簡易檢索 / 詳目顯示

研究生: 盧建棠
Chien-Tang Lu
論文名稱: 氮化鎵振盪器與除二注入式鎖定除頻器之研究
GaN Oscillator and Divide-by 2 Injection-Locked Frequency Dividers
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 張勝良
Sheng-Lyang Jang
徐敬文
Ching-Wen Hsue
賴文政
Wen-Cheng Lai
王煥宗
Huan-Chun Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 143
中文關鍵詞: 氮化鎵振盪器除二注入式鎖定除頻器
外文關鍵詞: Divide-by-2
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在RF射頻收發機中,頻率合成器的特性非常重要,內部包含了相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、壓控振盪器(VCO)、除頻器(FD),而這其中又以壓控振盪器和注入鎖定除頻器特性為主要電路。壓控振盪器需要低相位雜訊來避免相鄰雜訊訊號經由混波轉換的干擾,壓控振盪器的輸出在經由除頻器來達到降頻的工作,因此除頻器必須具有高的操作頻寬與頻率。本篇論文提出一氮化鎵之振盪器與三種不同的除頻器。
首先,我們探討一個使用穩懋0.25微米製程,來呈現一個使用HEMT之LC迴授網路之振盪器。在使用0.8V供應電壓下,電流為2.5mA,功率消耗為2.52mW,此單端輸出電路在3V之Buffer電壓能夠產生8.85GHz並能夠輸出2.4dBm的輸出功率。在1MHz時候之相位雜訊為-124.8dBc/Hz,計算所得到的FoM為-199.8dBc/Hz,此電路的面積為2×1mm2。
其次,本篇量測一個使用穩懋0.25微米氮化鎵製程之HEMT注入式除二鎖定除頻器,此次的量測數據顯示了此電路在電壓應力測試之後振盪頻率、功率消耗與除頻範圍之變化,此電路的面積為2×1 mm2。
第三,本篇量測一個使用台積電0.18矽鍺微米製程之使用雙交叉電容耦合寬頻直接注入式除二鎖定除頻器,並使用三個電感,其寄生電容能夠與電感當作共振腔使用。在低注入功率時,此除頻器能夠有兩個分開的除頻範圍,在注入功率為0dBm時,則會有一個較寬的除頻範圍。在加入超過此製程所能承受之供應電壓之後,會造成此電路之除頻範圍下降,並使得另一個除頻範圍消失,此電路之晶片面積為0.87 × 0.89 mm2。
最後,本篇量測一個使用台積電0.18微米製程之寬除頻範圍之除二注入鎖定除頻器的頻率變化。此除頻器由三路互感耦合諧振器和一組電容交叉耦合與4階RLC共振腔組成以及一個諧波混波MOSFET,第二級電感是由三路徑電感組成,可經由MOSFET開關。在較高的注入功率時,能夠看得出此除頻器具有兩個分開的除頻範圍,當加入超過此製程所能承受之供應電壓之後,會造成此電路之除頻範圍下降,也會造成另一個除頻範圍消失,此晶片面積為0.67×0.863 mm2。


In the RF transceiver, Frequency synthesizer is very important, its blocks include Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF), Voltage Controlled Oscillator (VCO), and Frequency Divider (FD). In order to pursue the most important characteristics performance of VCO and Divider, low-power, low phase noise, wide Locking range, this thesis presents the design GaN HEMT oscillator and Injection-Locked Frequency Dividers (ILFDs).
First, this thesis studies a 0.25um GaN HEMT oscillator with output buffer. The oscillator consists of a HEMT amplifier with an LC feedback network. With the supply voltage of VDD = 0.8 V, the GaN oscillator-core current and power consumption of the oscillator are 3.07 mA and 2.45 mW, respectively. The oscillator can generate single-ended signal at 8.85 GHz and it also supplies output power 2.4 dBm with buffer supply 3.0 V. At 1MHz frequency offset from the carrier the phase noise is -124.8 dBc/Hz, the FoM of the proposed oscillator is -199.8 dBc/Hz. The die area of the GaN HEMT oscillator is 2×1 mm2.
Secondly, this thesis studies the RF property of GaN HEMT divide-by-2 injection-locked frequency dividers (ILFDs) under the off-state stress. The studied ILFD was designed in the WIN 0.25 μm GaN HEMT technology. The stress data shows degraded oscillation frequency and current consumption, the former shifts the ILFD operation range. The occupied chip area of the GaN HEMT ILFD is 2×1 mm2.
Thirdly, this thesis studies the high voltage bias effect on the performance of a wide locking range divide-by-2 with dual capacitive cross-coupled injection-locked frequency divider (ILFD), the studied ILFD was implemented in the TSMC standard 0.18 μm SiGe process. The ILFD with a die area 0.87×0.89mm2 uses three on-chip inductors, which form the resonator with the parasitic capacitor. At low injection power, the ILFD has two non-overlapped locking range, at injection power Pinj=0 dBm it has only one locking range. Over-voltage bias causes the degradation on the low–band locking range of the two non-overlapped locking ranges.
Finally, this thesis studies the high voltage bias effect on the performance of a wide locking range divide-by-2 with dual capacitive cross-coupled injection-locked frequency divider (ILFD) based on transformer-based resonator, the studied ILFD was implemented in the TSMC standard 0.18 μm CMOS process. The ILFD with a die area 0.671×0.863 mm2.

氮化鎵振盪器與除二注入式鎖定除頻器之研究 I 中文摘要 I Abstract III 誌謝 V Table of Contents VI List of Figures IX List of Tables XVI Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 4 Chapter 2 Overview of Voltage-Controlled Oscillators 6 2.1 Introduction 6 2.2 The Oscillators Theory 8 2.2.1 One-Port (Negative Resistance) View 9 2.2.2 Two-Port (Feedback) View 11 2.3 Design Concepts of Voltage-Controlled Oscillator 14 2.3.1 Parameters of a Voltage-Controlled Oscillator 15 2.3.2 Phase Noise 17 2.3.3 Quality Factor 23 2.4 Type of the LC Oscillator 25 2.4.1 Single Transistor Oscillator 27 2.4.2 One-Port Oscillator (Negative-Gm Oscillator) 30 2.4.3 Cross-Coupled Oscillator 35 2.4.4 Complementary Cross-Coupled Topology 37 2.5 Classification of Oscillators 40 2.5.1 Ring Oscillator 40 2.5.2 LC-Tank Oscillator 45 2.6 Research in RLC-Tank 49 2.6.1 Resistors 50 2.6.2 Inductor 51 2.6.3 Transformer 57 2.6.4 Capacitor 62 2.6.5 Varactors 64 Chapter 3 Overview of Injection Locking Frequency Divider 69 3.1 Introduction 69 3.2 Principle of Injection Locked Frequency Divider 71 3.3 Locking Range 73 Chapter 4 A X-band Feedback GaN HEMT Oscillator with Split Core and Buffer 76 4.1 Introduction 76 4.2 Circuit Design 77 4.3 Measurement and Discussion 79 Chapter 5 Study on GaN HEMT Injection-Locked Frequency Divider Under Off-state Stress 85 5.1 Introduction 85 5.2 Circuit Design 86 5.3 Measurement 88 Chapter 6 Study of Over-voltage Bias Effect on Divide-by-2 Injection-Locked Frequency Divider 96 6.1 Introduction 96 6.2 Detailed Circuit Design 97 6.3 Measurement and Discussion 100 Chapter 7 Study of Over-voltage Bias Effect on Double-Cross-Coupled Divide-by-2 Injection-Locked Frequency Dividers Using 3-path Transformer-Coupled Resonator. 108 7.1 Introduction 108 7.2 Circuit Design 109 7.3 Measurement and Discussion 111 Chapter 8 Conclusions 120 References 122

[1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
[2] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
[3] J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003.
[4] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[5] B. Razavi, RF microelectronics, Prentice Hall PTR, 1998.
[6] B. Razavi, Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
[7] S. J. Lee, B. Kim, K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme”, IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
[8] B. Razavi, Design of Analog CMOS Integrated Circuit, McGraw Hill, 2008.
[9] G. Gonzalez , Microwave Transistor Amplifiers Analysis And Design, Prentice Hall, 1997.
[10] 劉隽宇, 翁若敏, 運用於IEEE 802.11a CMOS 頻率合成器的低雜訊寬調變範圍之壓控振盪器, 2005.07.
[11] De Muer, M. Borremans, M.Steyaert, and G. Li Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
[12] S.Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5GHz CMOS VCOs:impact on tuning range and flicker noise upconversion”, IEEE J. Solid-State Circuits, vol. 37, pp.1001-1003, 2002.
[13] T. H. Lee, The design of CMOS radio frequency integrated circuits, Cambridge University Press, 1998.
[14] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[15] C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155-158, Dec. 1996.
[16] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[17] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
[18] T. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[19] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[20] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[21] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[22] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[23] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[24] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[25] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
[26] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[27] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[28] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[29] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[30] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon- based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[31] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[32] Jacob H. Leach, and Hadis Morkoc, "Status of Reliability of GaN-Based Heterojunction Field Effect Transistors", Proceedings of the IEEE, vol. 98, pp. 1127-1139, 2010, ISSN 0018-9219.
[33] S.–L. Jang, Y.-H. Chang, and W.-C. Lai,” A feedback GaN HEMT oscillator,” ICIMMT 2018, Chengdu, Sichuan, China, May 6-9, 2018.
[34] S.–L. Jang, Y.-H. Chang, J.-S. Chiou and W.-C. Lai, “A single GaN HEMT oscillator with 4-path inductors,” IEEE ISNE-2018, Taipei, Taiwan 2018.
[35] Z. Q. Cheng, Y. Cai, J. Liu, Y.-G. Zhou, K. M. Lau, and K. J. Chen, “A low phase-noise X-Band MMIC VCO using high-linearity and low-noise composite-channel Al0.3Ga0.7N/ Al0.05Ga0.95N/GaN HEMTs,” IEEE Trans. Microwave Theory & Tech., vol. 55, issue 1, pp. 23-29,2007.
[36] C. Sanabria, H. Xu, S. Heikman, U. K. Mishra, and R. A. York, “A GaN differential oscillator with improved harmonic performance,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 463–465, Jul. 2005.
[37] S.-L. Jang, Ke Jen Lin, Wen Cheng Lai, and M.-H. Juang, “A capacitive cross-coupled GaN HEMT injection-locked frequency divider,” Int. Symp. VLSI Design, Automation and Test (VLSI-DAT), 2018.
[38] S. Lai, D. Kuylenstierna, M. Ozen, M. Horberg, N. Rorsman, I. Angelov, and H. Zirath, “Low phase noise GaN HEMT oscillators with excellent figures of merit,” IEEE Microw. Wireless Compon. Lett., vol. PP, pp. 1, Apr. 2014.
[39] W. Wohlmuth, M.-H. Weng, C.-K. Lin, J.-H. Du, S.-Y. Ho, T.-Y. Chou, S. M. Li, C. Huang, W.-C. Wang, and W.-K. Wang, “AlGaN/GaN HEMT development targeted for X band applications,” 2013 IEEE Int. Conf. Microwaves, Communications, Antennas and Electronic Systems pp.1-4.
[40] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331–343, Mar. 1996.
[41] H. Liu, X. Zhu, C. C. Boon, X. Yi, M. Mao, and W. Yang, “Design of ultra-low phase noise and high power integrated oscillator in 0.25µm GaN-on-SiC HEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 24, pp. 120–122, 2014.
[42] Z. Herbert, S. Lai, K. Dan, F. Jonathan, A. Kristoffer and R. Niklas, ” An X-band low phase noise AlGaN-GaN-HEMT MMIC push-push oscillator,” in Proc. IEEE Compound Semicond. Integr. Circuit Symp. (CSICS), Oct. 16–19, 2011, pp. 1–4.
[43] G. Soubercaze-Pun, J. G. Tartarin, L. Bary, J. Rayssac, E. Morvan, B. Grimbert, S. L. Delage, J.-C. De Jaeger, and J. Graffeuil, “Design of a X-band GaN oscillator: From the low frequency noise device characterization and large signal modeling to circuit design,” in IEEE MTT-S Int. Dig., Jun. 11–16, 2006, pp. 747–750.
[44] V. S. Kaper, V. Tilak, H. Kim, A. V. Vertiatchikh, R. M. Thompson, T.R.Prunty, L.F.Eastman, andJ. R. Shealy,“High-power monolithic AlGaN/GaN HEMT oscillator,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1457–1461, Sep. 2003.
[45] S.–L. Jang, et al,” An 4.7 GHz low power cross-coupled GaN HEMT oscillator ,”Microw. Opt. Technol. Lett., Accepted 2018.
[46] A. Balandin, S. V. Morozov, S. Cai, R. Li, K. L. Wang, G. Wijeratne, and C. R. Viswanathan, “Low flicker-noise GaN/AlGaN heterostructure fieldeffect transistors for microwave communications,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 8, pp. 1413–1417, Aug. 1999.
[47] A. V. Vertiatchikh and L. F. Eastman, “Effect of the surface and barrier defects on the AlGaN/GaN HEMT low-frequency noise performance,” IEEE Electron Device Lett., vol. 24, no. 9, pp. 535–537, Sep. 200
[48] S. Levantino, C. Samori, A. Zanchi, and A. L. Lacaita, “AM-to-PM conversion in varactor-tuned oscillators,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 49, no. 7, pp. 509–513, Jul. 2002.
[49] G. Meneghesso et al., "Reliability of GaN High-Electron-Mobility Transistors: State of the Art and Perspectives," IEEE Trans. Device and Materials Reliability, vol. 8, no. 2, pp. 332-343, June 2008.
[50] J. A. del Alamo, J. Joh, “GaN HEMT reliability,” Microelectronics Reliability, vol. 49, pp. 1200-1206, 2009.
[51] S. C. Binari et al., "Trapping effects and microwave power performance in AlGaN/GaN HEMTs," IEEE Tran. Electron Devices, vol. 48, no. 3, pp. 465-471, Mar 2001.
[52] R. Vetury, N. Q. Zhang, S. Keller and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 560-566, Mar 2001.
[53] Tian-Li Wu, et al, “Correlation of interface states/border traps and threshold voltage shift on AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors,” Appl. Phys. Lett. 107, 093507, 2015.
[54] S.–L. Jang, Y.-H. Chang, and W.-C. Lai,” A feedback GaN HEMT oscillator,” ICIMMT 2018, Chengdu, Sichuan, China, May 6-9, 2018.
[55] S.–L. Jang, Y.-H. Chang, J.-S. Chiou and W.-C. Lai, “A single GaN HEMT oscillator with 4-path inductors,”IEEE ISNE-2018, Taipei, Taiwan 2018.
[56] S.–L. Jang, et al,” An 4.7 GHz low power cross-coupled GaN HEMT oscillator ,”Microw. Opt. Technol. Lett. Accepted 2018.
[57] C. Sanabria, H. Xu, S. Heikman, U. K. Mishra, and R. A. York, “A GaN differential oscillator with improved harmonic performance,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 463–465, Jul. 2005.
[58] M. J. Pelk, W. C. E. Neo, J. R. Gajadharsing, R. S. Pengelly, and L. C. N. de Vreede, “A high-efficiency 100-W GaN three-way Doherty amplifier for base-station applications,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 7, pp. 1582–1591, Jul. 2008.
[59] J. J. M. Rubio, V. Camarchia, R. Quaglia, E. F. A. Malaver, and M. Pirola, “A 0.6–3.8 GHz GaN power amplifier designed through a simple strategy,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 6, pp. 446–448, Jun. 2016.
[60] O. Axelsson, N. Billström, N. Rorsman, and M. Thorsell, “Impact of trapping effects on the recovery time of GaN based low noise amplifiers,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 31–33, Jan. 2016.
[61] S.-L. Jang, Ke Jen Lin, Wen Cheng Lai, and M.-H. Juang,” A capacitive cross-coupled GaN HEMT injection-locked frequency divider,” Int. Symp. VLSI Design, Automation and Test (VLSI-DAT), 2018.
[62] S.-S. Liu, S.-L. Jang, and C.-G. Chyau, " Compact LDD nMOSFET degradation model," IEEE Trans. Electron Devices, Vol. 45, No. 7, pp.1538-1547, 1998.
[63] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[64] S.-L. Jang, and C.-Y. Lin, ” A wide-locking range class-C injection-locked frequency divider,”Electronics Letters .,vol. 50, 23, pp.1710-1712, 2014.
[65] S.-L. Jang, X.-Y. Hang, and W.–T. Liu, ”Review: capacitive cross-coupled injection-locked frequency dividers,” Analog Integr Circ Sig Process, 88:97–104, 2016.
[66] S.-L.Jang, W.-C. Lai, W.-C. Lai, and M.-H. Juang,“Wide-band divide-by-4 injection-locked frequency divider Using RLC resonator and capacitive cross-coupled oscillator,” IEEE IWS2016, Shanghai, Jiangsu, China 2016.
[67] S.-L.Jang, Capacitive Cross-Coupled Injection-Locked Frequency Dividers, ISBN:978-3-639-82785-9, Golden Light Academic, Saarbrücken, Germany.
[68] S.-L. Jang, J.-F. Huang, C.-C. Fu and M.-H. Juang, “Experimental evaluation of hot-carrier stressed series-tuned injection-locked frequency divider,” Analog Integr Circ Sig Process., 80, pp.133-139, 2014.
[69] J.-F. Huang, S.-L. Jang, W.-C. Liu, and M.-H. Juang, “ Over-voltage stressed dual-resonance injection-locked frequency divider with series-peaking injection device,” Analog Integr Circ Sig Process., 81, pp.789-795, 2014.
[70] S.-L. Jang and T.-C. Fu, “Effects of hot-carrier stress on the RF performance of a 0.18 μm MOS divide-by-4 LC injection-locked frequency divider,” Fluct. Noise Lett. 13, No. 2, 1450009, 2014.

無法下載圖示 全文公開日期 2023/08/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE