簡易檢索 / 詳目顯示

研究生: 顏嘉慰
Jia-Wei Yan
論文名稱: 結合虛擬實境情境學習與多元鷹架之有機化學教學遊戲的發展與評估: 成效、心流與行為之分析
The Development and Evaluation of an Educational Game Integrated with Virtual Reality, Situated Learning, and Multiple Scaffolding for Organic Chemistry Learning: An Analysis of Learning Achievement, Flow, and Behaviors
指導教授: 侯惠澤
Huei-Tse Hou
口試委員: 邱國力
Guo-Li Chiou
陳聖智
Sheng-Chih Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 83
中文關鍵詞: 遊戲式學習虛擬實境化學教學情境式學習鷹架心流
外文關鍵詞: game-based learning, virtual reality, chemistry instruction, situated learning, scaffolding, flow
相關次數: 點閱:615下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

電腦輔助化學學習能突破傳統的化學學習上的諸多限制,尤其在許多較抽象的化合物結構概念及需多次進行實驗了解的化學反應的有機化合物課程單元,而再整合遊戲情境與多元鷹架引導之有機化學教學遊戲,可望能讓學習者在鷹架引導與情境探索中更深入的習得知識與學習診斷。目前,較少針對有機化合物領域的電腦輔助學習遊戲。因此,本研究將發展一個結合有機化合物知識的3D遊戲系統「有機穿越探險」©,並藉由實徵分析探討其科技接受度、心流狀態、學習成效及行為歷程。本研究之研究對象為49位台灣桃園某高中學生。研究結果顯示,學習者在使用此遊戲進行學習後,其學習成效有進步,且對於本遊戲有達到超過中位數的的心流狀態與科技接受度。研究也發現,男性在心流前提的子維度 “自我掌控感” 上顯著高於女性;高學習成效組的學習者在認知有用性上顯著高於低學習成效組;遊戲成功時間較快的學習者在心流前提子維度 “可玩性” 顯著高於成功時間較慢的學習者; 研究並發現學生特定行為 (如: 進行錯誤化學反應或是查看鷹架提示) 的次數在心流與接受度上的程度差異。另外,本研究也初步分析心流狀態、科技接受度、學習成效與行為歷程各維度間彼此影響的路徑模型,並提出相關的研究與教學實務的建議。


Computer-assisted chemistry learning is an innovative teaching approach to assist chemistry courses especially in organic compound learning units including abstract concept of compound structure and the chemical reaction through repeated experiment. Digital educational game integrated with game context and multiple scaffolding for organic chemistry may help learners acquire knowledge and self-evaluate their learning performance via the scaffolding guidance and context exploration. Few computer-assisted learning games for organic compounds have been developed recently. The aim of this study is to develop a 3D educational game "Through the Organic Adventure ©" with organic compound knowledge. The study conducted an empirical evaluation to investigate learners’ flow, technology acceptance, learning performance, and the process of learning behaviors in the game. The participants were 49 students from a high school in Taoyuan, Taiwan. The results showed that through the game learners’ learning performance were improved; meanwhile, flow and technology acceptance were above the median. As respect to flow, males had significantly higher sense of control than that in female, and the playability is significant higher in those who complete the game with less time. Perceived usefulness is more significant in learners with high learning performance than in learners with low learning performance. The finding also explored the difference of students’ with different behavior frequencies (ex: experimenting error chemical reactions or checking scaffolding prompt) in the flow and technology acceptance. In addition, the study had preliminary path analysis for flow, technology acceptance, learning performance, and behaviors to explore the relationship among these different dimensions and provide research and pedagogical implications.

摘要 I Abstract II 致謝 III 目錄 IV 圖次 VII 表次 VIII 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 4 第貳章 文獻探討 6 第一節 虛擬實境輔助科學學習 6 第二節 遊戲輔助化學學習 7 第三節 鷹架理論 10 第四節 情境學習 11 第参章 研究方法 14 第一節 研究設計 14 第二節 研究對象 14 第三節 研究工具 14 第四節 研究程序 30 第五節 資料蒐集與分析 31 第肆章 研究結果 33 第一節 高中生對3D遊戲系統「有機穿越探險」之學習成效、科技接受度與心流程度 33 第二節 不同性別的學習者在心流狀態、科技接受度與學習成效的差異 37 第三節 高、低學習成效組的學習者在學習成效、科技接受度與心流狀態的差異 39 第四節 闖關成功時間多寡高、低分組的學習者在學習成效、科技接受度與心流狀態的差異 41 第五節 放入錯誤化合物高低次數分組的學習者在學習成效、科技接受度與心流狀態的差異 42 第六節 查看提示高低次數分組的學習者在學習成效、科技接受度與心流狀態的差異 44 第七節 相關與路徑分析 46 第伍章 討論 52 第一節 學習者對於「有機穿越探險」©遊戲之心流狀態、科技接受度、學習成效 52 第二節 不同性別的學習者在心流狀態、科技接受度、學習成效之差異 53 第三節 學習成效高低分組的學習者在心流狀態、科技接受度、學習成效之差異 54 第四節 闖關成功時間多寡高低分組的學習者在心流狀態、科技接受度、學習成效之差異 54 第五節 放入錯誤化合物次高低次數分組的學習者在心流狀態、科技接受度、學習成效之差異 55 第六節 查看提示高低次數分組的學習者在心流狀態、科技接受度、學習成效之差異 55 第七節 學習者在此遊戲中的心流狀態、科技接受度、學習成效、闖關成功時間、放入錯誤化合物次數以及查看提示次數各個要素間之關聯與路徑 56 第陸章 結論與建議 57 第一節 結論 57 第二節 建議 59 附錄一:施測同意書 66 附錄二:背景資料問卷 67 附錄三:遊戲經驗問卷 68 附錄四:學習成效評量 69 附錄五:科技接受度評量 71 附錄六:心流評量 72

黃國禎(2012)。行動與無所不在學習的發展與應用。T&D 飛訊, 141, 1-16。
蔡德馨(2014)。結合3D模擬操弄與角色扮演策略之化學教學遊戲的發展與評估:
科技接受度、心流、方向感之分析。國立臺灣科技大學應用科技研究所,未出版碩士論
文,台北市。
余欣鴻(2015)。整合情境學習與認知鷹架之歷史科戰略遊戲式測驗環境之發展與評估:接受度、心流、學習成效與歷程之分析。國立臺灣科技大學應用科技研究所,未出版碩士論文,台北市。
Admiraal, W., Huizenga, J., Akkerman, S., & Ten Dam, G. (2011). The concept of flow in collaborative game-based learning. Computers in Human Behavior, 27(3), 1185-1194.
Alberto, P., & Troutman, A. C. (1999). Applied behavior analysis for teachers (5th ed.). Upper Saddle River, N.J.: Merrill.
Annetta, L. A. (2010). The “I's” have it: A framework for serious educational game design. Review of General Psychology, 14(2), 105.
Barata, A., Nils, P., Ribeiro Filho, M., & Alves Nunes, M. V. (2015). Consolidating Learning in Power Systems: Virtual Reality Applied to the Study of the Operation of Electric Power Transformers. IEEE Transactions on Education, 58(4), 255-261.
Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65-79.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational researcher, 18(1), 32-42.
Buffum, P. S., Frankosky, M., Boyer, K. E., Wiebe, E. N., Mott, B. W., & Lester, J. C. (2016). Collaboration and Gender Equity in Game-Based Learning for Middle School Computer Science. Computing in Science & Engineering, 18(2), 18-28.
Burguillo, J. C. (2010). Using game theory and competition-based learning to stimulate student motivation and performance. Computers & Education, 55(2), 566-575.
Bursztyn, N., Pederson, J., Shelton, B., Walker, A., & Campbell, T. (2015). Utilizing geo-referenced mobile game technology for universally accessible virtual geology field trips. International Journal of Education in Mathematics, Science and Technology, 3(2), 93-100.
Cates, C. U., Lönn, L., & Gallagher, A. G. (2016). Prospective, randomised and blinded comparison of proficiency-based progression full-physics virtual reality simulator training versus invasive vascular experience for learning carotid artery angiography by very experienced operators. BMJ Simulation and Technology Enhanced Learning, 2(1), 1-5.
Chang, W. J. (1997). Factors Related to Teaching Style Preference of Taipei Area Adult Vocational Education Extension Service and Center Teacher. Bulletin of Adult and Continuing Education, 26, 261-282.
Chen, C. H., & Law, V. (2016). Scaffolding individual and collaborative game-based learning in learning performance and intrinsic motivation. Computers in Human Behavior, 55, 1201-1212.
Chen, H. R., Lin, Y. S., Huang, S. Y., & Shiau, S. Y. (2009). Content design for situated game-based learning: an exploration of chinese language poetry learning. In Computational Intelligence and Software Engineering, 2009. CiSE 2009. International Conference on China (pp. 1-4). IEEE.
Chen, M. P., Wong, Y. T., & Wang, L. C. (2014). Effects of type of exploratory strategy and prior knowledge on middle school students’ learning of chemical formulas from a 3D role-playing game. Educational Technology Research and Development, 62(2), 163-185.
Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco: Jossey-Bass.
Dewey, J. (1910). How we think. Mineola. New York: Dover Publications, Inc., Mineola, NY.
Franco Mariscal, A. J., Oliva Martínez, J. M., & Bernal Márquez, S. (2012). An educational card game for learning families of chemical elements. Journal of Chemical Education, 89(8), 1044-1046.
Girault, I., & d’Ham, C. (2014). Scaffolding a Complex Task of Experimental Design in Chemistry with a Computer Environment. Journal of Science Education and Technology, 23(4), 514-526.
Gonen, A., Lev-Ari, L., Sharon, D., & Amzalag, M. (2016). Situated learning: The feasibility of an experimental learning of information technology for academic nursing students. Cogent Education, 3(1), 1154260.
Gorghiu, L. M., Gorghiu, G., Alexandrescu, T., & Borcea, L. (2009). Exploring Chemistry Using Virtual Instrumentation-Challenges and Successes. Research, Reflections and Innovations in Integrating ICT in Education, 1, 371-375.
Heradio, R., de la Torre, L., Galan, D., Cabrerizo, F. J., Herrera-Viedma, E., & Dormido, S. (2016). Virtual and remote labs in education: A bibliometric analysis. Computers & Education, 98, 14-38.
Hogle, J. G. (1996). Considering games as cognitive tools: In search of effective.
Hou, H. T. (2015). Integrating cluster and sequential analysis to explore learners’ flow and behavioral patterns in a simulation game with situated-learning context for science courses: a video-based process exploration.Computers in human behavior, 48, 424-435.
Hou, H. T., & Chou, Y. S. (2012). Exploring the technology acceptance and flow state of a chamber escape game-Escape The Lab© for learning electromagnet concept. Poster presented at the 20th International Conference on Computers in Education (ICCE2012), Singapore, November 26-30, 2012.
Hu, L. L., Tseng, S. S., & Lee, T. J. (2013, July). Towards Scaffolding Problem-Solving Implementation Process in Undergraduate Programming Course. In Advanced Learning Technologies (ICALT), 2013 IEEE 13th International Conference on (pp. 417-418).
Joo, J. (2016). Exploring Korean Collegians' Smartphone Game Behavior: Focusing on Conciseness, Perceived Ease of Use, Perceived Enjoyment, Flow, and Intent to Use. Journal of Digital Convergence, 14(1), 379-386.
Kao, G. Y. M., Chiang, C. H., & Sun, C. T. (2015, July). Designing an Educational Game with Customized Scaffolds for Learning Physics. InAdvanced Applied Informatics (IIAI-AAI), 2015 IIAI 4th International Congress on (pp. 303-306). IEEE.
Kiili, K. (2006). Evaluations of an experiential gaming model. An Interdisciplinary Journal on Humans in ICT Environments, 2(2), 187-201.
Limniou, M., Papadopoulos, N., & Whitehead, C. (2009). Integration of simulation into pre-laboratory chemical course: Computer cluster versus WebCT. Computers & Education, 52(1), 45-52.
Lunce, L. M. (2006). Simulations: Bringing the benefits of situated learning to the traditional classroom. Journal of Applied Educational Technology, 3(1), 37-45.
Maccoby, E., & Jacklin, C. N. (1974). The Psychology of Sex Difference. Stanford: Stanford University Press.
Ma, F. T., & Yeh, M. Y. (2015, August). The development of the situated learning materials in the Nursing and Communication course. In Ubi-Media Computing (UMEDIA), 2015 8th International Conference on (pp. 298-302). IEEE.
Meluso, A., Zheng, M., Spires, H. A., & Lester, J. (2012). Enhancing 5th graders’ science content knowledge and self-efficacy through game-based learning. Computers & Education, 59(2), 497-504.
Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students' learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 29-40.
Merchant, Z., Goetz, E. T., Keeney-Kennicutt, W., Kwok, O. M., Cifuentes, L., & Davis, T. J. (2012). The learner characteristics, features of desktop 3D virtual reality environments, and college chemistry instruction: A structural equation modeling analysis. Computers & Education, 59(2), 551-568.
Morris, T. A. (2011). Go chemistry: a card game to help students learn chemical formulas. Journal of Chemical Education, 88(10), 1397-1399.
Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation.Computers & Education, 52(1), 1-12.
Passig, D., Tzuriel, D., & Eshel-Kedmi, G. (2016). Improving children's cognitive modifiability by dynamic assessment in 3D Immersive Virtual Reality environments. Computers & Education, 95, 296-308.
Piaget, J. (1972). Intellectual evolution from adolescence to adulthood. Human development, 15(1), 1-12.
Prensky, M. (2007). Digital Game-Based Learning. New York: McGraw-Hill.
Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13(3), 273-304.
Rius-Alonso, C., Quezada-González, Y., & Torres-Domínguez, H. (2011). The use of portabledevices to teach organic chemistry at the university, virtual reality. ICERI2011 Proceedings, 1621-1630.
Shanmugapriya, M., & Tamilarasi, A. (2012). Developing a Mobile Adaptive Test (MAT) in an M-Learning Environment for Android Based 3G Mobile Devices. International Journal on Computer Science and Engineering, 4(2), 153.
Sun, C. T., Wang, D. Y., & Chan, H. L. (2011). How digital scaffolds in games direct problem-solving behaviors. Computers & Education, 57(3), 2118-2125.
Sutherland, I. E. (1965). The ultimate display. Multimedia: From Wagner to virtual reality.
Tsai, F. H., Tsai, C. C., & Lin, K. Y. (2015). The evaluation of different gaming modes and feedback types on game-based formative assessment in an online learning environment. Computers & Education, 81, 259-269.
Tsai, M. J., Huang, L. J., Hou, H. T., Hsu, C. Y., & Chiou, G. L. (2016). Visual behavior, flow and achievement in game-based learning. Computers & Education, 98, 115-129.
van de Pol, J., & Elbers, E. (2013). Scaffolding student learning: A micro-analysis of teacher–student interaction. Learning, Culture and Social Interaction, 2(1), 32-41.
Vygotsky, L. (1978). Interaction between learning and development. Readings on the development of children, 23(3), 34-41.
Wood, P., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17, 89-100.
Yoon, S. A., Elinich, K., Wang, J., SCHOONEVELD, J. B., & Anderson, E. (2013). Scaffolding informal learning in science museums: How much is too much?. Science Education, 97(6), 848-877.

QR CODE