簡易檢索 / 詳目顯示

研究生: 呂昆諺
Kun-Yen Lu
論文名稱: 液態電漿處理對6063鋁合金散熱鰭片之微結構與熱性質影響研究
Effect of plasma electrolytic oxidation on the microstructure and heat dissipa-tion properties of 6063 Al alloy heat sinks
指導教授: 王朝正
Chaur-Jeng Wang
李志偉
Jyh-Wei Lee
口試委員: 丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 85
中文關鍵詞: 液態電漿散熱鰭片散熱片
外文關鍵詞: plasma electrolytic oxidation, heat sink
相關次數: 點閱:264下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是將AA6063鋁合金散熱片,置於偏矽酸鈉混合氫氧化鉀的電解液中,進行不同占空比及反應頻率的液態電漿處理,使其表面生成氧化膜,進一步將散熱片裝設於微型電腦中做散熱測試,再以XRD、Scanning Electron Microscopy (SEM)、Energy Dispersive Spectrometer (EDS)材料成份分析及表面粗糙度進行分析。
    氧化鋁膜層的表面粗糙、膜層厚度,與占空比及脈衝頻率參數的設定有關,在微型電腦的運算器上安裝氧化膜層較厚、粗糙度較高的散熱片,進行溫度測試,可以到較佳的降溫效果。由實驗參數可得知在脈衝頻率250 Hz條件下,相同duty cycle可獲得較大Ra。占空比75%能獲得較厚的膜層及較高的表面粗糙度。由實驗結果發現,在經過液態電漿處理後的散熱片,表面氧化膜的厚度及表面粗糙度會增加,對於散熱片的散熱有改善。


    Plasma electrolytic oxidation coating was prepared on 6063 aluminum alloy by electrolyte of Na2SiO3 and KOH. different duty cycle and frequency response of plasma processing liquid to the surface oxide film, further installation of cooling fins do tests to mini-computer, and then to XRD, Scanning Electron Microscopy (SEM), Energy Disper-sive Spectrometer (EDS) analysis of the material composition and surface roughness analysis.

    The alumina film surface roughness, film thickness, and set the pulse frequency and duty cycle parameters related to installation oxide layer on a mini-computer operator thicker, higher roughness heat sink temperature test, you can go to a better cooling effect. The experimental parameters can be learned at the pulse frequency 250 Hz conditions, the same duty cycle available to a larger Ra. Duty cycle of 75% can be obtained and a thicker layer of higher surface roughness. From the experimental results we found that after plasma treatment liquid heat sink, thickness and surface roughness of the surface oxide film will increase the heat sink for improved heat dissipation.

    摘要 I ABSTRACT II 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 液態電漿 3 2.1.1液態電漿背景介紹 3 2.1.2 液態電漿原理 4 2.1.3 液態電漿膜層結構、外部形貌及成分特性 5 2.1.4 液態電漿技術的影響因素 8 2.1.5 液態電漿技術特性與應用 9 2.2鋁合金之液態電漿 10 2.2.1鋁合金液態電漿介紹 10 2.2.2 鋁合金液態電漿膜層形成及分析 10 2.2.3 鋁合金液態電漿反應時間對表面粗糙度的影響 12 2.2.4 鋁合金液態電漿的應用 13 2.2.5 鋁合金液態電漿膜層多孔性與散熱效果 13 2.2.6 電解液之選擇與影響 13 2.2.7鋁合金液態電漿反應相關參考文獻 16 2.3 影響散熱片散熱能力的因素 16 第三章 實驗方法 18 3.1 AA6063鋁合金散熱片之液態電漿實驗流程規劃 18 3.2實驗方法與步驟 19 3.2.1鋁合金散熱片(Heat Sink)試片尺寸與製備 19 3.2.2液態電漿實驗步驟如下 21 3.3 實驗參數 22 3.4 膜層性質分析 23 3.4.1 表面形貌與截面厚度分析 23 3.4.2 晶體結構分析 24 3.5散熱片散熱能力測試 25 第四章 結果與討論 27 4.1不同脈衝及占空比之液態電漿成品外觀 27 4.2 晶相分析 31 4.3 表面形貌與成分分析 32 4.4 表面粗糙度比較分析 44 4.5 截面形貌與厚度量測 49 4.6 不同脈衝及占空比參數之樣品對產品散熱效能之差異分析 57 第五章 結論 65 參考文獻 66

