簡易檢索 / 詳目顯示

研究生: MD JAHID HASAN
MD JAHID HASAN
論文名稱: 結合電弧和軟火花以提高鋁酸鹽電解質中 AZ91D 鎂合金電漿電解質氧化 (PEO) 的微觀結構與性能
Combining the Arc and Soft Sparking to Enhance Microstructure and Properties during Plasma Electrolytic Oxidation (PEO) of AZ91D Mg Alloys in Aluminate Electrolyte
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蔡秉均
Ping-Chun Tsai
黃振煌
Jen-Huang (Tony) Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 132
中文關鍵詞: 電漿電解氧化電弧機制軟火花電流比(IR)電荷比(CR)
外文關鍵詞: Magnesium, Plasma electrolytic oxidation, arcing regime, soft sparking regime, current ratio (IR), charge ratio (CR)
相關次數: 點閱:279下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電漿電解質氧化(PEO)用於鋁酸塩電解質中使用定電流雙極脈衝模式在 AZ91D 的鎂合金上鍍製具有保護效果之陶瓷膜層。本研究的目的是探討電性參數和操作時間對製備的 PEO 膜層的形成機制、微觀結構和化學反應的影響。為了分析 PEO 膜層,使用了掃描式電子顯微鏡 (SEM)、X 光繞射 (XRD)、膜厚偵測儀、恆電位移阻抗分析儀 (EIS) 技術。
    首先,我們研究了IR(IR=I+/I-)和CR(CR=Q+/Q- =(I+×T+ on)/(I-×T- on) 關於PEO膜層的形成。這 2 個參數的組合決定了膜層上的電弧或軟火花。電弧火花會在膜層形成過程中促進破壞性放電的形成,而軟火花會軟化火花,這有助於形成孔隙較少的膜層。此外,電弧火花的發生是由於膜層的氧化和還原機制引起膜層上的軟火花。然而,從 XRD 數據中注意到,電弧火花能夠形成穩定的 MgAl2O4,而在軟火花期間,膜層中會產生不太穩定的 MgO。
    已經發現,當 IR < 1 時,經過一定時間後,還原機制變得比氧化機制更佔優勢,並且會發生軟火花。 PEO 操作 30 分鐘後,雖然軟火花可以減少破壞性放電、孔隙率以及增加形成的膜層的耐腐蝕性 (4.816×107 Ω·cm2),但開發的膜層的厚度 (< 20 µm) 及其均勻性較低。然而,如果(IR<1.0;CR<1.0),膜層的耐腐蝕性(7.32×104 Ω·cm2)和厚度(18.7 µm)下降得更多。另一方面,如果(IR>1.0;CR>1.0),膜層的厚度(>100 µm)和均勻性提高,但耐腐蝕性降低(4.419×105 Ω·cm2),孔隙率增加。這是因為在這種情況下,在膜層形成過程中只發生電弧火花。然而,當(IR>1.0;CR<1.0)時,PEO 膜層的質量顯著提高,因為電弧和軟火花在膜層形成過程中同時發生。這種條件提高了耐腐蝕性 (1.09×108 Ω·cm2) 和厚度 (81.55 µm),同時降低了塗層中的孔隙率。
    塗層在 (IR>1.0; CR>1.0) 中微觀結構的研究表明,隨著我們將 PEO 製程時間從 3 分鐘增加到 30分鐘,膜層厚度增加(22.67 µm 到 113.78 µm)但耐腐蝕性降低(3.274×109 Ω·cm2 至 4.419×105 Ω·cm2)。這是因為膜層的孔隙率增加了。或者,當(IR < 1; CR > 1.0)時,膜層厚度幾乎沒有變化,但耐腐蝕性增加(5.32×104 Ω·cm2 到 7.32×104 Ω·cm2),在 3 分鐘和 30 分鐘後分析 PEO 膜層。在這種情況下,弱火花有助於堵塞膜層中的孔隙。儘管如此,如果 (IR>1.0; CR<1.0) 用於 PEO 製程,操作 30 分鐘後,厚度(20.79 µm 至 81.55 µm)以及耐腐蝕性(7.389×106 Ω·cm2 至 1.09×108 Ω·cm2 ) 增加但孔隙率降低。
    此外,由於(IR>1.0;CR<1.0)提供了相對較厚和最高的耐腐蝕性膜層,有系統地研究了不同電性參數對PEO膜層的影響。這些參數影響膜層的顯微結構、氧化量和還原量。已知,在 PEO 膜層形成過程中保持氧化和還原之間的平衡是最重要的。如果任何電性參數抵消了平衡,則膜層的微觀結構差異、膜層-基材界面和耐腐蝕性會發生變化。例如,如果正電流 (I+) 從 1.3 A 變為 1.0 A,而所有其他參數保持不變,則耐腐蝕性從 1.09×108 Ω·cm2 變為 1.62×108 Ω·cm2,膜層厚度從 81.55 µm 變為110.45 微米。


    Plasma electrolytic oxidation (PEO) was used to create protective ceramic coatings on magnesium alloy called AZ91D using constant current bipolar pulsed mode in aluminate electrolyte. The aim of this study is to investigate the effect of electrical parameters, and Operation Time on coating formation mechanism, microstructure evolution, and chemical stability of the fabricated PEO coating. In order to analyze the PEO coating, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), thickness measurement, and Electrochemical Impedance Spectroscopy (EIS) techniques have been used.
    At first, we studied the effect of IR (I_R=I^+/I^-) and CR (C_R=Q^+/Q^- =(I^+×T^+ on)/(I^-×T^- on)) on the formation of the PEO coating. The combination of these 2 parameters determines the Arc or Soft-Sparking on the coating. Arc sparking encourages the formation of destructive discharges during the coating formation whereas Soft-sparking softens the sparks, which helps to form less porous coating. Also, Arc Sparking happens because of oxidation of the coating and reduction mechanism induces the Soft-sparking on the coating. Nevertheless, it has been noticed from the XRD data that arc sparking enables the formation of stable MgAl2O4, whereas during soft-sparking less stable MgO is produced in the coating.
    It has been found that when IR < 1, after a certain period, reduction mechanism becomes more dominant than oxidation, and soft-sparking happens. After 30 min of PEO operation, although Soft-sparking can reduce destructive discharges, porosity as well as increases corrosion resistance (4.816×107 Ω.cm2) on the formed coating, the thickness (< 20 µm) and uniformity of the developed coating is pretty low. However, if (I_R<1.0; C_R<1.0), corrosion resistance (7.32×104 Ω.cm2) and thickness (18.7 µm) of the coating decrease even more. On the other hand, if (I_R>1.0; C_R>1.0), the thickness (> 100 µm) and uniformity of the coating improves but the corrosion resistance decreases (4.419×105 Ω.cm2) and porosity increases. This is because only arc sparking happens during the coating formation in this condition. However, when (I_R>1.0; C_R<1.0), the quality of the PEO coating improves substantially because both arc and soft-sparking happen simultaneously during the coating formation. This condition enhances the corrosion resistance (1.09×108 Ω.cm2) and thickness (81.55 µm) as well as decreases the porosity in the coating.
    Study of the microstructural evolution of the coating in (I_R>1.0; C_R>1.0) shows that as we increase the PEO operation time from 3 min to 30 min, thickness of the coating increases (22.67 µm to 113.78 µm) but corrosion resistance decreases (3.274×109 Ω.cm2 to 4.419×105 Ω.cm2). This is because porosity of the coating increases. Alternately, when (IR < 1; C_R>1.0), thickness of the coating barely changes but corrosion resistance increases (5.32×104 Ω.cm2 to 7.32×104 Ω.cm2) when PEO coating is analyzed after 3 min and 30 min of PEO operation. Soft sparking helps to block the pores in the coating in this case. Nonetheless, if (I_R>1.0; C_R<1.0) is used for the PEO operation, after 30 min of operation, thickness (20.79 µm to 81.55 µm) as well as corrosion resistance (7.389×106 Ωcm2 to 1.09×108 Ω.cm2) increases but porosity decreases.
    Additionally, as (I_R>1.0; C_R<1.0) provides comparatively thick and highest corrosion-resistant coating, a systematic study has been done on the effect of different electrical parameters on the PEO coating. These parameters affect the microstructural evolution, amount of oxidation and reduction in the coating. It has been found that it is paramount to maintain an equilibrium between oxidation and reduction during the PEO coating formation. If any electrical parameter offsets the equilibrium, the microstructural properties, interface of coating-substrate, and corrosion resistance of the coating changes. For instance, if positive current (I+) changes from 1.3 A to 1.0 A while all the other parameters remain constant, corrosion resistance changes from 1.09×108 Ω.cm2 to 1.62×108 Ω.cm2, and coating thickness changes from 81.55 µm to 110.45 µm.

    Abstract Chapter 1 1.1 Introduction 1 1.2 Research Objectives 2 Chapter 2 Literature Review 2.1 Magnesium Alloys 3 2.2 Plasma Electrolytic Oxidation (PEO) 5 Chapter 3 Experimental Procedures 3.1 Materials 26 3.2 Electrolytes 26 3.3 Plasma Electrolytic Oxidation (PEO) treatment 27 3.4 Electrical Parameters 27 3.5 Coating Characterization Methods 29 Chapter 4 Result and Discussion (A) Contrast in PEO Coating Growth in 4 different Quadrants 32 4.1 Contrast in PEO coating growth in 4 quadrants for 30 min Operation Time 32 (B) Microstructural Evolution of the Coating Produced in 1st, 2nd, and 4th Quadrants 40 4.2 Microstructural Evolution of the Coating produced in the 1st Quadrant 41 4.3 Microstructural Evolution of the Coating produced in the 2nd Quadrant 47 4.4 Microstructural Evolution of the Coating produced in the 4th Quadrant 53 (C) Effect of different operation parameters of the fabricated coating in the 4th quadrant 59 4.5 The Effect of varying Negative Current (I-) on the PEO Coating produced in the 4th Quadrant 60 4.6 The Effect of Changing Positive Current on the PEO Coating produced in the 4th Quadrant 66 4.7 The Effect of Increasing T-on during the PEO Coating produced in the 4th Quadrant 72 4.8 The Effect of Changing T+on during the PEO Coating produced in the 4th Quadrant 77 4.9 The Effect of Changing T+off and T-off on the PEO Coating produced in the 4th Quadrant 82 4.10 The Effect of Decreasing Negative Current (I-) and T-on during the PEO Coating produced in the 4th Quadrant 87 Flowchart of PEO coating thickness and Corrosion Resistance Evolution 92 Chapter 5 Conclusion 93 References 95

    [1] Mark Easton, Wei Qian Song, Trevor Abbott, “A comparison of the deformation of magnesium alloys with aluminium and steel in tension, bending and buckling”, Materials & Design, Volume 27, Issue 10, 2006, Pages 935-946, ISSN 0261-3069
    [2] Kulekci, M.K. Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39, 851–865 (2008).
    [3] G. Chandra, A. Pandey, Preparation Strategies for Mg-Alloys for Biodegradable Orthopaedic Implants and Other Biomedical Applications: A Review, IRBM, Volume 43, Issue 3, 2022, Pages 229-249, ISSN 1959-0318
    [4] Yang, J., Cui, F. & Lee, I.S. Surface Modifications of Magnesium Alloys for Biomedical Applications. Ann Biomed Eng 39, 1857–1871 (2011).
    [5] Fajardo, S., García-Galvan, F. R., Barranco, V., Galvan, J. C., & Batlle, S. F. (2018). A critical review of the application of electrochemical techniques for studying corrosion of mg and mg alloys: Opportunities and challenges. Magnesium Alloys-Selected Issue, 16
    [6] Thekkepat, K., Han, H. S., Choi, J. W., Lee, S. C., Yoon, E. S., Li, G., ... & Cha, P. R. (2021). Computational design of Mg alloys with minimal galvanic corrosion. Journal of Magnesium and Alloys.
    [7] Ishizaki, T., Hieda, J., Saito, N., Saito, N., & Takai, O. (2010). Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition. Electrochimica Acta, 55(23), 7094-7101.
    [8] Bakhsheshi-Rad, H. R., Hamzah, E., Daroonparvar, M., Saud, S. N., & Abdul-Kadir, M. R. (2014). Bi-layer nano-TiO2/FHA composite coatings on Mg–Zn–Ce alloy prepared by combined physical vapour deposition and electrochemical deposition methods. Vacuum, 110, 127-135.
    [9] Blawert, C., Dietzel, W., Ghali, E., & Song, G. (2006). Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Advanced Engineering Materials, 8(6), 511-533.
    [10] Hu, R. G., Zhang, S., Bu, J. F., Lin, C. J., & Song, G. L. (2012). Recent progress in corrosion protection of magnesium alloys by organic coatings. Progress in Organic Coatings, 73(2-3), 129- 141.
    [11] Dabala, M., Brunelli, K., Napolitani, E., & Magrini, M. (2003). Cerium-based chemical conversion coating on AZ63 magnesium alloy. Surface and Coatings Technology, 172(2-3), 227- 232.
    [12] Song, Y. W., Shan, D. Y., & Han, E. H. (2008). Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Materials letters, 62(17-18), 3276-3279.
    [13] Lu, X., Blawert, C., Huang, Y., Ovri, H., Zheludkevich, M. L., & Kainer, K. U. (2016). Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochimica Acta, 187, 20-33.
    [14] Yao, Z., Li, L., & Jiang, Z. (2009). Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation. Applied Surface Science, 255(13-14), 6724-6728.
    [15] Lu, X., Blawert, C., Kainer, K. U., & Zheludkevich, M. L. (2016). Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles. Electrochimica Acta, 196, 680-691.
    [16] Chang, L. (2009). Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation. Journal of Alloys and Compounds, 468(1-2), 462-465.
    [17] Srinivasan, P. B., Liang, J., Blawert, C., Störmer, M., & Dietzel, W. (2010). Characterization of calcium containing plasma electrolytic oxidation coatings on AM50 magnesium alloy. Applied surface science, 256(12), 4017-4022.
    [18] Dehnavi, V., Binns, W. J., Noël, J. J., Shoesmith, D. W., & Luan, B. L. (2018). Growth behaviour of low-energy plasma electrolytic oxidation coatings on a magnesium alloy. Journal of Magnesium and Alloys, 6(3), 229-237.
    [19] Luo, H., Cai, Q., Wei, B., Yu, B., Li, D., He, J., & Liu, Z. (2008). Effect of (NaPO3)6 concentrations on corrosion resistance of plasma electrolytic oxidation coatings formed on AZ91D magnesium alloy. Journal of alloys and compounds, 464(1-2), 537-543.
    [20] Lv, G. H., Chen, H., Li, L., Niu, E. W., Pang, H., Zou, B., & Yang, S. Z. (2009). Investigation of plasma electrolytic oxidation process on AZ91D magnesium alloy. Current applied physics, 9(1), 126-130.
    [21] Guo, J., Wang, L., Wang, S. C., Liang, J., Xue, Q., & Yan, F. (2009). Preparation and performance of a novel multifunctional plasma electrolytic oxidation composite coating formed on magnesium alloy. Journal of materials science, 44(8), 1998-2006.
    [22] ZHANG Y, YAN C, WANG F, LOU H, CAO C. Study on the environmentally friendly anodizing of AZ91D magnesium alloy [J]. Surf Coat Tech, 2002, 161(1): 36−43.
    [23] MIZUTANI Y, KIM S J, ICHNO R, OKIDO M. Anodizing of Mg alloys in alkaline solutions [J]. Surf Coat Tech, 2003, 169: 143−146.
    [24] Hussein, R. O., Nie, X., & Northwood, D. O. (2013). The application of plasma electrolytic oxidation (PEO) to the production of corrosion resistant coatings on magnesium alloys: a review. Corrosion and Materials, 38(1), 55-65.
    [25] Sikdar, S.; Menezes, P.V.; Maccione, R.; Jacob, T.; Menezes, P.L. Plasma Electrolytic Oxidation (PEO) Process—Processing, Properties, and Applications. Nanomaterials 2021, 11, 1375.
    [26] F. Jaspard-Mécuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Dujardin, A. Viola, J. Beauvir, “Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process”, Surface and Coatings Technology, Volume 201, Issue 21, 2007, Pages 8677-8682, ISSN 0257-8972
    [27] Durdu, S., Deniz, Ö. F., Kutbay, I., & Usta, M. (2013). Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation. Journal of Alloys and Compounds, 551, 422-429.
    [28] Rafieerad, A. R., Ashra, M. R., Mahmoodian, R., & Bushroa, A. R. (2015). Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper. Materials Science and Engineering: C, 57, 397-413.
    [29] Rafieerad, A. R., Ashra, M. R., Mahmoodian, R., & Bushroa, A. R. (2015). Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper. Materials Science and Engineering: C, 57, 397-413.
    [30] Cheng, Y., Zhu, Z., Zhang, Q., Zhuang, X., & Cheng, Y. (2020). Plasma electrolytic oxidation of brass. Surface and Coatings Technology, 385, 125366.
    [31] Pezzato, L., Brunelli, K., Dolcet, P., & Dabalà, M. (2016). Plasma electrolytic oxidation coating produced on 39NiCrMo3 steel. Surface and Coatings Technology, 307, 73-80.
    [32] Mordike, B., & Ebert, T. (2001). Magnesium: properties—applications—potential. Materials Science and Engineering: A, 302(1), 37-45.
    [33] Bettles, C., & Gibson, M. (2005). Current wrought magnesium alloys: strengths and weaknesses. Jom, 57(5), 46-49.
    [34] Xianhua, C., Yuxiao, G., & Fusheng, P. (2016). Research progress in magnesium alloys as functional materials. Rare Metal Materials and Engineering, 45(9), 2269-2274.
    [35] Groover, M. P. (2007). Fundamentals of modern manufacturing: materials processes, and systems: John Wiley & Sons.
    [36] Kulekci, M. K. (2008). Magnesium and its alloys applications in automotive industry. The International Journal of Advanced Manufacturing Technology, 39(9-10), 851-865.
    [37] Powell, B., Luo, A., & Krajewski, P. (2012). Magnesium alloys for lightweight powertrains and automotive bodies. In Advanced Materials in Automotive Engineering (pp.150-209): Elsevier.
    [38] Hantzsche, K., Bohlen, J., Wendt, J., Kainer, K., Yi, S., & Letzig, D. (2010). Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scripta Materialia, 63(7), 725-730.
    [39] Luo, A. A. (2005). Wrought magnesium alloys and manufacturing processes for automotive applications. SAE transactions, 411-421.
    [40] Liu, L.-l., Yang, P.-x., Su, C.-n., Guo, H.-f., & An, M.-z. (2013). Microstructure and corrosion behavior of micro-arc oxidation film on magnesium alloy. Int. J. Electrochem. Sci, 8, 6077-6084.
    [41] Avedesian, M. M., & Baker, H. (1999). ASM specialty handbook: magnesium and magnesium alloys: ASM international.
    [42] Singh, I., Singh, M., & Das, S. (2015). A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution. Journal of Magnesium and Alloys, 3(2), 142-148.
    [43] Hussein, R., Nie, X., & Northwood, D. (2015). Plasma electrolytic oxidation (PEO) coatings on Mg-alloys for improved wear and corrosion resistance. WIT Transactions on Engineering Sciences, 91, 163-176.
    [44] Walsh, F., Low, C., Wood, R., Stevens, K., Archer, J., Poeton, A., & Ryder, A. (2009). Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Transactions of the IMF, 87(3), 122-135.
    [45] Yerokhin, A., Nie, X., Leyland, A., Matthews, A., & Dowey, S. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122(2-3), 73-93.
    [46] Tsai, D.-S., & Chou, C.-C. (2018). Review of the soft sparking issues in plasma electrolytic oxidation. Metals, 8(2), 105
    [47] Kamil, M. P., Kaseem, M., & Ko, Y. G. (2017). Soft plasma electrolysis with complex ions for optimizing electrochemical performance. Scientific reports, 7, 44458
    [48] R.O. Hussein, X. Nie, D.O. Northwood, “An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing”, Electrochimica Acta 112 (2013) 111-119
    [49] S. Wang, X. Liu, X. Yin, N. Du, “Influence of electrolyte components on the microstructure and growth mechanism of plasma electrolytic oxidation coatings on 1060 aluminum alloy”, Surface & Coatings Technology 381 (2020) 125214
    [50] Wu, T., Blawert, C., Serdechnova, M., Karlova, P., Dovzhenko, G., Wieland, D. F., ... & Zheludkevich, M. L. (2022). Formation of plasma electrolytic oxidation coatings on pure niobium in different electrolytes. Applied Surface Science, 573, 151629.
    [51] Hussein, R. O., Nie, X., Northwood, D. O., Yerokhin, A., & Matthews, A. (2010). Spectroscopic study of electrolytic plasma and discharging behavior during the plasma electrolytic oxidation (PEO) process. Journal of Physics D: Applied Physics, 43(10), 105203.
    [52] Liu, R., Wu, J., Xue, W., Qu, Y., Yang, C., Wang, B., & Wu, X. (2014). Discharge behaviors during plasma electrolytic oxidation on aluminum alloy. Materials Chemistry and Physics, 148(1- 2), 284-292.
    [53] L. Wang, L. Chen, Z. Yan, W. Fu, “Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes”, Surface & Coatings Technology 205 (2010) 1651-1658
    [54] Wang, L., Fu, W., Yi, G., Chen, Z., Gao, Z., & Pan, Q. (2022). Discharge Characteristics, Plasma Electrolytic Oxidation Mechanism and Properties of ZrO2 Membranes in K2ZrF6 Electrolyte. Membranes, 12(5), 516.
    [55] Sundararajan, G., & Krishna, L. R. (2003). Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surface and Coatings Technology, 167(2- 3), 269-277.
    [56] R.O. Hussein, X. Nie, D.O. Northwood, “An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing”, Electrochimica Acta 112 (2013) 111-119
    [57] Cheng, Y. L., Xue, Z. G., Wang, Q., Wu, X. Q., Matykina, E., Skeldon, P., & Thompson, G. E. (2013). New findings on properties of plasma electrolytic oxidation coatings from study of an Al–Cu–Li alloy. Electrochimica Acta, 107, 358-378.
    [58] Toulabifard, A., Rahmati, M., Raeissi, K., Hakimizad, A., & Santamaria, M. (2020). The effect of electrolytic solution composition on the structure, corrosion, and wear resistance of PEO coatings on AZ31 magnesium alloy. Coatings, 10(10), 937.
    [59] Wu, T., Blawert, C., Serdechnova, M., Karlova, P., Dovzhenko, G., Wieland, D. F., ... & Zheludkevich, M. L. (2022). Formation of plasma electrolytic oxidation coatings on pure niobium in different electrolytes. Applied Surface Science, 573, 151629.
    [60] Barati, N., Jiang, J., & Meletis, E. I. (2022). Microstructural evolution of ceramic nanocomposites coated on 7075 Al alloy by plasma electrolytic oxidation. Surface and Coatings Technology, 437, 128345.
    [61] Chen, Z., Geng, X., Yong, X. et al. Insight into the Corrosion Resistance of Plasma Electrolytic Oxidation (PEO) Mg Alloys from the Microstructures in PEO Coatings. J. of Materi Eng and Perform (2022).
    [62] Runge, J. M., & Pomis, A. (2000, June). Anodic oxide film formation: Relating mechanism to composition and structure. In Proceedings of the AESF SUR/FIN 2000 Technical Conference, AESF.
    [63] Raj, V., Rajaram, M. P., Balasubramanian, G., Vincent, S., & Kanagaraj, D. (2003). Pulse anodizing—an overview. Transactions of the IMF, 81(4), 114-121.
