簡易檢索 / 詳目顯示

研究生: 張素婧
Clarissa Changraini
論文名稱: 氣體種類效應於大氣電漿處理有機保焊膜/裸銅基板之研究
The Effect of Atmospheric Pressure Plasma with Various Gas Sources on Bare Copper with Surface Finishing OSP
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: Anak Agung Sagung Dewi Afiati
Anak Agung Sagung Dewi Afiati
顏怡文
Yee-Wen Yen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 108
中文關鍵詞: 常壓等離子體表面清潔氧化焊料潤濕性親水的疏水性金屬間化合物OSP 表面處理
外文關鍵詞: atmospheric pressure plasma, surface cleaning, oxidation, solder wettability, hydrophilic, hydrophobicity, intermetallic compound, OSP surface finishing
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面貼裝技術 (SMT) 是半導體器件中用於將電子元件連接到印刷電路板 (PCB) 表面的組裝方法。氧化層通常出現在PCB表面,導致潤濕性下降。在本研究中,APP 系統用於減少或去除 PCB 表面出現的氧化層。帶有有機可焊性防腐劑 (OSP) 表面處理的裸銅作為 PCB,以及來自 Nihon Superior Co., LTD 的 SAC 305(96.5% Sn、3% Ag 和 0.5% Cu)焊球作為焊接材料。該實驗使用帶有旋轉頭的大氣壓等離子體壓力噴射(APPJ)系統。 APPJ 使用四種不同的氣源,即壓縮乾燥空氣 (CDA)、H2O 蒸汽(CDA 作為主要氣體)、氮氣 (N2) 和與氫氣混合的氮氣 (N2/H2) 。本研究的目的是利用強大的方法即APP的離子轟擊過程來提高PCB的表面潤濕性,並觀察每種氣體源對PCB表面的影響。進行了光學發射光譜 (OES)、接觸角、光學顯微鏡、場發射掃描電子顯微鏡 (FE-SEM) 和 X 射線光電子能譜 (XPS) 分析。應用在這種帶有 OSP 表面處理的裸銅上的 APP 清潔處理顯著改善了潤濕性。分析結果表明,使用H2O蒸汽氣源的等離子體處理在提高表面潤濕性方面效果更好。


    The surface-mount technology (SMT) is the assembly method in semiconductor devices that used for connected the electronic components onto the printed circuit board (PCB) surface. The oxide layer usually occurred on the surface of the PCB which is caused a degradation of the wettability. In this study, APP system was used to decreasing or removing the oxide layer that occurred on the PCB surface. Bare copper with organic solderability preservative (OSP) surface finishing as a PCB, and SAC 305 (96.5% Sn, 3% Ag, and 0.5% Cu) solder ball from Nihon Superior Co., LTD for the soldering material. This experiment was used atmospheric plasma pressure jet (APPJ) system with a rotation head. The APPJ used with a four different gas sources i.e., compress dry air (CDA), H2O vapour (CDA as the main gas), nitrogen (N2), and nitrogen mixed with hydrogen (N2/H2). The objectives of this study are focused on improving the surface wettability of PCB utilizing the powerful method namely ion bombardment process of APP and observed the effect of each gas sources on the PCB surface. The optical emission spectroscopy (OES), contact angle, optical microscope, field emission scanning electron microscope (FE-SEM) and X-ray photoelectron spectroscopy (XPS) analysis was performed. The APP cleaning treatment that applied on this bare copper with OSP surface finishing given a significant improvement wettability. The analysis result shown that the plasma treatment using the H2O vapour gas source had the greater result in the term of improving the surface wettability.

    摘要 ii ABSTRACT iii TABLE OF CONTENT iv LIST OF FIGURES vii LIST OF TABLES x CHAPTER 1 1 1. 1 Background 1 1. 2 Research Objective 2 CHAPTER 2 3 2.1 Integrated Circuit History 3 2.2 Manufacturing of an Integrated Circuit Packaging 4 2.2.1 Wafer Fabrication (Front-End) Process 5 2.2.2 Assembly (Back–End) Process 8 2.3 Introduction of Surface Mount Technology, Solders and Soldering 13 2.3.1 History and Benefits 13 2.3.2 Surface Mount Soldering Process 15 2.3.3 Wave Soldering 16 2.3.4 Reflow Soldering 19 2.4 Soldering 21 2.4.1 Requirements of the Soldering Process 22 2.4.2 Solder Spreading 25 2.4.3 Metallurgical Properties of Solder 27 2.4.4 Intermetallic Compounds (IMCs) 32 2.4.5 Flux 38 2.5 Plasma – The Fourth State of Matter 43 2.5.1 History of Plasma 43 2.5.2 Fundamentals of Plasma 44 2.6 Atmospheric Plasma System 46 2.6.1 Dielectric Barrier Discharge Systems 49 2.6.2 Atmospheric Plasma Surface Modification Effects 50 CHAPTER 3 54 3.1 Design of Experiment (DoE) 54 3.2 Materials and Tools 55 3.3 Research Variables 59 3.4 Atmospheric – Pressure Plasma Jet (APPJ) Cleaning Methodology 59 3.5 Solder Ball Mounting Methodology 61 3.6 Material Analysis Equipment 61 3.6.1 Optical Emission Spectroscopy (OES) 61 3.6.2 Water Contact Angle Instrument 62 3.6.3 Optical Microscope (OM) 63 3.6.4 Field Emission Scanning Electron Microscopes (FE-SEM) 65 3.6.5 X-ray Photoelectron Spectroscopy (XPS) 66 CHAPTER 4 67 4. 1 Data Analysis of OES Result 67 4.2 Data Analysis of Contact Angle Result 71 4.3 Data Analysis of Optical Microscope 73 4.4 Data Analysis of Field Emissions Scanning Electron Microscopes 75 4.5 Data Analysis of X-ray Photoelectron Spectroscopy 78 4.6 Mechanism of Plasma Treatment 84 4.7 Chemical Reaction of Atmospheric Pressure Plasma 86 CHAPTER 5 89 REFERENCES 91

    1. Bose, Gouranga. (2014). IC Fabrication Technology. New Delhi, India: McGraw Hill Education Private Limited.
    2. Greig, William J. (2017). Integrated Circuit Packaging, Assembly and Interconnections. New York, USA: Springer.
    3. Micro controller Division Applications. (2000). Introduction to Semiconductor Technology. STMicroelectronics.
    4. Strauss, Rudolf, Dr.Ing., FIM. (1998). SMT Soldering Handbook (2nd ed.). London, England: Newnes, An Imprint of Butterworth-Heinemann.
    5. Lee, Ning-Cheng PhD. (2002). Reflow Soldering Process and Troubleshooting: SMT, BGA, CSP and Flip Chip Technologies. London, England: Newnes, An Imprint of Butterworth-Heinemann.
    6. Judd, Mike., Brindley, Keith. (1999). Soldering in Electronics Assembly. London, England: Newnes, An Imprint of Butterworth-Heinemann.
    7. Feryance, D. and Shubert F. (1993). Matte-surface Solder Masks Reduce Solder Ball Defects. EP&P. pp. 58–60.
    8. Davis, C. Hemens and Sunstrum, R. (1993). No-clean: Material Compatibility Issues. Circuits Assembly. Vol. 4, No. 3, pp. 47–55.
    9. Xiao, M., Lawless K., and Lee, Ning-Cheng. (1993). Prospects of Solder Paste in UFPT Era. San Jose, California: Proc. of Surface Mount International 93.
    10. Ma, B.-T., Sarkhel, A., and Woychik, C. (1993). Evaluation Solder Paste Printing and Reflow for Ultra Fine Pitch Surface Mount Process. Anaheim, California: Proc. of Nepcon West. pp. 506–517.
    11. (1994). Packaging Materials: Ball Grids Are Pinless PGAs. Electronic Materials Report. Vol. 10, No. 1, pp. 8.
    12. Lea, Collin. (1988). A Scientific Guide to Surface Mount Technology. Pennsylvania State University, USA: Electrochemical Publications Ltd.
    13. Manko, Howard H. (2001). Solders and Soldering (4th ed.). New York, USA: McGraw-Hill Professional.
    14. Fisher, H.J., and Phillips, A. (1954). Viscosity and Density of Liquid Lead-Tin and Antimony-Cadmium Alloys. JOM 6, 1060–1070. DOI: http://doi.org/10.1007/BF03398346
    15. Ambrose, J. C., Nicholas, M. G., and Stoneham, A. M. (1992). Dynamics of Brazing Spreading. Autumn Conference, Coventry, UK: Proc. Conf. British Association for Brazing and Soldering.
    16. Humpston, Giles and Jacobson, David M. (2004). Principles of Soldering. Materials Park, Ohio: ASM International.
    17. Hwang, Jennie S. and Vargas, R. M. (1990). Soldering and Surface Mount Technology. Vol. 5, pp. 38–45.
    18. Leonida, G. (1981). Handbook of Printed Circuit Design, Manufacture, Components and Assembly. Ayr, Scotland: Electrochemical Publications.
    19. Wassink, Klein R. J. (1984). Soldering in Electronics. Ayr, Scotland: Electrochemical Publications.
    20. Bolton, W. (1993). Engineering Materials Technology (2nd ed.). Jordan Hill, Oxford: Newnes.
    21. McKeown, J. (1948) The Properties of Soft Solders and Soldered Joints. Wantage, UK: British Non-Ferrous Metals Research Association, Research Monograph No. 5.
    22. Glazer, J. (1995). Metallurgy of Low Temperature Pb-free Solders for Electronic Assembly, International Materials Reviews, Vol. 40, No. 2, pp. 65-93. DOI: https://doi.org/10.1179/imr.1995.40.2.65
    23. Yost, F. G. and Romig, A. D. (1988). Thermodynamics of Wetting by Liquid Metals. Materials Research Society. Symp. Proc., Vol. 108, pp. 385–390. DOI: https://doi.org/10.1557/PROC-108-385
    24. Lee, Byeong-Joo, Hwang, Nong Moon, and Lee, Hyuck Mo. (1997). Prediction of Interface Reaction Products Between Cu and Various Solder Alloys by Thermodynamic Calculation. Acta Materialia, Vol. 45, No. 5, pp. 1867–1874. DOI: https://doi.org/10.1016/S1359-6454(96)00325-4
    25. Ambrose, J. C., Nicholas, M. G., and Stoneham, A. M. (1992). Kinetics of Brazing Spreading. Autumn Conference, Coventry, UK: Proc. Conf. British Association for Brazing and Soldering.
    26. Kay, P. J. and Mackay, C. A. (1979). Barrier Layers Against Diffusion. Transactions of the IMF, 57:1, 169-174. DOI: https://doi.org/10.1080/00202967.1979.11870510
    27. Muckett, S. J., Warwick, M. E., and Davis, P. E. (1986). Plating and Surface Finishing. p. 44.
    28. Zubelewicz, Alek and Sammakia, Bahgat G. (1998). Physically Based Reliability Models for BGA Assemblies. Anaheim, California: Proc. of Nepcon West 1998, 1–5.
    29. Schaefer, Mathew, Laub, Werner, Sabee, Janet M., Fournelle, Raymond A., and Lee, Ping S. (1996). A Numerical Method for Predicting Intermetallic Layer Thickness Developed During the Formation of Solder Joints. Journal of Electronic Materials, Vol. 25, No. 6, pp. 992–1003. DOI: https://doi.org/10.1007/BF02666735
    30. Liu, H., Wang, K., Aasmundtveit, K., and Hoivik, N. (2010). Intermetallic Cu3Sn as oxidation barrier for fluxless Cu-Sn bonding. 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), pp. 853-857. DOI: 10.1109/ECTC.2010.5490709.
    31. Qu, D., Li, C., Bao, L., Kong, Zhuangzhuang, and Duan, Yonghua. (2020). Structural, electronic, and elastic properties of orthorhombic, hexagonal, and cubic Cu3Sn intermetallic compounds in Sn–Cu lead-free solder. Journal of Physics and Chemistry of Solids, Volume 138.
    32. Guo, Q., Sun, S., Zhang, Z., Chen, H., Li, M. (2017). Microstructure Evolution and Mechanical Strength Evaluation in Ag/Sn/Cu TLP Bonding Interconnection during Aging Test. Microelectronics Reliability. 80. DOI: 10.1016/j.microrel.2017.12.001.
    33. Kim, H. K. and Tu, K. N. (1996). Kinetic Analysis of the Soldering Reaction between Eutectic SnPb Alloy and Cu Accompanied by Ripening. American Physical Society: Physical Review B (Condensed Matter), Vol. 53, No. 23, pp. 16027–16034. DOI: https://doi.org/10.1103/PhysRevB.53.16027
    34. Yost, Frederick G., Hosking, F. M., and Frear, D. R. (1993). The Mechanics of Solder Alloy – Wetting and Spreading. New York, Van Nostrand Reinhold.
    35. Geist, H. and Kottke, M. (1988). Solderability degradation models for fusible tin alloy coatings on copper substrates. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 11, no. 3, pp. 270-273. DOI: 10.1109/33.16652.
    36. Marshall, J. L, Calderon, J., Sees, J., Lucey, G., and Hwang, J. S. (1991). Composite Solders IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 14, no. 4, pp. 698-702. DOI: 10.1109/33.105119.
    37. Davis, P.E., Warwick, M.E., and Muckett, S. (1983). Intermetallic compound growth and solderability of reflowed tin and tin-lead coatings. Plating and Surface Finishing, Vol. 70, pp. 49-53.
    38. Ray, U., Artaki, I., and Vianco, Paul T. (1995). Influence of Temperature and Humidity on the Wettability of Immersion Tin Coated Printed Wiring Boards. Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions, Vol. 18, No. 1, pp. 153 - 162. DOI: 10.1109/95.370749.
    39. Meena-Atrash, Jiries and Strongin, Robert M. (2020). Pine rosin identified as a toxic cannabis extract adulterant. Forensic Science International, Volume 312, 2020. DOI: https://doi.org/10.1016/j.forsciint.2020.110301.
    40. Lea C. (1992). After CFCs? options for cleaning electronics assemblies. Ayr, Scotland: Electrochemical Publications Ltd.
    41. Artake, I., Ray, U., Gordon, H. M., and Gervasio, M. S. (1992). Thermal Degradation of Rosin During High Temperature Solder Reflow. Thermochimica Acta: AT&T Bell Laboratories report, Vol 198, No. 1, pp. 7-20. DOI: https://doi.org/10.1016/0040-6031(92)85053-X
    42. Louis, F. and Fieser, Mary F. (1949). Natural Products Related to Phenanthrene (3rd ed.): Chapter 2. New York: Reinhold Publishing Corporation.
    43. Simonsen, J. and Barton, D. H. R. (1961). The Terpenes Volume III: The Sesquiterpenes, Dilterpenes and Their Derivativs, Chapter V. New York: Cambridge University Press.
    44. Frances, M., Gardere, Y., Rubini, M., Duret, E., Leroyer, L., Cabaret, T., Athomo, A. Bikoro Bi, and Charrier, B. (2020). Effect of heat treatment on Pinus pinaster rosin: A study of physico chemical changes and influence on the quality of rosin linseed oil varnish. Industrial Crops and Products, Vol. 155. DOI: https://doi.org/10.1016/j.indcrop.2020.112789
    45. Piotrowska, K., Jellesen, Morten S., and Ambat, Rajan. (2017). Thermal decomposition of solder flux activators under simulated wave soldering conditions. Soldering & Surface Mount Technology, Vol. 29, No. 3, pp. 133-143. DOI: https://doi.org/10.1108/SSMT-01-2017-0003
    46. Lee, Ning-Cheng. (1994). How to Make Solder Paste Work in Ultra-fine-pitch and Non-CFC Era. San Jose, California: short course at Surface Mount International.
    47. Rogoff, G.L. (1991). Guest Editorial, Special Issue on Applications of Partially Ionized Plasmas. IEEE Transactions on Plasma Science, Vol. 19, p. 989.
    48. Bellan, Paul M. (2008). Fundamentals of Plasma Physics (1st ed.). New York: Cambridge University Press.
    49. Langmuir, I. (1928). Oscillations in Ionized Gases. Proceedings of the National Academy of Sciences of the U.S., Vol. 14, p. 62. DOI: https://doi.org/10.1073/pnas.14.8.627
    50. Mattox, Donald M. (2010). Handbook of Physical Vapor Deposition (PVD) Processing (2nd ed.). New York, Nowich: William Andrew Publishing. DOI: https://doi.org/10.1016/C2009-0-18800-1
    51. Wolf, Rofy A. (2013). Atmospheric Pressure Plasma for Surface Modification. Canada: Scrivener Publishing LLC. DOI: 10.1002/9781118547519.
    52. Takamatsu, T., Uehara, K., Sasaki, Y., Miyahara, H., Matsumura, Y., Iwasawa, A., Ito, N., Azuma, T., Kohno, M., Okino, A. (2014). Investigation of Reactive Species using Various Gas Plasmas. RSC Adv.. 4. 39901-39905. DOI: 10.1039/C4RA05936K.
    53. Sharma, M K., Saikia, Bk., and Bujarbarua, S. (2008). Optical emission spectroscopy of DC pulsed plasmas used for steel nitriding. Surface and Coatings Technology - Surface and Coatings Technology, pp. 203, 229-233. DOI: 10.1016/j.surfcoat.2008.08.036.
    54. Cali, C., Macaluso, R., and Mosca, M. (2001). In situ monitoring of pulsed laser indium tin-oxide film deposition by optical emission spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, pp. 56, 743–751. DOI: 10.1016/S0584-8547(01)00193-8.
    55. Bings, Nicolas H., Bogaerts, A., and Broekaert, José A. C. (2008). Atomic Spectroscopy. Analytical Chemistry, Vol. 80 No. 12, pp. 4317–4347.
    56. Devia, Diana M., Rodriguez-Restrepo, L. V., and Restrepo, Elisabeth Parra. (2015). Methods Employed in Optical Emission Spectroscopy Analysis: a Review. Ingeniería y Ciencia. Vol. 11, No. 21, pp. 239-267. DOI: 10.17230/ingciencia.11.21.12.
    57. Tiab, D., and Donaldson, Erle C. (2012). Petrophysics II Chapter 6: Wettability, pp. 371–418. DOI: 10.1016/b978-0-12-383848-3.00006-2.
    58. Moulder, John F., Stickle, William F., Sobol, Peter E., and Bomben, Kenneth D. (1992). Handbook of X-ray Photoelectron Spectroscopy. Minnesota, U.S.A.: Perkin-Elmer Corporation - Physical Electronics Division.
    59. Filippov, S.I., Arsent’ev, P.P., Yakovlev, V.V., and Krasheninnikov, M.G. (1968). Physicochemical Methods of Studying Metallurgical Processes. Moscow: Metallurgiya.
    60. Ponezhev, M.Kh., Sozaeva, A.B., and Sozaev, V.A. (2008). High Temp. (English translation), Vol. 46, No. 2, p. 310, Vol. 46, No. 2, p. 282.
    61. Direktor, L. & Zaichenko, Victor & Maikov, I., (2010). An improved method of sessile drop for determining the surface tension of liquids. High Temperature, Vol. 48. 176-180. DOI: 10.1134/S0018151X10020069.
    62. Kencana, S., Chuang, W., Schellkes, E., Yen, Yee-wen and Kuo, Yu-Lin. (2019). Improving the Solder Wettability Via Atmospheric Plasma Technology. DOI: 10.1109/ECTC.2019.00317.
    63. Vianco, Paul T. (2017). Understanding the Reliability of Solder Joints Used in Advanced Structural and Electronics Applications: Part 1 - Filler Metal Properties and the Soldering Process. United States: Welding Journal, Vol. 96 – American Welding Society.
    64. Vianco, Paul T. (2002). Solder Technology for Ultrahigh Temperatures. United States: Welding Journal, Vol. 81.
    65. Kim, Seong-Jun, Kim, Keun-Soo, Kim, Sun-Sik, Kang, C.Y., and Suganuma, Katsuaki. (2008). Characteristics of Zn-Al-Cu Alloys for High Temperature Solder Application. Materials Transactions - MATER TRANS., Vol. 49, pp. 1531-1536. DOI: 10.2320/matertrans.MF200809.
    66. Yoon, Jeong-Won, Noh, Bo-In, Lee, Young-Ho, Lee, Hyo-Soo, and Jung, Seung-Boo. (2008). Effects of isothermal aging and temperature–humidity treatment of substrate on joint reliability of Sn–3.0Ag–0.5Cu/OSP-finished Cu CSP solder joint. Microelectronics Reliability, Vol. 48, No. 11–12, pp. 1864-1874. DOI: https://doi.org/10.1016/j.microrel.2008.07.065
    67. Rao, B.S.S. Chandra, Weng, J., Shen, L., Lee, T. K., and Zeng, K.Y. (2010) Morphology and mechanical properties of intermetallic compounds in SnAgCu solder joints. Microelectronic Engineering, Vol. 87, No. 11, pp. 2416-2422. DOI: https://doi.org/10.1016/j.mee.2010.04.017
    68. Biesinger, Mark C. (2017). Advanced analysis of copper X‐ray photoelectron spectra. Surface and Interface Analysis, Vol. 49, No. 9. DOI: 10.1002/sia.6239.
    69. Schutze, A., Jeong, James Y., Babayan, Steven E., Park, Jaeyoung, Selwyn, Gary S., and Hicks, Robert F. (1998). The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources. Plasma Science, IEEE Transactions, Vol. 26, No. 6, pp. 1685 - 1694. DOI: 10.1109/27.747887.
    70. Keidar, Michael and Beilis, Isak I. (2018). Plasma Engineering (2nd ed.): Chapter 3 - Electrical Discharges. Academic Press, pp. 103-126. DOI: https://doi.org/10.1016/C2017-0-00107-6
    71. Ferdinandi, Frank. (2009). Introduction of A New PCB Surface Finish for the Electronics Industry. International Conference - Surface Mount Technology Association (SMTA), pp. 841–846.
    72. Arra, M., Geiger, D., Y. Liu, Shangguan, D., Yi, S., Grebenstein, F., Fockenberger, H., Kerk, K. H., and Wong, H. (2001). Performance Evaluation of Lead-Free Solder Paste. International Conference - Surface Mount Technology Association (SMTA) pp. 850-857.
    73. Kim, Kyoung-Ho, Koike, J., Yoon, Jeong-Won, and Yoo, Sehoon. (2016). Effect of Plasma Surface Finish on Wettability and Mechanical Properties of SAC305 Solder Joints. Journal of Electronic Materials. DOI: 10.1007/s11664-016-4908-4.
    74. Inoue N., Tsujimoto, A., Takimoto, M., Ootsuka E., Endo H., Takamizawa T., and Miyazaki, M. (2010). Surface free-energy measurements as indicators of the bonding characteristics of single-step self-etching adhesives. European Journal of Oral Science. DOI: https://doi.org/10.1111/j.1600-0722.2010.00771.x
    75. Yamaji, A., Tsujimoto, A., Asaoka, T., Matsuyoshi, S., Tsuchiya, K., Takamizawa, T., and Miyazaki, M. (2014). Effect of oxygen inhibition in two-step self-etch systems on surface free energy and dentin bond strength with a chemically cured resin composite. European Journal of Oral Science, Vol. 56, No. 3, pp 201-207. DOI: https://doi.org/10.2334/josnusd.56.201

    QR CODE