    [1] G. Yang, X. Lu, Y. Bai, H. Cui, and Z. Jin, "The effects of cur-rent density on the phase composition and microstructure properties of micro-arc oxidation coating”, Alloys and Com-pounds, 345 (2002) 196-200
    [2] V. K. Jain and P. C. Pandey, "Corner Reproductional Accuracy in Electro-chemical Drilling (ECD) of Blind Holes”, Journal of Engineering for industry, 106 (1984) 55-62.
    [3] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, “Plasma electrolysis for surface engineering”, Surface and Coatings Technology, 122 (1999) 73-93.
    [4] E. Matykina, R. Arrabal, A. Mohamed, P. Skeldon, and G. E. Thompson, "Plasma Electrolytic Oxidation of pre-anodized aluminium”, Corrosion Science, 51 (2009) 2897-2905.
    [5] C. Chu, M. Pan, and J. Ho, “Thermal Analysis and Experi-mental Validation on TFT-LCD Panels for Image Quality Concerns”, IEEE Electronics Packaging Technology Con-ference, 2 (2005) 16-20.
    [6] Wenbin Xue, Zhiwei Deng, Ruyi Chen, Tonghe Zhang, and Hui Ma, "Microstructure and properties of ceramic coatings pro-duced on 2024 aluminum alloy by microarc oxidation", Journal of Materials Science, 36 (2001) 2615-2619.
    [7] T. B. Van, D. B. Sherman, and P. W. Gerald, "Mechanism of Anodic Spark Deposition", Ceramic Bulletin, 56 (1977) 563-566.
    [8] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, “Review Plasma electrolysis for surface engineering”, Surface and Coatings Technology, 122 (1999) 73-93.
    [9] R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, and G. E. Thompson, “Characterization of AC PEO coatings on mag-nesium alloys”, Surface and Coatings Technology, 203 (2009) 2207-2220.
    [10] Po-Jung Hsu, "The influence of duty ratio and frequency of pulsed bipolar micro arc oxidation on the properties of the oxide ceramic coatings of 7075-T6 Al alloy”, Thesis for Master of Science Department of Material Engineering Ta-tung University, 30 (2009) 1-210.
    [11] R. Mcpherson, “The enthalpy of formation of aluminum ti-tanate”, Journal of Materials Science, 8 (1973) 851−858.
    [12] Vahid Dehnavi, Ben Li Luan, David W. Shoesmith, Xing Yang Liu, and Ohrab Rohani, “Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior”, Surface and Coatings Technology, 226 (2013) 100–107.
    [13] P. N. Wu, J. J. Xi, J. Zhao, and T. J. Wang, "Preparation of Compact Micro-Arc Oxidation Coatings on Aluminum Alloys", Applied Mechanics and Materials, 33 (2010) 492-495.
    [14] M. W. Chase, J. L. Curnutt, R. A. McDonlad, and A. N. Syv-erud, J. Phys, "Stoichiometry and thermodynamics of met-allurgical processes", JANAF thermochemical tables, 7 (1978) 793.
    [15] R. H. U. Khan, A. L. Yerokhin, T. Pilkington, A. Leyland, and A. Matthews, "Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current”, Surface and Coating Technology, 200 (2005) 283-287.
    [16] S. K. Kiselyeva, L. I. Zaynullina, M. M. Abramova, N. Y. Dudareva, and I. V. Alexandrov, "The Effect of Micro arc Oxidation (PEO) Modes on Corrosion Behavior of High-Silicon Aluminum Alloy”, Journal of engineering Sci-ence and Technology Review, 7 (2014) 36-39.
    [17] W. Xue, C. Wang, and Y. Li, "Elaluation of the mechanical properties of micro arc oxidation coatings and 2024 alumi-num alloy substrate”, Physics Condensed Matter, 14 (2002) 10947-10952.
    [18] E. M. Sparrow, B. R. Baliga, and S. V. Patankar, “Forced Convection Heat Transfer from A Shrouded Fin Array with and without Tip Clearance”, Trans ASME J. Heat Transfer, 100 (1978) 572-579.
    [19] D. Copeland, “Optimum of Parallel Heat sinks for Forced Convection”, SIXTEENTH IEEE SEMI-THERMTM SYMPOSIUM (1984) 116-123.
    [20] A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Pilkington, and A. Matthews, “Spatial characteristics of dis-charge phenomena in plasma electrolytic oxidation of alu-minium alloy", Surface and Coatings Technology, 177-178 (2004) 779–783.
    [21] Vahid Dehnavi, Ben Li Luan, David W. Shoesmith, Xing Yang Liu, and Sohrab Rohani, "Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior”, Surface and Coatings Technology, 226 (2013) 100–107.
    [22] Xiang Bo. Suo, Ji Qiu, and Hai Yan Zhu, "Analysis of elements and phases of nano-SiO2 composite layer formed on alu-minum alloy by micro arc oxidation”, Materials science & technology, 299 (2013) 02-0050-05.
    [23] W. M. Xiong, C. Y. Ning, Y. H. Gu, and J. Zhang, “Effect of positive voltage on phase structure of micro-arc oxidation films of magnesium alloy”, Rare Metal Mat, 40 (2100) 2236-2240.
    [24] Lei Zhang, Junqing Zhang, Cheng-Fu Chen, and Yanhong Gu, "Advances in Microarc Oxidation Coated AZ31 Mg Alloys for Biomedical Applications”, Corrosion Seience, 91 (2015) 7-28.
    [25] A. L. Yerokhin, V. V. Lyubimov, and R. V. Ashitkov, “Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminum alloys”, Ceramics International, 28 (1996) 1-6.
    [26] E. Matykina, A. Berkani, P. Skeldon, and G. E. Thoson, "Re-al-time imaging of coating growth during plasma electrolytic oxidation of titanium”, Electrochimica Acta, 53 (2007) 1987–1994.
    [27] G. Sundararajan and L. Rama Krishna, “Mechanisms un-derlying the formation of thick alumina coatings through the PEO coating technology”, Surface and Coatings Technol-ogy, 167 (2003) 269–277.
    [28] Cheng-Ho Chen,Jian-Yuan Jian, and Fusu Yen, “Preparation and characterization of epoxy/γ-aluminum oxide nanocom-posites”, Composites Part A Applied Science and Manufac-turing, 40 (2009) 463-468.
    [29] V. I. Chernenko, L. A. Snezhko, and I. I. Papanova, “Prepa-ration of coatings spark electrolysis”, Chemistry, Leningrad, 9 (1991) 164-175.
    [30] R. H. U. Khan, A. L. Yerokhin, T. Pilkington, A. Leyland, and A. Matthews, "Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys”, Surface and Coatings Technology, 200 (2005) 1580-1586.
    [31] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, “Coatings by Anodic Spark Electrolysis”, Surface and Coatings Technology, 122 (1999) 73.
    [32] N. Godja, N. Kiss, Ch. Locker, A. Schindel, A. Gavrilovic, J. Wosik, R. Mann, J. Wendrinsky, A. Merstallinger, and G. E Nauer, “Preparation and characterization of spark-anodized Al-alloys: Physical, chemical and tribological properties”, Tribology International, 43 (2010) 1253–1261.
    [33] F. Monfort, A. Berkani, E. Matykina, P. Skeldon, G. E. Thompson, and H. Habazaki, "Development of anodic coat-ings on aluminium under sparking conditions in silicate elec-trolyte”, Corrosion Science, 49 (2007) 672.
    [34] Lv Guohua, Gu Weichao, Chen Huan, Feng Wenran, Latif Khosa M, and Li Li, "Characteristic of ceramic coatings on aluminium by plasma electrolytic oxidation in silicate and phosphate electrolyte”, Applied Surface Science, 253 (2006) 2947.
    [35] Yeon Sung Kim, Hae Woong Yang, Ki Ryong Shin, Young Gun Ko, and Dong Hyuk Shin, "Heat dissipation properties of oxide layers formed on 7075 Al alloy via plasma electrolytic oxidation”, Surface and Coatings Technology, 269 (2015) 114–118.
    [36] J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, and T. Xu, “Effect of potassium fluoride in electrolytic solution on the structure and properties of micro arc oxidation coatings on magne-sium alloy”, Applied Surface Science, 252 (2005) 345–351.
    [37] Z. W. Wang, Y. M. Wang, and Y. Liu, “Microstructure and in-fra-red emissivity property of coating containing TiO2 formed on titanium alloy by micro arc oxidation”, Current Applied Physics,11 (2011) 1405–1409.
    [38] Y. M. Wang, H. Tian, and X. E. Shen, “An elevated tempera-ture infrared emissivity ceramic coating formed on 2024 aluminum alloy by micro arc oxidation”, Ceramics Interna-tional, 39 (2013) 2869–2875.
    [39] M. S. Al Bosta Mohannad, Keng-Jeng Ma, and Hsi-Hsin Chien, "Effect of Anodic Current Density on Characteristics and Low Temperature IR Emissivity of Ceramic Coating on Aluminum 6061 Alloy Prepared by Micro arc Oxidation”, Journal of Ceramics, Volume 13 (2013) 14.
    [40] F. Jaspard-Mecuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Duiardin, A. Viola, and J. Beauvir, "Tailored aluminum ox-ide layers by bipolar current adjustment in the plasma elec-trolytic oxidation process”, Surface and Coatings Technology, 201 (2007) 8677-8682.
    [41] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, "Plasma electrolysis for surface engineering”, Sur-face and Coatings Technology, 122 (1999) 73–93.

    無法下載圖示 全文公開日期 2021/02/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2021/02/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE