簡易檢索 / 詳目顯示

研究生: 王守寬
Shou-Kuan Wang
論文名稱: 通道層處理技術於低溫複晶矽薄膜電晶體 特性改善之研究
Engineering in channel layer for the performance improvement of LTPS-TFTs
指導教授: 范慶麟
Ching-lin Fan
口試委員: 李志堅
none
顏文正
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 70
中文關鍵詞: 低溫複晶矽薄膜電晶體電漿處理氟矽玻璃通道層氮離子氟離子
外文關鍵詞: LTPS-TFTs, N2 plasma treatment, FSG, channel layer
相關次數: 點閱:345下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了改善低溫複晶矽薄膜電晶體電特性與穩定度,本論文以Fluorosilicate glass (FSG)覆蓋在通道層即複晶矽(Poly silicon, poly-si)上,在源極與汲極形成的同時,將氟離子驅入通道層內,形成Si-F鍵結,達到減少通道內缺陷的效果,由此改善元件特性與穩定度。我們進一步探討F離子濃度所造成的影響,在沉積FSG時,改變CF4氣體流量濃度,研究不同氟離子濃度對元件特性的影響,並在此論文中詳細討論。其次,因為傳統的N2電漿處理,是在元件完成後,氮離子較不容易穿透Passivation Layer達到通道層,故此論文另一項研究為使用中空陰極化學氣相沉積(Hollow-Cathode Chemical Vapor Deposition, HC-CVD)系統,直接對元件通道層做N2電漿處理,使氮離子可以直接進入通道層,形成Si-N鍵結,達到減少通道內缺陷的目的,且由於中空陰極管的原理,對通道層表面的傷害很小,相較於使用傳統高密度電漿化學氣相沉積(High Density Plasma Chemical Vapor Deposition, HDPCVD)系統之電漿處理,有較好的電特性表現。


In order to improve performance and reliability of low temperature poly-Si thin film transistors (LTPS-TFTs). In this thesis, the Poly-Si channel was covered with Fluorosilicate glass (FSG). When the source and drain were activated, the fluorine would drive-in the channel. It could reduce the trap in the channel so that it would improve the performance and reliability of device. We further studied the effects by the concentration of fluorine. When we deposited the FSG, we changed the flow of CF4 to investigate the influence of device with different concentration of fluorine. We would demonstrate in this thesis. It was difficult for nitrogen to through the passivation layer to reach the channel layer by traditional N2 plasma treatment. So we also used the HC-CVD system to treat the channel with N2 plasma. Hence the nitrogen could enter the channel to become Si-N bonds so that it could reduce the trap in channel. Due to the theorem of HC-CVD, the damage of channel surface was very small. It was better than used the HDPCVD to treat channel with N2 plasma. The HC-CVD system had better performance and reliability than the HDPCVD system.

論文摘要 Abstract 圖目錄 表目錄 第一章 序論 1.1研究背景 1.2 研究動機 1.3 論文大綱 第二章 低溫複晶矽薄膜電晶體(LTPS-TFTs)製作流程 2.1 FSG之氟離子驅入通道層之LTPS-TFTs製作流程 2.2 N2電漿處理通道層之LTPS-TFTs製作流程 第三章 FSG之氟離子驅入通道層之LTPS-TFTs特性 3.1 Fluorosilicate glass (FSG)介紹 3.2 高密度電漿化學氣相沈積(HDPCVD)系統原理 3.3 各種CF4流量對氟離子濃度影響分析 3.4 不同CF4流量之FSG驅入通道層後的元件電性結果與討論 3.4.1元件各項電性公式及結果分析 3.4.2 活化能(Activation Energy) 3.4.3 熱載子效應(Hot-Carrier Effect) 3.4.4 元件的劣化(Stress) 第四章 N2電漿處理通道層之LTPS-TFTs特性 4.1 中空陰極化學氣相沈積(HC-CVD)系統的原理 4.2 N2電漿處理對電晶體的影響分析 4.2.1 HC-CVD、HDPCVD電漿處理對通道層表面粗操度之影響 4.2.2各種N2電漿處理對氮離子驅入通道層程度的影響 4.3 HC-CVD與HDPCVD電漿處理通道層後的元件電性結果與討論 4.3.1元件各項電性結果分析 第五章 結論與未來工作 參考文獻

[1] C.H. Fa, and T. T. Jew, “The polysilicon insulated-gate field-effect transistor” ,
IEEE Trans. Electron Devices, vol. 13, No. 2, pp. 290 (1966)
[2] W.G. Hawkins, “Polycrystalline-silicon device technology for large-area electronics” , IEEE Trans. Electron Devices, vol. 33, pp. 477-481 (1986)
[3] Y. Oana, “Current and future technology of low-temperature poly-Si TFT-LCDs” , Journal of the SID, vol. 9, pp. 169-172 (2001)
[4] Morozumi, K. Oguchi, S. Yazawa, Y. Kodaira, H. Ohshima, and T. Mano, “B/W and color LC video display addressed by poly-Si TFTs” , SID DIG., pp. 156 (1983)
[5] R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, “Guest-host active matrix liquid-crystal display using high-voltage polysilicon thin film transistors” , IEEE Trans. Electron Devices, vol. 38, pp. 1781 (1991)
[6] C.L. Fan and T. H. Yang, “Effects of NH3 Plasma Pretreatment before Crystallization on Low-Temperature-Processed Poly-Si Thin-Film Transistors” , Journal of The Electrochemical Society, 153 (8) H161-H165 (2006)
[7] H. Kuriyama et al., “Enlargement of poly-Si film grain size by excimer laser annealing and its application to high-performance poly-Si thin film transistor” , Jpn. J. Appl. Phys., vol. 30, pp. 3700-3703 (1991)
[8] A. Nakamura, F. Emoto, E. Fujii, and A. Tamamoto, “A high-reliability, low-operation-voltage monolithic active-matrix LCD by using advanced solid-phase growth technique” , IEDM Tech. pp.847 (1990).
[9] T. Sameshima, S. Usui, and M. Sekiya, “XeCl Excimer Laser Annealing Used in the Fabrication of Poly-Si TFTs” , IEEE Electron Device Letters , EDL-7 , pp. 276-278 (1986)
[10] C.L. Fan and M.C. Chen, “Performance Improvement of Excimer Laser
Annealed Poly-Si TFTs Using Fluorine Ion Implantation” , Electrochemical and
Solid-State Letters, 5 (8), pp. G75-G77 (2002)
[11] C.W. Chang, C.K. Deng, S.C. Wu, J.J. Huang, H.R. Chang, and T.F. Lei,
“Characterizing Fluorine-Ion Implant Effects on Poly-Si Thin-Film Transistors
With Pr2O3 Gate Dielectric”, journal of display technology, vol. 4, no. 2 (2008)
[12] M. W. Ma, C.Y. Chen, C.J. Su, W.C. Wu, Y.H. Wu, T.Y. Yang, K.H. Kao,
T.S. Chao, and T.F. Lei, “Impacts of Fluorine Ion Implantation With
Low-Temperature Solid-Phase Crystallized Activation on High-κ LTPS-TFT”,
IEEE Electron Devices Letters, vol. 29, no. 2, February (2008)
[13] C.W. Chang, P.W. Huang, C.K. Deng, J.J. Huang, H.R. Chang, and T.F. Lei,
“CF4-Plasma-Induced Fluorine Passivation Effects on Poly-Si TFTs with High-k
Pr2O3 Gate Dielectric”, Journal of The Electrochemical Society, 155 (2) J50-J54 (2008)
[14] Shen De Wang, Student Member, IEEE, Tzu Yun Chang, Chao Hsin Chien, Member, IEEE, Wei Hsiang Lo,Jen Yi Sang, Jam Wen Lee, and Tan Fu Lei, “Performance and Reliability of Poly-Si TFTs on FSG Buffer Layer”, IEEE Electron Devices Letters, vol. 26, no. 7, JULY (2005)
[15] Chia-Wen CHANG, Chih-Kang DENG, Jiun-Jia HUANG, Tong-Yi WANG, and Tan-Fu LEI, “Electrical Enhancement of Polycrystalline Silicon Thin-Film Transistors Using Fluorinated Silicate Glass Passivation Layer”, Japanese Journal of Applied Physics vol. 47, no. 2, pp. 847–852 (2008)
[16] C.F. Weng, T.C. Chang, Y.H. Tai, S.T. Huang, K.T. Wue, C.W. Chen, W.C. Kuo, T.F. Young, “Thermal analysis on the degradation of poly-silicon TFTs under AC stress”, Materials Chemistry and Physics, 116 (2-3), pp. 344-347 (2009)
[17] Ma, M.-W., Chen, C.-Y., Su, C.-J, Wu, W.-C., Yang, T.-Y., Kao, K.-H., Chao, T.-S., and Lei, T.-F., “Improvement on performance and reliability of TaN/HfO2 LTPS-TFTs with fluorine implantation”, Solid-State Electronics, vol.52, issue 3, pp. 342-347 (2008)
[18] Feng, L.-W., Chang, T.C., Liu, P.-T., Tu, C.-H., Wu, Y.-C., Yang, C.-Y., and Chang, C.-Y., “Application of fluorine doped oxide (SiOF) spacers for improving reliability in low temperature polycrystalline thin film transistors”, Thin Solid Films, 517 (3), pp. 1204-1208 (2008)
[19] M. J. Shapiro, S. V. Nguyen, T. Matsuda, D. Dobuzinsky, “CVD of Fluorosilicate Glass for ULSI Applications”, Thin Solid Films, 270 (12), pp. 503-507 (1995)
[20] S. W. Lim, Y. Shimogaki, “Preparations of Low-Dielectric-Constant F-Doped SiO2 Films by Plasma-Enhanced Chemical Vapor Deposition”, Appl. Phys. Letters, pp. 832 (1996)
[21] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors”, J. Appl. Phys., vol. 53, no. 2, pp. 1193–1202 (1982)
[22] R. E. Proano, R. S. Misage, and D. G. Ast, “Development and electrical properties of undoped polycrystalline silicon thin-film transistor”, IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1915–1922 (1989)
[23] C.H. Tu, T.C. Chang, P.T. Liu, C.H. Chen, C.Y. Yang, Y.C. Wu, H.C. Liu, L.T. Chang, C.C. Tsai, S. M. Sze, and C.Y. Chang, “Electrical Enhancement of Solid Phase Crystallized Poly-Si Thin-Film Transistors with Fluorine Ion Implantation”, Journal of The Electrochemical Society, 153(9) G815-G818 (2006)
[24] M. Hack, A. G. Lewis, and I. W. Wu, “Physical models for degradation effects in polysilicon thin-film transistors”, IEEE Trans. Electron Devices, vol. 40, no. 5, pp. 890–897 (1993)
[25] Gou-Tsau Liang and Franklin Chau-Nan Hong, “Diamond growth by hollow cathode arc plasma chemical vapor deposition”, Journal of Materials Research 13 (11), pp. 3114-3121 (1998)

QR CODE