簡易檢索 / 詳目顯示

研究生: 邱奕豪
Yi-Hao Chiu
論文名稱: 建立量子點修飾技術提升非侵入式汗液葡萄糖感測元件之電化學偵測靈敏度與穩定性
Development of Quantum Dot Modification Strategies to Enhance the Electrochemical Detection Sensitivity and Stability of Non-invasive Sweat Glucose Sensors
指導教授: 葉旻鑫
Min-Hsin Yef
口試委員: 俞勝為
謝元榜
吳子和
葉旻鑫
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 112
中文關鍵詞: 電催化觸媒酵素型電化學感測器可撓曲式裝置碳氮量子點石墨烯量子點葡萄糖氮摻雜非侵入式氧氣還原反應聚苯胺普魯士藍普魯士藍衍伸物汗液穿 戴式裝置
外文關鍵詞: Enzymatic, glucose, Electrochemical biosensor, Flexible, Carbon nitride quantum dots (CNQDs), N-doped, Graphene quantum dots (GQDs), polyaniline (PANI), Prussian blue (PB), Prussian blue analogues (PBA), Sweat, Non-invasive, Wearable sensor
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來由於感測技術的快速進步,健康監測領域發生了重大的變化,尤其是在可穿戴生 物傳感器方面,這些具前瞻性的感測技術能讓使用者更有效率地獲取準確的健康信息並獲得 更佳的醫療效果,藉由通過連續監測更能讓使用者提前意識到疾病前兆進而採取更有效的預 防。可穿戴生物傳感器通常用於非侵入性監測人體液體(尿液,眼淚與汗液等)中的尿素、尿酸、 乳酸和葡萄糖等資訊,與傳統生物傳感器相比,它們具有即時測量以及非侵入性的特點,使 其在應用上更加多元化。而在這之中,基於汗液分析的可穿戴生物傳感器更成為了一種非常 熱門的研究議題,解決了必須通過血液樣本才能監測到生物標誌物的需求。
葡萄糖是人體中的一個重要生物標誌物,是監測多種疾病的關鍵指標,尤其是與血糖失 調相關的疾病(如糖尿病和半乳糖血症);而為了解決一般監測需要侵入式的血樣採集方法,透 過非侵入式並整合穿戴式電子器件來實現葡萄糖監測受到矚目,透過感測貼片就是一種有前 景的解決方案,不僅能夠無縫融入日常生活,也能同時實現連續監測。然而,感測電極的偵 測性能可能會在日常生活中劇烈且不規則的動作所造成的扭曲使其性能大打折扣,因此具有 高機械延展性的導電高分子材料變成為了一個可行的方案,而在這之中聚苯氨因為對雙氧水 具有電催化活性以及簡便的製程方法而脫穎而出,但聚苯氨對於中性溶液的低導電活性仍然 是一個待解決的問題。面對這種障礙,導入高導電能力的碳材料到聚苯氨中會是一個有效的 解決方案,其中碳化氮量子點因具有高反應表面積以及良好的電子傳導能力而著名,再加上 其特殊的 Pyridinic N 結構,能夠改善聚苯氨在中性環境中低導電能力的問題。有鑑於此,在 本論文的第四章提出設計了一種碳化氮量子點修飾聚苯胺電極應用於可饒曲穿戴式生物傳感 器。碳化氮量子點成功地促進了聚苯胺的電荷傳遞,從而顯著提高了靈敏度,在檢測雙氧水 時的靈敏度達到了 95.47 ± 1.31 μA mM−1 cm−2,超越了未經修飾的聚苯氨(45.06 ± 1.07 μA mM−1 cm−2)。此外,結合固定葡萄糖氧化酶技術,碳化氮量子點修飾聚苯胺電極在檢測人工 汗液中的葡萄糖靈敏度高達 49.71 ± 0.45 μA mM−1 cm−2。此外,而在經過連續彎曲測試 300 次 後,碳化氮量子點修飾聚苯胺電極在葡萄糖檢測中的靈敏度仍然保持在 94.88%,且沒有出現任何可見表面裂紋。因此,本研究所提出的碳化氮量子點修飾聚苯胺電極為開發高穩定柔性 感測電極的人體汗液葡萄糖監測系統,提供了一個極具潛力的解決方案。
為了使量子點修飾技術能夠更貼近商業化葡萄糖感測器的應用,在本研究進一步將其導 入在以普魯士藍作為感測材料之生物感測器來進一步提升穩定性與感測能力。普魯士藍是目 前商業化常應用於雙氧水感測材料,能夠在相當低的施加電位下進行雙氧水的還原反應,換 言之,在反應時可以避免氧氣或其他干擾物的反應影響測量結果,結合葡萄糖氧化酶便可成 為良好的葡萄糖生物傳感器。然而雙氧水對於普魯士藍感測層具有破壞性進而導致晶格崩塌 而造成電催化能力大幅降低,因此已經有非常多的研究著重於提升普魯士藍的穩定性。目前 已有許多文獻證明了導入普魯士藍衍生物保護層能夠彌補其感測電極的不穩定性,然而在提 升了穩定性的背後,隨之而來的是驟降的感測能力,這原因可能是低活性的普魯士藍衍生物 保護層覆蓋住普魯士藍感測層的活性位點。有鑑於此,本研究導入氮參雜石墨烯量子點修飾 普魯士藍衍生物保護層實現雙層感測電極結構,以提升普魯士藍感測電極之穩定性與感測能 力。氮參雜石墨烯量子點是個具有奈米及尺寸以及良好材料相容性的物質,其具有大量親水 性官能基,能成功地改善普魯士藍衍生物的結構大小以及親水性能力,進而降低待測物的擴 散阻力,進而顯著提高了靈敏度。使用雙層普魯士藍感測電極在檢測雙氧水時的靈敏度達到 了 221.29 ± 1.77 μA mM−1 cm−2,超越了單層普魯士藍感測電極(129.37 ± 4.57 μA mM−1 cm−2), 此外,通過固定葡萄糖氧化酶於電極表面,雙層普魯士藍感測電極對於葡萄糖的感測靈敏度 高達 90.49 ± 1.08 μA mM−1 cm−2。更重要的是,雙層普魯士藍感測電極在連續操作 90 分鐘下 仍具有 87.37%的電流穩定性,其訊號穩定性比單層普魯士藍感測電極來得更加可靠。因此, 本研究所提出的的氮參雜石墨烯量子點修飾普魯士藍衍生物保護層,結合普魯士藍感測層的 雙層結構感測電極對於非侵入式連續監控葡萄糖濃度提供了一個新穎且可靠的路徑。


For diabetics, it is critical to comprehend the biomarker levels, particularly glucose, vary over time in order to guide early medication. Wearable sweat biosensors have received attention recently due to their continuously monitor the severity level and work in a non-invasive method. However, the primary problems are that the stiff electrocatalytic layer may cause unwanted metal cracking as a result of concatenated movements, which would reduce stability and sensitivity. In response to this issue, we designed a carbon nitride quantum dots (CNQDs) integrated polyaniline (PANI) nanocomposite layer as a flexible sensing electrode for wearable sweat biosensors with outstanding detection accuracy for non-invasive glucose monitoring in Chapter 4. The sensitivity of PANI is substantially enhanced by the high surface area and abundant edge structures of CNQDs, which facilitate charge transfer. Furthermore, the pyridinic N functional groups in CNQDs improve the low conductivity of PANI in neutral solutions and help PANI retain its protons by introducing negative charges to the PANI surface, thereby enhancing the charge mobility of component. The effect resulting in a remarkable enhancement in sensitivity with a value of 95.47 ± 1.31 and 45.06 ± 1.07 μA mM−1 cm−2 in detecting H2O2, surpassing pristine PANI. Furthermore, through the strategic immobilization of glucose oxidase (GOx) within a flexible electrode, significant effectiveness was observed in detecting glucose in artificial sweat. This flexible electrode, followed by continuous bending test, maintained an impressive sensitivity to glucose detection to 94.88%, without any visible cracks in the nanocomposite layer's morphology. In regard to this, our CNQDs/PANI nanocomposite offers a promising solution for developing a dependable monitoring system with sturdy electrodes for non-invasive human sweat glucose monitoring via wearable biosensors. In Chapter 5, improvements to the preciseness and dependability of wearable biosensors for diabetic tracking are necessary for enhancing the quality of the results for patients. The consumption of pristine Prussian Blue (PB) or the combination with its analogues (PBA) has been the subject of numerous studies that have evaluated glucose sensor. However, the first approach is confronted with obstacles as the consequence of the low stability that arises from the reaction with hydrogen peroxide, whereas the other is afflicted by diminished sensitivity as an effect of obstructed active sites. We addressed these issues by incorporating nitrogen-doped graphene quantum dots (NGQDs) into the protective layer of PBA, in conjunction with a PB sensing layer, to develop a wearable biosensor that possesses exceptional stability and accuracy in detection. The surface properties of PBA were successfully improved by NGQDs, resulting in a substantial rise in the overall sensor sensitivity. The sensitivity of 221.29 ± 1.77 μA mM−1 cm−2 was achieved while detecting H2O2, which is comparable to the pristine PB with acceptable sensing capabilities. Furthermore, the glucose detection sensitivity was significantly enhanced by the strategic immobilization of GOx on the electrode (90.49 ± 1.08 μA mM−1 cm−2). More importantly, this nanomaterial demonstrated outstanding stability. The current density retention rate reached 87.37 % through long-term operation at a specific concentration, and the sensitivity remained at 88.17 % with continuous repeated use. Therefore, our NGQDs/PBA/PB nanocomposite provides a prospective solution for the development of a dependable monitoring system with durable electrodes that is appropriate for the non-invasive monitoring of glucose in human sweat through wearable biosensors.

致謝 i 中文摘要 I Abstract III Table of Contents V List of Tables VIII List of Figures IX Nomenclature XIII Chapter 1 Introduction 1 1.1 An introduction of Biosensors 1 1.1.1 The Perspective of Biosensors 1 1.1.2 The advancement of glucose detection 2 1.2 Overview of a Non-invasive Biosensor 6 1.2.1 The Introduction of Wearable Biosensor 6 1.2.2 Wearable Biosensor platform for Biofluids 7 Chapter 2 Literature Review and Research Scope 9 2.1 Overview of Carbon Nitride Quantum Dots (CNQDs) 9 2.2 Overview of Graphene Quantum Dots (GQDs) 12 2.2.1 Introduction of GQDs 12 2.2.2 Heteroatom Doping of GQDs 13 2.3 Overview of Polyaniline (PANI) 15 2.3.1 Introduction of PANI 15 2.3.2 PANI for Enzymatic Glucose detection 16 2.4 Overview of Prussian Blue Analogues (PBA) 17 2.4.1 Introduction of PBA 17 2.4.2 PBA for Enzymatic Glucose detection 18 2.5 Motivation and Research Scope 19 Chapter 3 Experimental Procedure 23 3.1 Experimental Chemicals and Instrument 23 3.1.1 Electrochemical Analysis 24 3.1.2 Raman Spectroscopy 27 3.1.3 X-Ray Diffractometer (XRD) 29 3.1.4 Field Emission-Scanning Electron Microscopy (FE-SEM) 30 3.1.5 Transmission Electron Microscope (TEM) 31 3.1.6 Energy-dispersive X-ray Spectroscopy (EDX) 32 3.1.7 X-ray Photoelectron Spectroscopy (XPS) 33 3.1.8 Photoluminescence Spectroscopy (PL) 35 3.1.9 X-ray Absorption Spectroscopy (XAS) 36 3.1.10 Inductivity Coupled Plasma Optical Emission Spectrometry (ICP-OES) 37 3.2 Experimental Materials 39 3.3 Experimental Procedure 40 3.3.1 Preparation of Carbon Nitride Quantum Dots (CNQDs) 40 3.3.2 Synthesis of Nitrogen-doped Graphene Quantum Dots (NGQDs) 40 3.3.3 Functionalized the Screen-Printed Carbon Electrodes (SPCEs) 40 3.3.4 Synthesis of PANI, CNQDs/PANI and GOx/CNQDs/PANI nanocomposites on the SPCEs 41 3.3.5 Synthesis of PB nanocomposites on the SPCEs 41 3.3.6 Synthesis of PBA/PB, NGQDs/PBA/PB and GOx/NGQDs/PBA/PB nanocomposites on the SPCEs 42 3.3.7 Electrochemical Measurement 42 3.3.8 Preparation of PBS and artificial sweat 43 Chapter 4 Engineering carbon nitride quantum dots on polyaniline nanocomposite layer for a non-invasive, flexible wearable sweat biosensor for glucose monitoring 44 4.1 Motivation and Conceptual Design 44 4.2 Results and Discussion 47 4.2.1 Characterization of CNQDs 47 4.2.2 Characterization of CNQDs/PANI nanocomposite 50 4.2.3 Electrocatalytic performance for various CNQDs/PANI samples within the detection of H2O2 54 4.2.4 Electrocatalytic performance of GOx/CNQDs/PANI nanocomposites for the detection of glucose 59 4.2.5 Anti-interference ability of GOx/CNQDs/PANI based sensor 62 4.2.6 CNQDs/PANI modified wearable electrode for glucose monitoring 64 4.3 Summary 67 Chapter 5 Constructing ordered Prussian blue/Prussian Blue Analogue pair nanocomposite by integrating N-doped GQDs for a non-invasive glucose monitoring 68 5.1 Motivation and Conceptual Design 68 5.2 Results and Discussion 72 5.2.1 Characterization of NGQDs 72 5.2.2 Characterization of NGQDs/PBA nanocomposite 74 5.2.3 Electrocatalytic performance for NGQDs/PBA/PB within the detection of H2O2 78 5.2.4 Electrocatalytic performance of NGQDs/PBA/PB nanocomposites for the detection of glucose 87 5.3 Summary 93 Chapter 6 Conclusion and Suggestion 94 6.1 General Conclusion 94 6.2 Suggestions and Prospects 96 Chapter 7 Reference 98

[1] C. Karunakaran, R. Rajkumar, K. Bhargava, Introduction to biosensors, in: Biosensors and bioelectronics, Elsevier, 2015, pp. 1-68.
[2] I. Higgins, C. Lowe, Introduction to the principles and applications of biosensors, Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 316 (1987) 3-11.
[3] E.E. Ventura, J.N. Davis, M.I. Goran, Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content, Obesity, 19 (2011) 868-874.
[4] W.H. Organization, Global health risks: mortality and burden of disease attributable to selected major risks, World Health Organization, 2009.
[5] F. Conzuelo, M. Gamella, S. Campuzano, M. Ruiz, A. Reviejo, J. Pingarron, An integrated amperometric biosensor for the determination of lactose in milk and dairy products, Journal of agricultural and food chemistry, 58 (2010) 7141-7148.
[6] M.H. Hassan, C. Vyas, B. Grieve, P. Bartolo, Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing, Sensors, 21 (2021) 4672.
[7] X. Niu, X. Li, J. Pan, Y. He, F. Qiu, Y. Yan, Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges, RSC advances, 6 (2016) 84893-84905.
[8] E. Sehit, Z. Altintas, Significance of nanomaterials in electrochemical glucose sensors: An updated review (2016-2020), Biosensors and Bioelectronics, 159 (2020) 112165.
[9] K. Dhara, D.R. Mahapatra, Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials, Microchimica Acta, 185 (2018) 1-32.
[10] S. Karmakar, S.K. Kundu, S.K. Bandyopadhyay, M. Gangopadhyay, G. Taki, Importance of transition metal modified graphene-based non-enzymatic blood glucose sensors, in: 2020 4th International conference on electronics, materials engineering & nano-technology (IEMENTech), IEEE, 2020, pp. 1-4.
[11] B.K. Jena, C.R. Raj, Enzyme‐free amperometric sensing of glucose by using gold nanoparticles, Chemistry–A European Journal, 12 (2006) 2702-2708.
[12] E. Witkowska Nery, M. Kundys, P.S. Jelen, M. Jönsson-Niedziółka, Electrochemical glucose sensing: is there still room for improvement?, in, ACS Publications, 2016.
[13] L.C. Clark Jr, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of sciences, 102 (1962) 29-45.
[14] A.E. Cass, G. Davis, G.D. Francis, H.A.O. Hill, W.J. Aston, I.J. Higgins, E.V. Plotkin, L.D. Scott, A.P. Turner, Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Analytical chemistry, 56 (1984) 667-671.
[15] J.E. Frew, H.A.O. Hill, Electrochemical biosensors, Analytical chemistry, 59 (1987) 933A-944A.
[16] N.C. Foulds, C.R. Lowe, Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 82 (1986) 1259-1264.
[17] A. Sharma, M. Badea, S. Tiwari, J.L. Marty, Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring, Molecules, 26 (2021) 748.
[18] S. Ajami, F. Teimouri, Features and application of wearable biosensors in medical care, Journal of Research in Medical Sciences, 20 (2015) 1208-1215.
[19] A. Martín, J. Kim, J.F. Kurniawan, J.R. Sempionatto, J.R. Moreto, G. Tang, A.S. Campbell, A. Shin, M.Y. Lee, X. Liu, Epidermal microfluidic electrochemical detection system: Enhanced sweat sampling and metabolite detection, ACS sensors, 2 (2017) 1860-1868.
[20] A.J. Bandodkar, W. Jia, C. Yardımcı, X. Wang, J. Ramirez, J. Wang, Tattoo-based noninvasive glucose monitoring: a proof-of-concept study, Analytical chemistry, 87 (2015) 394-398.
[21] J. Kim, A.S. Campbell, B.E.-F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring, Nature biotechnology, 37 (2019) 389-406.
[22] M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: a review, Advanced Functional Materials, 26 (2016) 1678-1698.
[23] S. Emaminejad, W. Gao, E. Wu, Z.A. Davies, H. Yin Yin Nyein, S. Challa, S.P. Ryan, H.M. Fahad, K. Chen, Z. Shahpar, Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform, Proceedings of the National Academy of sciences, 114 (2017) 4625-4630.
[24] J. Min, J.R. Sempionatto, H. Teymourian, J. Wang, W. Gao, Wearable electrochemical biosensors in North America, Biosensors and Bioelectronics, 172 (2021) 112750.
[25] J.R. Sempionatto, L.C. Brazaca, L. García-Carmona, G. Bolat, A.S. Campbell, A. Martin, G. Tang, R. Shah, R.K. Mishra, J. Kim, Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose, Biosensors and Bioelectronics, 137 (2019) 161-170.
[26] A.E. Kownacka, D. Vegelyte, M. Joosse, N. Anton, B.J. Toebes, J. Lauko, I. Buzzacchera, K. Lipinska, D.A. Wilson, N. Geelhoed-Duijvestijn, Clinical evidence for use of a noninvasive biosensor for tear glucose as an alternative to painful finger-prick for diabetes management utilizing a biopolymer coating, Biomacromolecules, 19 (2018) 4504-4511.
[27] L. Garcia-Carmona, A. Martin, J.R. Sempionatto, J.R. Moreto, M.C. Gonzalez, J. Wang, A. Escarpa, Pacifier biosensor: toward noninvasive saliva biomarker monitoring, Analytical chemistry, 91 (2019) 13883-13891.
[28] J. Kim, S. Imani, W.R. de Araujo, J. Warchall, G. Valdés-Ramírez, T.R. Paixão, P.P. Mercier, J. Wang, Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics, Biosensors and Bioelectronics, 74 (2015) 1061-1068.
[29] J. Xu, Y. Fang, J. Chen, Wearable biosensors for non-invasive sweat diagnostics, Biosensors, 11 (2021) 245.
[30] H. Jin, Y.S. Abu‐Raya, H. Haick, Advanced materials for health monitoring with skin‐based wearable devices, Advanced healthcare materials, 6 (2017) 1700024.
[31] W. Wang, J.C. Yu, Z. Shen, D.K.L. Chan, T. Gu, g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application, Chemical Communications, 50 (2014) 10148-10150.
[32] M. Majdoub, D. Sengottuvelu, S. Nouranian, A. Al‐Ostaz, Graphitic Carbon Nitride Quantum Dots (g‐C3N4 QDs): From Chemistry to Applications, ChemSusChem, (2024) e202301462.
[33] J. Zhou, Y. Yang, C.-y. Zhang, A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission, Chemical communications, 49 (2013) 8605-8607.
[34] P. Liu, Y. Sun, S. Wang, H. Zhang, Y. Gong, F. Li, Y. Shi, Y. Du, X. Li, S.-s. Guo, Two dimensional graphitic carbon nitride quantum dots modified perovskite solar cells and photodetectors with high performances, Journal of Power Sources, 451 (2020) 227825.
[35] H. Liu, X. Wang, H. Wang, R. Nie, Synthesis and biomedical applications of graphitic carbon nitride quantum dots, Journal of materials chemistry B, 7 (2019) 5432-5448.
[36] T. An, J. Tang, Y. Zhang, Y. Quan, X. Gong, A.M. Al-Enizi, A.A. Elzatahry, L. Zhang, G. Zheng, Photoelectrochemical conversion from graphitic C3N4 quantum dot decorated semiconductor nanowires, ACS Applied Materials & Interfaces, 8 (2016) 12772-12779.
[37] W. Chen, G. Lv, W. Hu, D. Li, S. Chen, Z. Dai, Synthesis and applications of graphene quantum dots: a review, Nanotechnology Reviews, 7 (2018) 157-185.
[38] M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene, Chemical reviews, 110 (2010) 132-145.
[39] P.R. Kharangarh, N.M. Ravindra, G. Singh, S. Umapathy, Synthesis of luminescent graphene quantum dots from biomass waste materials for energy‐related applications—an Overview, Energy Storage, 5 (2023) e390.
[40] P. Tian, L. Tang, K. Teng, S. Lau, Graphene quantum dots from chemistry to applications, Materials today chemistry, 10 (2018) 221-258.
[41] S.M. Mousavi, S.A. Hashemi, M. Yari Kalashgrani, D. Kurniawan, A. Gholami, V. Rahmanian, N. Omidifar, W.-H. Chiang, Recent advances in inflammatory diagnosis with graphene quantum dots enhanced SERS detection, Biosensors, 12 (2022) 461.
[42] Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond, Energy & Environmental Science, 5 (2012) 8869-8890.
[43] P. Zuo, X. Lu, Z. Sun, Y. Guo, H. He, A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots, Microchimica Acta, 183 (2016) 519-542.
[44] W. Liu, M. Li, G. Jiang, G. Li, J. Zhu, M. Xiao, Y. Zhu, R. Gao, A. Yu, M. Feng, Graphene quantum dots‐based advanced electrode materials: design, synthesis and their applications in electrochemical energy storage and electrocatalysis, Advanced Energy Materials, 10 (2020) 2001275.
[45] M. Kaur, M. Kaur, V.K. Sharma, Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment, Advances in Colloid and Interface Science, 259 (2018) 44-64.
[46] S.F. Chua, A. Nouri, E. Mahmoudi, W.L. Ang, A.W. Mohammad, Modified-graphene quantum dot thin-film nanocomposite membrane for enhanced nanofiltration performance and antifouling properties: Minimal incorporation, Journal of Water Process Engineering, 53 (2023) 103664.
[47] G. Liao, Q. Li, Z. Xu, The chemical modification of polyaniline with enhanced properties: A review, Progress in Organic Coatings, 126 (2019) 35-43.
[48] M. Beygisangchin, S. Abdul Rashid, S. Shafie, A.R. Sadrolhosseini, H.N. Lim, Preparations, properties, and applications of polyaniline and polyaniline thin films—A review, Polymers, 13 (2021) 2003.
[49] Y. Wang, Preparation and application of polyaniline nanofibers: an overview, Polymer International, 67 (2018) 650-669.
[50] W.-C. Lee, K.-B. Kim, N. Gurudatt, K.K. Hussain, C.S. Choi, D.-S. Park, Y.-B. Shim, Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer, Biosensors and Bioelectronics, 130 (2019) 48-54.
[51] V. Osuna, A. Vega-Rios, E.A. Zaragoza-Contreras, I.A. Estrada-Moreno, R.B. Dominguez, Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection, Biosensors, 12 (2022) 137.
[52] Y.-C. Lin, M. Rinawati, L.-Y. Chang, Y.-X. Wang, Y.-T. Wu, Y.-H. Yen, K.-J. Chen, K.-C. Ho, M.-H. Yeh, A non-invasive wearable sweat biosensor with a flexible N-GQDs/PANI nanocomposite layer for glucose monitoring, Sensors and Actuators B: Chemical, 383 (2023) 133617.
[53] W.J. Li, C. Han, G. Cheng, S.L. Chou, H.K. Liu, S.X. Dou, Chemical properties, structural properties, and energy storage applications of Prussian blue analogues, Small, 15 (2019) 1900470.
[54] S. Pintado, S. Goberna-Ferrón, E.C. Escudero-Adán, J.R. Galán-Mascarós, Fast and persistent electrocatalytic water oxidation by Co–Fe Prussian blue coordination polymers, Journal of the American Chemical Society, 135 (2013) 13270-13273.
[55] L. Du, C. Du, G. Chen, F. Kong, G. Yin, Y. Wang, Metal–organic coordination networks: prussian blue and its synergy with pt nanoparticles to enhance oxygen reduction kinetics, ACS Applied Materials & Interfaces, 8 (2016) 15250-15257.
[56] B. Bornamehr, V. Presser, A.J. Zarbin, Y. Yamauchi, S. Husmann, Prussian blue and its analogues as functional template materials: control of derived structure compositions and morphologies, Journal of materials chemistry A, 11 (2023) 10473-10492.
[57] I. Lee, D. Probst, D. Klonoff, K. Sode, Continuous glucose monitoring systems-Current status and future perspectives of the flagship technologies in biosensor research, Biosensors and Bioelectronics, 181 (2021) 113054.
[58] I.L. de Mattos, L. Gorton, T. Laurell, A. Malinauskas, A.A. Karyakin, Development of biosensors based on hexacyanoferrates, Talanta, 52 (2000) 791-799.
[59] A. Salimi, K. Abdi, Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol–gel technique: application to amperometric detection of hydrazine and hydroxyl amine, Talanta, 63 (2004) 475-483.
[60] A.A. Karyakin, Advances of Prussian blue and its analogues in (bio) sensors, Current opinion in electrochemistry, 5 (2017) 92-98.
[61] N.A. Sitnikova, A.V. Borisova, M.A. Komkova, A.A. Karyakin, Superstable Advanced Hydrogen Peroxide Transducer Based on Transition Metal Hexacyanoferrates, Analytical Chemistry, 83 (2011) 2359-2363.
[62] A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical methods: fundamentals and applications, John Wiley & Sons, 2022.
[63] Y.-X. Wang, M. Rinawati, J.-D. Zhan, K.-Y. Lin, C.-J. Huang, K.-J. Chen, H. Mizuguchi, J.-C. Jiang, B.-J. Hwang, M.-H. Yeh, Boron-Doped Graphene Quantum Dots Anchored to Carbon Nanotubes as Noble Metal-Free Electrocatalysts of Uric Acid for a Wearable Sweat Sensor, ACS Applied Nano Materials, 5 (2022) 11100-11110.
[64] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of chemical education, 95 (2018) 197-206.
[65] X. Yang, A.L. Rogach, Electrochemical techniques in battery research: a tutorial for nonelectrochemists, Advanced Energy Materials, 9 (2019) 1900747.
[66] S. Mosca, C. Conti, N. Stone, P. Matousek, Spatially offset Raman spectroscopy, Nature Reviews Methods Primers, 1 (2021) 1-16.
[67] A.A. Bunaciu, E.G. UdriŞTioiu, H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications, Critical reviews in analytical chemistry, 45 (2015) 289-299.
[68] Y. Jusman, S.C. Ng, N.A. Abu Osman, Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX, The Scientific World Journal, 2014 (2014).
[69] A.V. Agronskaia, J.A. Valentijn, L.F. van Driel, C.T. Schneijdenberg, B.M. Humbel, P.M.v.B. en Henegouwen, A.J. Verkleij, A.J. Koster, H.C. Gerritsen, Integrated fluorescence and transmission electron microscopy, Journal of structural biology, 164 (2008) 183-189.
[70] W. Giurlani, E. Berretti, M. Innocenti, A. Lavacchi, Measuring the thickness of metal coatings: A review of the methods, Coatings, 10 (2020) 1211.
[71] V.-D. Hodoroaba, Energy-dispersive X-ray spectroscopy (EDS), in: Characterization of Nanoparticles, Elsevier, 2020, pp. 397-417.
[72] C.J. Powell, A. Jablonski, Progress in quantitative surface analysis by X-ray photoelectron spectroscopy: Current status and perspectives, Journal of Electron Spectroscopy and Related Phenomena, 178 (2010) 331-346.
[73] T.V. Ivanova, D. Permyakov, E. Khestanova, Mechanical deformation of atomically thin layers during stamp transfer, in: Journal of Physics: Conference Series, IOP Publishing, 2021, pp. 012058.
[74] L. Fu, Y. Tang, Y. Lin, Advances in Synchrotron Radiation‐based X‐ray Absorption Spectroscopy to Characterize the Fine Atomic Structure of Single‐atom Nanozymes, Chemistry–An Asian Journal, 15 (2020) 2110-2116.
[75] S. Cherevko, K. Mayrhofer, On-line inductively coupled plasma spectrometry in electrochemistry: Basic principles and applications, (2018).
[76] A.J. Bandodkar, I. Jeerapan, J. Wang, Wearable chemical sensors: Present challenges and future prospects, Acs Sensors, 1 (2016) 464-482.
[77] G. Matzeu, L. Florea, D. Diamond, Advances in wearable chemical sensor design for monitoring biological fluids, Sensors and Actuators B: Chemical, 211 (2015) 403-418.
[78] A.J. Bandodkar, J. Wang, Non-invasive wearable electrochemical sensors: a review, Trends in biotechnology, 32 (2014) 363-371.
[79] J.R. Windmiller, J. Wang, Wearable electrochemical sensors and biosensors: a review, Electroanalysis, 25 (2013) 29-46.
[80] K. Malzahn, J.R. Windmiller, G. Valdés-Ramírez, M.J. Schöning, J. Wang, Wearable electrochemical sensors for in situ analysis in marine environments, Analyst, 136 (2011) 2912-2917.
[81] Y.-L. Yang, M.-C. Chuang, S.-L. Lou, J. Wang, Thick-film textile-based amperometric sensors and biosensors, Analyst, 135 (2010) 1230-1234.
[82] K.G. Sun, S.H. Hur, Highly sensitive non-enzymatic glucose sensor based on Pt nanoparticle decorated graphene oxide hydrogel, Sensors and Actuators B: Chemical, 210 (2015) 618-623.
[83] J. Mohapatra, B. Ananthoju, V. Nair, A. Mitra, D. Bahadur, N. Medhekar, M. Aslam, Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions, Applied Surface Science, 442 (2018) 332-341.
[84] X. Jin, G. Li, T. Xu, L. Su, D. Yan, X. Zhang, Fully integrated flexible biosensor for wearable continuous glucose monitoring, Biosensors and Bioelectronics, 196 (2022) 113760.
[85] A.J. Bandodkar, I. Jeerapan, J.-M. You, R. Nuñez-Flores, J. Wang, Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability, Nano Letters, 16 (2016) 721-727.
[86] Y.J. Hong, H. Lee, J. Kim, M. Lee, H.J. Choi, T. Hyeon, D.-H. Kim, Multifunctional Wearable System that Integrates Sweat-Based Sensing and Vital-Sign Monitoring to Estimate Pre-/Post-Exercise Glucose Levels, Advanced Functional Materials, 28 (2018) 1805754.
[87] D. Sangamithirai, S. Munusamy, V. Narayanan, A. Stephen, A voltammetric biosensor based on poly(o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid, Materials Science and Engineering: C, 91 (2018) 512-523.
[88] Y. Liu, A.P.F. Turner, M. Zhao, W.C. Mak, Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing, Biosensors and Bioelectronics, 100 (2018) 374-381.
[89] M. Xu, Y. Song, Y. Ye, C. Gong, Y. Shen, L. Wang, L. Wang, A novel flexible electrochemical glucose sensor based on gold nanoparticles/polyaniline arrays/carbon cloth electrode, Sensors and Actuators B: Chemical, 252 (2017) 1187-1193.
[90] M.H. Naveen, N.G. Gurudatt, Y.-B. Shim, Applications of conducting polymer composites to electrochemical sensors: A review, Applied Materials Today, 9 (2017) 419-433.
[91] G. Qiu, A. Zhu, C. Zhang, Hierarchically structured carbon nanotube–polyaniline nanobrushes for corrosion protection over a wide pH range, RSC Advances, 7 (2017) 35330-35339.
[92] A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and leds, Nano-Micro Lett. 9 (2017) 1–21, in, 2017.
[93] W. Niu, Y. Yang, Graphitic Carbon Nitride for Electrochemical Energy Conversion and Storage, ACS Energy Letters, 3 (2018) 2796-2815.
[94] J. Liu, J. Huang, H. Zhou, M. Antonietti, Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis, ACS applied materials & interfaces, 6 (2014) 8434-8440.
[95] X. Zhang, H. Wang, H. Wang, Q. Zhang, J. Xie, Y. Tian, J. Wang, Y. Xie, Single‐layered graphitic‐C3N4 quantum dots for two‐photon fluorescence imaging of cellular nucleus, Advanced materials, 26 (2014) 4438-4443.
[96] Q. Han, B. Wang, J. Gao, L. Qu, Graphitic carbon Nitride/Nitrogen‐rich carbon nanofibers: highly efficient photocatalytic hydrogen evolution without cocatalysts, Angewandte Chemie, 128 (2016) 11007-11011.
[97] P. Wu, P. Du, H. Zhang, C. Cai, Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction, Physical Chemistry Chemical Physics, 15 (2013) 6920-6928.
[98] Y. Wang, J. Wang, P. Ma, H. Yao, L. Zhang, Z. Li, Synthesis of fluorescent polymeric carbon nitride quantum dots in molten salts for security inks, New Journal of Chemistry, 41 (2017) 14918-14923.
[99] X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, S. Yang, Incorporating graphitic carbon nitride (g‐C3N4) quantum dots into bulk‐heterojunction polymer solar cells leads to efficiency enhancement, Advanced Functional Materials, 26 (2016) 1719-1728.
[100] Z. Zhou, Y. Shen, Y. Li, A. Liu, S. Liu, Y. Zhang, Chemical cleavage of layered carbon nitride with enhanced photoluminescent performances and photoconduction, ACS nano, 9 (2015) 12480-12487.
[101] F. Zhao, H. Cheng, Y. Hu, L. Song, Z. Zhang, L. Jiang, L. Qu, Functionalized graphitic carbon nitride for metal-free, flexible and rewritable nonvolatile memory device via direct laser-writing, Scientific reports, 4 (2014) 5882.
[102] H. Li, Y. Jing, X. Ma, T. Liu, L. Yang, B. Liu, S. Yin, Y. Wei, Y. Wang, Construction of a well-dispersed Ag/graphene-like gC 3 N 4 photocatalyst and enhanced visible light photocatalytic activity, RSC advances, 7 (2017) 8688-8693.
[103] Z. Zhou, J. Wang, J. Yu, Y. Shen, Y. Li, A. Liu, S. Liu, Y. Zhang, Dissolution and liquid crystals phase of 2D polymeric carbon nitride, Journal of the American Chemical Society, 137 (2015) 2179-2182.
[104] X. Wang, J. Deng, X. Duan, D. Liu, J. Guo, P. Liu, Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors, Journal of Materials Chemistry A, 2 (2014) 12323-12329.
[105] S. Mondal, U. Rana, S. Malik, Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor, The Journal of Physical Chemistry C, 121 (2017) 7573-7583.
[106] S. Mondal, U. Rana, S. Malik, Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials, Chemical Communications, 51 (2015) 12365-12368.
[107] A. Lopera-Valle, A. Elias, Amine responsive poly (lactic acid)(PLA) and succinic anhydride (SAh) graft-polymer: Synthesis and characterization, Polymers, 11 (2019) 1466.
[108] L. Yang, X. Wu, L. Luo, Y. Liu, F. Wang, Facile preparation of graphitic-C 3 N 4 quantum dots for application in two-photon imaging, New Journal of Chemistry, 43 (2019) 3174-3179.
[109] L. Singh, V. Singh, CQDs/PANI nanocomposites based sensing probe for the sensitive and selective detection of mercury ions via Raman spectroscopy, Applied Physics A, 128 (2022) 610.
[110] H. Kuzhandaivel, S. Manickam, S.K. Balasingam, M.C. Franklin, H.-J. Kim, K.S. Nallathambi, Sulfur and nitrogen-doped graphene quantum dots/PANI nanocomposites for supercapacitors, New Journal of Chemistry, 45 (2021) 4101-4110.
[111] B. Rajagopalan, S.H. Hur, J.S. Chung, Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode, Nanoscale Research Letters, 10 (2015) 1-9.
[112] B. Posha, N. Asha, N. Sandhyarani, Carbon nitride quantum dots tethered on CNTs for the electrochemical detection of dopamine and uric acid, New Journal of Chemistry, 45 (2021) 6263-6272.
[113] Z. Zhao, Y. Xie, Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid, Journal of Power Sources, 337 (2017) 54-64.
[114] M. Magnuson, J.-H. Guo, S.M. Butorin, A. Agui, C. Såthe, J. Nordgren, A. Monkman, The electronic structure of polyaniline and doped phases studied by soft X-ray absorption and emission spectroscopies, The Journal of chemical physics, 111 (1999) 4756-4761.
[115] A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies, The Journal of Physical Chemistry C, 115 (2011) 17009-17019.
[116] Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst, Nature communications, 5 (2014) 3783.
[117] N. Meng, J. Ren, Y. Liu, Y. Huang, T. Petit, B. Zhang, Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production, Energy & Environmental Science, 11 (2018) 566-571.
[118] S. Golczak, A. Kanciurzewska, M. Fahlman, K. Langer, J.J. Langer, Comparative XPS surface study of polyaniline thin films, Solid State Ionics, 179 (2008) 2234-2239.
[119] W.-C. Chen, T.-C. Wen, C.-C. Hu, A. Gopalan, Identification of inductive behavior for polyaniline via electrochemical impedance spectroscopy, Electrochimica acta, 47 (2002) 1305-1315.
[120] T. Murugesan, R.R. Kumar, A.k. Anbalagan, C.-H. Lee, H.-N. Lin, Interlinked polyaniline/ZnO nanorod composite for selective NO2 gas sensing at room temperature, ACS Applied Nano Materials, 5 (2022) 4921-4930.
[121] P.C. Meenu, S.P. Datta, S.A. Singh, S. Dinda, C. Chakraborty, S. Roy, Polyaniline supported g-C3N4 quantum dots surpass benchmark Pt/C: development of morphologically engineered g-C3N4 catalysts towards “metal-free” methanol electro-oxidation, Journal of Power Sources, 461 (2020) 228150.
[122] T. Qin, L. Deng, P. Zhang, M. Tang, C. Li, H. Xie, S. Huang, X. Gao, Enhancement of electrochromic properties of polyaniline induced by copper ions, Nanoscale Research Letters, 17 (2022) 51.
[123] C. Li, H. Wu, D. Zhu, T. Zhou, M. Yan, G. Chen, J. Sun, G. Dai, F. Ge, H. Dong, High-efficient charge separation driven directionally by pyridine rings grafted on carbon nitride edge for boosting photocatalytic hydrogen evolution, Applied Catalysis B: Environmental, 297 (2021) 120433.
[124] E. Song, J.-W. Choi, Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing, Nanomaterials, 3 (2013) 498-523.
[125] N.G. Skinner, E.A.H. Hall, Investigation of the origin of the glucose response in a glucose oxidase|polyaniline system, Journal of Electroanalytical Chemistry, 420 (1997) 179-188.
[126] Q. Cheng, Y. He, Y. Ge, J. Zhou, G. Song, Ultrasensitive detection of heparin by exploiting the silver nanoparticle-enhanced fluorescence of graphitic carbon nitride (gC 3 N 4) quantum dots, Microchimica Acta, 185 (2018) 1-8.
[127] Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, Nitrogen-doped graphene quantum dots with oxygen-rich functional groups, Journal of the American Chemical Society, 134 (2012) 15-18.
[128] Q. Wang, S. Qiu, S. Wang, J. Shang, R. Zhao, X. Wu, W. Chen, H. Zhou, X. Wang, Graphene oxide/polyaniline nanotube composites synthesized in alkaline aqueous solution, Synthetic Metals, 210 (2015) 314-322.
[129] A. Du, S. Sanvito, Z. Li, D. Wang, Y. Jiao, T. Liao, Q. Sun, Y.H. Ng, Z. Zhu, R. Amal, Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron–hole puddle, interfacial charge transfer, and enhanced visible light response, Journal of the American Chemical Society, 134 (2012) 4393-4397.
[130] R. Nandan, H.R. Devi, R. Kumar, A.K. Singh, C. Srivastava, K.K. Nanda, Inner Sphere Electron Transfer Promotion on Homogeneously Dispersed Fe-Nx Centers for Energy-Efficient Oxygen Reduction Reaction, ACS Applied Materials & Interfaces, 12 (2020) 36026-36039.
[131] Z. Ma, R. Sa, Q. Li, K. Wu, Interfacial electronic structure and charge transfer of hybrid graphene quantum dot and graphitic carbon nitride nanocomposites: insights into high efficiency for photocatalytic solar water splitting, Physical Chemistry Chemical Physics, 18 (2016) 1050-1058.
[132] S. Cao, Y. Zhang, N. He, J. Wang, H. Chen, F. Jiang, Metal-free 2D/2D heterojunction of covalent triazine-based frameworks/graphitic carbon nitride with enhanced interfacial charge separation for highly efficient photocatalytic elimination of antibiotic pollutants, Journal of Hazardous Materials, 391 (2020) 122204.
[133] A. Popov, R. Aukstakojyte, J. Gaidukevic, V. Lisyte, A. Kausaite-Minkstimiene, J. Barkauskas, A. Ramanaviciene, Reduced graphene oxide and polyaniline nanofibers nanocomposite for the development of an amperometric glucose biosensor, Sensors, 21 (2021) 948.
[134] T. Homma, D. Sumita, M. Kondo, T. Kuwahara, M. Shimomura, Amperometric glucose sensing with polyaniline/poly (acrylic acid) composite film bearing covalently-immobilized glucose oxidase: A novel method combining enzymatic glucose oxidation and cathodic O2 reduction, Journal of Electroanalytical Chemistry, 712 (2014) 119-123.
[135] D. Wan, S. Yuan, G. Li, K. Neoh, E. Kang, Glucose biosensor from covalent immobilization of chitosan-coupled carbon nanotubes on polyaniline-modified gold electrode, ACS applied materials, 2 (2010) 3083-3091.
[136] X. Feng, H. Cheng, Y. Pan, H. Zheng, Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite, Biosensors, 70 (2015) 411-417.
[137] H. Xue, Z. Shen, Y. Li, Polyaniline–polyisoprene composite film based glucose biosensor with high permselectivity, Synthetic metals, 124 (2001) 345-349.
[138] B. Hansen, M.A. Hocevar, C.A. Ferreira, A facile and simple polyaniline-poly (ethylene oxide) based glucose biosensor, Synthetic Metals, 222 (2016) 224-231.
[139] J. Zhu, Z. Zhu, Z. Lai, R. Wang, X. Guo, X. Wu, G. Zhang, Z. Zhang, Y. Wang, Z. Chen, Planar amperometric glucose sensor based on glucose oxidase immobilized by chitosan film on Prussian blue layer, Sensors, 2 (2002) 127-136.
[140] H. Lee, Y.J. Hong, S. Baik, T. Hyeon, D.H. Kim, Enzyme‐based glucose sensor: from invasive to wearable device, Advanced healthcare materials, 7 (2018) 1701150.
[141] A.D. Association, Diagnosis and classification of diabetes mellitus, Diabetes care, 37 (2014) S81-S90.
[142] J. Heikenfeld, Technological leap for sweat sensing, Nature, 529 (2016) 475-476.
[143] W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H. Shiraki, D. Kiriya, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis, Nature, 529 (2016) 509-514.
[144] J. Wang, Electrochemical glucose biosensors, Chemical reviews, 108 (2008) 814-825.
[145] A. Harper, M.R. Anderson, Electrochemical glucose sensors—developments using electrostatic assembly and carbon nanotubes for biosensor construction, Sensors, 10 (2010) 8248-8274.
[146] Q. Sheng, D. Zhang, Q. Wu, J. Zheng, H. Tang, Electrodeposition of Prussian blue nanoparticles on polyaniline coated halloysite nanotubes for nonenzymatic hydrogen peroxide sensing, Analytical Methods, 7 (2015) 6896-6903.
[147] A.A. Karyakin, E.E. Karyakina, L. Gorton, On the mechanism of H2O2 reduction at Prussian Blue modified electrodes, Electrochemistry Communications, 1 (1999) 78-82.
[148] A.A. Karyakin, E.A. Puganova, I.A. Budashov, I.N. Kurochkin, E.E. Karyakina, V.A. Levchenko, V.N. Matveyenko, S.D. Varfolomeyev, Prussian blue based nanoelectrode arrays for H2O2 detection, Analytical chemistry, 76 (2004) 474-478.
[149] A.A. Karyakin, O.V. Gitelmacher, E.E. Karyakina, A High-Sensitive Glucose Amperometric Biosensor Based on Prussian Blue Modified Electrodes, Analytical Letters, 27 (1994) 2861-2869.
[150] A.A. Karyakin, E.E. Karyakina, Prussian Blue-based `artificial peroxidase' as a transducer for hydrogen peroxide detection. Application to biosensors, Sensors and Actuators B: Chemical, 57 (1999) 268-273.
[151] A.A. Karyakin, E.E. Karyakina, L. Gorton, Amperometric biosensor for glutamate using prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide, Analytical chemistry, 72 (2000) 1720-1723.
[152] J. García-Jareño, J. Navarro-Laboulais, F. Vicente, Electrochemical study of Nafion membranes/Prussian blue films on ITO electrodes, Electrochimica acta, 41 (1996) 2675-2682.
[153] L.V. Lukachova, E.A. Kotel'nikova, D. D'Ottavi, E.A. Shkerin, E.E. Karyakina, D. Moscone, G. Palleschi, A. Curulli, A.A. Karyakin, Nonconducting polymers on Prussian blue modified electrodes: improvement of selectivity and stability of the advanced H 2 O 2 transducer, IEEE sensors journal, 3 (2003) 326-332.
[154] N.A. Sitnikova, A.V. Mokrushina, A.A. Karyakin, Iron triad-mate hexacyanoferrates as Prussian Blue stabilizers: Toward the advanced hydrogen peroxide transducer, Electrochimica Acta, 122 (2014) 173-179.
[155] J. Keggin, F. Miles, Structures and formulae of the Prussian blues and related compounds, Nature, 137 (1936) 577-578.
[156] S. Zamponi, M. Berrettoni, P.J. Kulesza, K. Miecznikowski, M.A. Malik, O. Makowski, R. Marassi, Influence of experimental conditions on electrochemical behavior of Prussian blue type nickel hexacyanoferrate film, Electrochimica acta, 48 (2003) 4261-4269.
[157] A.I. Rekertaitė, A. Valiūnienė, P. Virbickas, A. Ramanavicius, Physicochemical Characteristics of Polypyrrole/(Glucose oxidase)/(Prussian Blue)‐based Biosensor Modified with Ni‐and Co‐Hexacyanoferrates, Electroanalysis, 31 (2019) 50-57.
[158] Y.-X. Wang, M. Rinawati, W.-H. Huang, Y.-S. Cheng, P.-H. Lin, K.-J. Chen, L.-Y. Chang, K.-C. Ho, W.-N. Su, M.-H. Yeh, Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: Strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor, Carbon, 186 (2022) 406-415.
[159] M.C. Biswas, M.T. Islam, P.K. Nandy, M.M. Hossain, Graphene Quantum Dots (GQDs) for Bioimaging and Drug Delivery Applications: A Review, ACS Materials Letters, 3 (2021) 889-911.
[160] W.-S. Lin, M. Rinawati, W.-H. Huang, C.-Y. Chang, L.-Y. Chang, Y.-S. Cheng, C.-C. Chang, J.-L. Chen, W.-N. Su, M.-H. Yeh, Surface restructuring Prussian blue analog-derived bimetallic CoFe phosphides by N-doped graphene quantum dots for electroactive hydrogen evolving catalyst, Journal of Colloid and Interface Science, 654 (2024) 677-687.
[161] S. Claramunt, A. Varea, D. Lopez-Diaz, M.M. Velázquez, A. Cornet, A. Cirera, The importance of interbands on the interpretation of the Raman spectrum of graphene oxide, The Journal of Physical Chemistry C, 119 (2015) 10123-10129.
[162] R. Das, S. Parveen, A. Bora, P. Giri, Origin of high photoluminescence yield and high SERS sensitivity of nitrogen-doped graphene quantum dots, Carbon, 160 (2020) 273-286.
[163] J. Wang, C. Lu, T. Chen, L. Hu, Y. Du, Y. Yao, M.C. Goh, Simply synthesized nitrogen-doped graphene quantum dot (NGQD)-modified electrode for the ultrasensitive photoelectrochemical detection of dopamine, Nanophotonics, 9 (2020) 3831-3839.
[164] G. Yang, C. Wu, X. Luo, X. Liu, Y. Gao, P. Wu, C. Cai, S.S. Saavedra, Exploring the emissive states of heteroatom-doped graphene quantum dots, The Journal of Physical Chemistry C, 122 (2018) 6483-6492.
[165] S.H. Jin, D.H. Kim, G.H. Jun, S.H. Hong, S. Jeon, Tuning the Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of Functional Groups, ACS Nano, 7 (2013) 1239-1245.
[166] Y.-C. Lin, S. Aulia, M.-H. Yeh, L.-Y. Hsiao, A.M. Tarigan, K.-C. Ho, Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction, Journal of Colloid and Interface Science, 648 (2023) 193-202.
[167] J. Nai, Y. Lu, L. Yu, X. Wang, X.W. Lou, Formation of Ni–Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst, Advanced Materials, 29 (2017) 1703870.
[168] K. Zhang, T.H. Lee, H. Noh, O.K. Farha, H.W. Jang, J.-W. Choi, M. Shokouhimehr, Tailorable topologies for selectively controlling crystals of expanded Prussian blue analogues, Crystal Growth & Design, 19 (2019) 7385-7395.
[169] J. Tian, J. Chen, J. Liu, Q. Tian, P. Chen, Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting, Nano Energy, 48 (2018) 284-291.
[170] R. Phillips, K. Jolley, Y. Zhou, R. Smith, Influence of temperature and point defects on the X-ray diffraction pattern of graphite, Carbon Trends, 5 (2021) 100124.
[171] J. Roque, E. Reguera, J. Balmaseda, J. Rodríguez-Hernández, L. Reguera, L. Del Castillo, Porous hexacyanocobaltates (III): Role of the metal on the framework properties, Microporous and Mesoporous Materials, 103 (2007) 57-71.
[172] Z.-Y. Yu, Y. Duan, J.-D. Liu, Y. Chen, X.-K. Liu, W. Liu, T. Ma, Y. Li, X.-S. Zheng, T. Yao, Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis, Nature Communications, 10 (2019) 2799.
[173] L. Boudjema, J. Long, F. Salles, J. Larionova, Y. Guari, P. Trens, A Switch in the Hydrophobic/Hydrophilic Gas‐Adsorption Character of Prussian Blue Analogues: An Affinity Control for Smart Gas Sorption, Chemistry–A European Journal, 25 (2019) 479-484.
[174] S. Cinti, F. Arduini, D. Moscone, G. Palleschi, A.J. Killard, Development of a hydrogen peroxide sensor based on screen-printed electrodes modified with inkjet-printed Prussian blue nanoparticles, Sensors, 14 (2014) 14222-14234.
[175] F. Ricci, G. Palleschi, Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes, Biosensors and Bioelectronics, 21 (2005) 389-407.
[176] G. Lai, W. Lau, P. Goh, Y. Tan, B. Ng, A. Ismail, A novel interfacial polymerization approach towards synthesis of graphene oxide-incorporated thin film nanocomposite membrane with improved surface properties, Arabian journal of chemistry, 12 (2019) 75-87.
[177] M. Hu, S. Ishihara, K. Ariga, M. Imura, Y. Yamauchi, Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements, Chemistry-A European Journal, 19 (2013).
[178] Z.C. Ng, W.J. Lau, K.C. Wong, M.A. Al-Ghouti, A.F. Ismail, Improving properties of thin film nanocomposite membrane through polyethyleneimine intermediate layer: a parametric study, Separation and Purification Technology, 274 (2021) 119035.
[179] Y. Liu, X. Wang, X. Gao, J. Zheng, J. Wang, A. Volodin, Y.F. Xie, X. Huang, B. Van der Bruggen, J. Zhu, High-performance thin film nanocomposite membranes enabled by nanomaterials with different dimensions for nanofiltration, Journal of Membrane Science, 596 (2020) 117717.
[180] X. Che, R. Yuan, Y. Chai, J. Li, Z. Song, W. Li, Amperometric glucose biosensor based on Prussian blue–multiwall carbon nanotubes composite and hollow PtCo nanochains, Electrochimica Acta, 55 (2010) 5420-5427.
[181] Y. Zou, C. Xiang, L.-X. Sun, F. Xu, Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel, Biosensors and Bioelectronics, 23 (2008) 1010-1016.
[182] Y. Zou, C. Xiang, L. Sun, F. Xu, Amperometric glucose biosensor prepared with biocompatible material and carbon nanotube by layer-by-layer self-assembly technique, Electrochimica Acta, 53 (2008) 4089-4095.
[183] Y. Liu, Z. Chu, Y. Zhang, W. Jin, Amperometric glucose biosensor with high sensitivity based on self-assembled Prussian Blue modified electrode, Electrochimica acta, 54 (2009) 7490-7494.
[184] P. Benvenuto, A. Kafi, A. Chen, High performance glucose biosensor based on the immobilization of glucose oxidase onto modified titania nanotube arrays, Journal of Electroanalytical Chemistry, 627 (2009) 76-81.
[185] Y. Xian, Y. Hu, F. Liu, Y. Xian, L. Feng, L. Jin, Template synthesis of highly ordered Prussian blue array and its application to the glucose biosensing, Biosensors and Bioelectronics, 22 (2007) 2827-2833.
[186] S. Wu, G. Liu, P. Li, H. Liu, H. Xu, A high-sensitive and fast-fabricated glucose biosensor based on Prussian blue/topological insulator Bi2Se3 hybrid film, Biosensors and Bioelectronics, 38 (2012) 289-294.
[187] L. Yan, K. Miao, P. Ma, X. Ma, R. Bi, F. Chen, A feasible electrochemical biosensor for determination of glucose based on Prussian blue–Enzyme aggregates cascade catalytic system, Bioelectrochemistry, 141 (2021) 107838.
[188] J. Feng, D. Zhang, H. Zhou, M. Pi, X. Wang, S. Chen, Coupling P nanostructures with P-doped g-C3N4 as efficient visible light photocatalysts for H2 evolution and RhB degradation, ACS Sustainable Chemistry & Engineering, 6 (2018) 6342-6349.
[189] L. Zhang, Z.-Y. Zhang, R.-P. Liang, Y.-H. Li, J.-D. Qiu, Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement, Analytical chemistry, 86 (2014) 4423-4430.
[190] H. Zafar, A. Channa, V. Jeoti, G.M. Stojanović, Comprehensive review on wearable sweat-glucose sensors for continuous glucose monitoring, Sensors, 22 (2022) 638.

無法下載圖示 全文公開日期 2029/08/27 (校內網路)
全文公開日期 2029/08/27 (校外網路)
全文公開日期 2029/08/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE