Phys. Lett., 2004, 394, 110.
6. M. A. Meitl, Y. X. Zhou, A. Gaur, S. K. Jeon, M. L. Usrey, M. S. Strano, J. A. Rogers, Nano Lett., 2004, 4, 1643
7. Y. Zhou, A. Gaur, S. H. Hur, C. Kocabas, M. A. Meitl, M. Shim, J. A. Rogers, Nano Lett., 2004, 4, 2031
8. Z. Li, P. Dharap, S. Nagarajaiah, E.V. Barrera, J.D. Kim, Adv. Mat., 2004, 16, 640
9. J. Abraham, B. Philip, A. Witchurch, V. Varadan, C. Reddy, Smart Mater. Struct., 2004, 1045, 13
10. Z. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A.G. Rinzler, Science, 2004, 305, 1273
11. V. Bocharova, A. Kiriy, U. Oertel, M. Stamm, F. Stoffelbach, R. Jerome, C. Detrembleur, J. Phys. Chem. B, 2006, 110, 14640
12. X. Yu, R. Rajamani, K.A. Stelson, T. Cui, Surf. Coat. Tech., 2008, 202, 2002
13. S. C. Tsang, Y. K. Chen, P. J. F. Harris, Nature, 1994, 372, 159
14. S. C. Tsang, P. J. F. Harris, M. L. H. Green, Nature, 1993, 362, 520
15. P. M. Ajayan, T. W. Ebbesen, T. E. Lchihashi, Nature, 1993, 362, 522
16. B. Z. Tang, H. Y. Xu, Macromolecules, 1999, 32, 2569
17. S. A. Curran, P. M. Ajayan, W. J. Blau, Adv. Mater., 1998, 10, 1091
18. J. N. Coleman, A. B. Dalton, S. Curran, Adv. Mater., 2000, 12, 213
19. E. T. Mickelson, C. B. Huffman, J. L. Margrae, Chem. Phys. Lett., 1998, 296, 188
20. E. T. Mickelson, I. W. Chiang, J. L. Margrae, J. Phys. Chem. B, 1999, 103, 4318
21. P. J. Boul, J. Liu, R. E. Smally, Chem. Phys. Lett., 1999, 310, 367
22. J. L. Bahr, J. Yang, D. V. Kosynkin, J. Am. Chem. Soc., 2001, 123, 6536
23. N. Kouklin, Appl. Phys. Lett., 2004, 85, 4463.
24. T. Sreekumar, Chem. Mater., 2003, 15, 175
25. Y. Kim, Jpn. J. Appl. Phys., 2003, 42, 7629
26. Y. Wang, J. Deng, K. Wang, Q. Zhang, Q. Fu, J. Appl. Polym. Sci., 2007, 104, 3695
27. 成會明,奈米碳管,五南,2004
28. H. Hiura, T. W. Ebbesen, K. Tanigaki, Adv. Mater., 1995, 7, 275
29. J. E. Riggs, Z. X. Guo, D. L. Carroll, J. Am. Chem. Soc., 2000, 122, 5879
30. B. Vera, K. Anton, O. Ulrich, S. Manfred, S. Francois, J. Robert, D. Christophe, J. Phys. Chem. B, 2006, 110, 14640
31. P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science, 1994, 265, 1212
32. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A. H. Windle, Polymer, 1999, 40, 5967.
33. R. Andrews, T. D. Rantell, D. Qian, E. C. Dickey, Appl. Phys. Lett. , 2000, 76, 2868
34. W. Tang, M. H. Santare, S. G. Advani, Carbon, 2003, 41, 2779
35. R. Andrews, D. Jacques, M. Minot, T. Rantell, Macromol. Mater. Eng., 2002, 287, 395
36. S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, J. Hon, Macromol. Rapid. Commun., 2003, 24, 1070
37. W. K. Maser, A. M. Benito, M. A. Callejas, T. Seeger, M. T. Martínez, J. Schreiber, J. Muszynski, O. Chauvet, Z. Osváth, A. A. Koós, L. P. Biró, Mater. Sci. Engi., 2003, C 23, 87
38. C. Park, Z. Ounaies, K. A. Watson, R. E. Crooks, J. J. Smith, S. E. Lowther, J. W. Connell, E. J. Siochi, J. S. Harrison, T. L. S. Clair, Chem. Phys. Lett., 2002, 364, 303
39. B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury,S. Hutzler, S. Roth, W. J. Blau, J. Appl. Phys., 2002, 92, 4024
40. A. Schindler, J. Brill, N. Fruehauf, J. P. Novak, Z. Yaniv, Physica, 2007, E 37, 119
41. X. Yu, R. Rajamani, K. A. Stelson, T. Cui, J. Nanosci. Nanotechnol., 2006, 6, 1939
42. H. E. Unalan, G. Fanchini, A. Kanwal, A. D. Pasquier, M. Chhowalla, Nano. Lett., 2006, 6, 677
43. S. Wang, Z. Liang, G. Pham, Y. B. Park, B. Wang, C. Zhang, L. Kramer, P. Funchess, Nanotechnology, 2007, 18, 095708
44. S. Wang, Z. Liang, B. Wang, C. Zhang, Z. Rahman, Nanotechnology, 2007, 18, 055301.
45. S. M. Vemuru, R. Wahi, S. Nagarajaiah, P. M. Ajayan, J. Str. Anal., 2009, 44, 555
46. K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, H. Honda, Carbon, 1995, 34, 279
47. R. N. Keller, A. S. Smit, J. Am. Chem. Soc.,1944, 66, 1122
48. K. Gleu, J. Am. Chem. Soc., 1928, 61, 702
49. A. O. Beckmann, R. G. Dickinson, J. Am. Chem. Soc., 1930, 12, 124
50. R. Meyer, H. J. Schumacher, Physik. Chem., 1934, A170, 33
51. M. Newman, H. L. G. Horn, J. Am. Chem. Soc.,1948, 70, 317
52. Y. Conrad, J. R. Schurch, E. H. Huntre, J. Am. Chem. Soc., 1949, 71, 2233
53. E. A. Vogler, J. M. Hayes, J. Org. Chem., 1979, 44, 3682
54. H. Tong, H. L. Li, X. G. Zhang, Carbon, 2007, 45, 2424
55. P. Delhaes, M. Couzi, M. Trinquecoste, J. Dentzer, H. Hamidou, C. V. Guterl, Carbon, 2006, 44, 3005
56. M. R. S. Castro, P. W. Oliveira, H. K. Schmidt, Semicond. Sci. Technol., 2008, 23, 035013
57. J. M. Harris, Poly(ethylene glycol) Chemistry:Biotechnical and Biomedical Applications, Plenum Press, New York, 1992
58. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. J. Gao, Y. F. Ma, F. Li, Y. S. Chen, P. C. Eklund, Nano. Lett., 2006, 6, 1141

QR CODE