    [64] Usman, B. J. (2022). Green and Effective Anodizing of AA 2024-T3 in Methionine-Sulfuric Acid Electrolyte. Journal of The Electrochemical Society, 169(3), 031503.
    [65] Blawert, C., & Srinivasan, P. B. (2010). Plasma electrolytic oxidation treatment of magnesium alloys. In Surface engineering of light alloys (pp. 155-183). Woodhead Publishing.
    [66] B. Kazanski, A. Kossenko, M. Zinigrad, A. Lugovskoy, “Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy”, Applied Surface Science 287 (2013) 461–466
    [67] M. Rahmati, K. Raeissi, M. R. Toroghinejad, A. Hakimizad, M. Santamaria, “The multieffects of K2TiF6 additive on the properties of PEO coatings on AZ31 Mg alloy”, Surface & Coatings Technology 402 (2020) 126296
    [68] L. White, Y. Koo, S. Neralla, J. Sankar, Y. Yun, “Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO)”, Materials Science and Engineering B, B 208 (2016) 39–46
    [69] L. Wang, L. Chen, Z. Yan, H. Wang, J. Peng, “Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy”, Journal of Alloys and Compounds 480 (2009) 469–474
    [70] Raj, V., Rajaram, M. P., Balasubramanian, G., Vincent, S., & Kanagaraj, D. (2003). Pulse anodizing—an overview. Transactions of the IMF, 81(4), 114-121.
    [71] Ma, Yanlong & Zhou, Xianzhi & Wang, Junjie & Thompson, George & Huang, W. & Nilsson, Jan-Olov & Gustavsson, M. & Crispin, A. b (2014). Discoloration of Anodized AA6063 Aluminum Alloy. Journal of the Electrochemical Society. 161. C312-C320.
    [72] Pan, Y. K., Chen, C. Z., Wang, D. G., & Zhao, T. G. (2013). Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg–Zn–Zr magnesium alloy. Colloids and Surfaces B: Biointerfaces, 109, 1-9.
    [73] Mubarok, M. Z., & Wahyudi, S. (2015). Effects of anodizing parameters in tartaric-sulphuric acid on coating thickness and corrosion resistance of Al 2024 T3 alloy. Journal of Minerals and Materials Characterization and Engineering, 3(03), 154.
    [74] Yahia, S. A. A., Hamadou, L., Kadri, A., Benbrahim, N., & Sutter, E. M. M. (2012). Effect of anodizing potential on the formation and EIS characteristics of TiO2 nanotube arrays. Journal of The Electrochemical Society, 159(4), K83.
    [75] Han, J., Yu, Y., Yang, J., Xiaopeng, L., Blawert, C., & Zheludkevich, M. L. (2022). Corrosion and wear performance of La2O3 doped plasma electrolytic oxidation coating on pure Mg. Surface and Coatings Technology, 433, 128112.
    [76] Rahmati, M., Raeissi, K., Toroghinejad, M. R., Hakimizad, A., & Santamaria, M. (2019). Effect of pulse current mode on microstructure, composition and corrosion performance of the coatings produced by plasma electrolytic oxidation on AZ31 Mg alloy. Coatings, 9(10), 688.
    [77] Nominé, A., Martin, J., Noël, C., Henrion, G., Belmonte, T., Bardin, I. V., & Lukeš, P. (2016). Surface charge at the oxide/electrolyte interface: toward optimization of electrolyte composition for treatment of aluminum and magnesium by plasma electrolytic oxidation. Langmuir, 32(5), 1405-1409.
    [78] Hussein, R. O., Zhang, P., Nie, X., Xia, Y., & Northwood, D. O. (2011). The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62. Surface and Coatings Technology, 206(7), 1990-1997.
    [79] Han, J., Yu, Y., Yang, J., Xiaopeng, L., Blawert, C., & Zheludkevich, M. L. (2022). Corrosion and wear performance of La2O3 doped plasma electrolytic oxidation coating on pure Mg. Surface and Coatings Technology, 433, 128112.
    [80] Yang, Z., Xiong, D., Wang, P., Lan, X., Duan, Y., & Xiang, D. (2022). Properties of Plasma Electrolytic Oxidation Coatings Doped with SnSO4 on AZ91D Magnesium Alloys. Journal of Materials Engineering and Performance, 1-12.
    [81] Weiyi Zhang, Yunhui Du, Peng Zhang, Excellent plasma electrolytic oxidation coating on AZ61 magnesium alloy under ordinal discharge mode, Journal of Magnesium and Alloys, 2021, ISSN 2213-9567
    [82] Salih Durdu, Selin Bayramoğlu, Aysun Demirtaş, Metin Usta, A. Hikmet Üçışık, Characterization of AZ31 Mg Alloy coated by plasma electrolytic oxidation, Vacuum, Volume 88, 2013, Pages 130-133, ISSN 0042-207X
    [83] Senocak, T. C., Yilmaz, T. A., Budak, H. F., Gulten, G., Yilmaz, A. M., Ezirmik, K. V., & Totik, Y. (2022). Influence of sodium pentaborate (B5H10NaO13) additive in plasma electrolytic oxidation process on WE43 magnesium alloys. Materials Today Communications, 30, 103157.
    [84] Toro, L., Zuleta, A. A., Correa, E., & Echeverría, F. (2022). Hydrothermal Sealing of Plasma Electrolytic Oxidation Coatings Developed on AZ31 Alloy. Journal of Materials Engineering and Performance, 1-9.
    [85] Moon, K. D., & Lee, D. K. (2022). Effects of the sodium borate additions in NaOH-Na2SiO3 electrolytes on the surface and corrosion properties of plasma electrolytic oxidation coatings on AZ31 Mg alloy. Molecular Crystals and Liquid Crystals, 735(1), 2-8.
    [86] Patrascu, I., Ducu, M. C., Negrea, A. D., Moga, S. G., & Plaiasu, A. G. (2022, July). Overview on plasma electrolytic oxidation of magnesium alloys for medical and engineering applications. In IOP Conference Series: Materials Science and Engineering (Vol. 1251, No. 1, p. 012001). IOP Publishing.
    [87] Haojie Ma, Dalong Li, Chen Liu, Zhiquan Huang, Donglei He, Qin Yan, Peng Liu, Philip Nash, Dejiu Shen, An investigation of (NaPO3)6 effects and mechanisms during micro-arc oxidation of AZ31 magnesium alloy, Surface and Coatings Technology, Volume 266, 2015, Pages 151-159, ISSN 0257-8972
    [88] J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, W. Liu, T. Xu, “Effects of NaAlO2 on structure and corrosion resistance of microarc oxidation coatings formed on AM60B magnesium alloy in phosphate–KOH electrolyte”, Surface and Coatings Technology, Volume 199, Issues 2–3, 2005, Pages 121-126, ISSN 0257-8972
    [89] Aktuğ, S. L., Durdu, S., Kutbay, I., & Usta, M. (2016). Effect of Na2SiO3· 5H2O concentration on microstructure and mechanical properties of plasma electrolytic oxide coatings on AZ31 Mg alloy produced by twin roll casting. Ceramics International, 42(1), 1246-1253.
    [90] B. Kazanski, A. Kossenko, M. Zinigrad, A. Lugovskoy, “Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy”, Applied Surface Science 287 (2013) 461–466
    [91] M. Rahmati, K. Raeissi, M. R. Toroghinejad, A. Hakimizad, M. Santamaria, “The multi-effects of K2TiF6 additive on the properties of PEO coatings on AZ31 Mg alloy”, Surface & Coatings Technology 402 (2020) 126296
    [92] L. White, Y. Koo, S. Neralla, J. Sankar, Y. Yun, “Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO)”, Materials Science and Engineering B, B 208 (2016) 39–46
    [93] L. Wang, L. Chen, Z. Yan, H. Wang, J. Peng, “Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy”, Journal of Alloys and Compounds 480 (2009) 469–474
    [94] Fu, L.; Yang, Y.; Zhang, L.; Wu, Y.; Liang, J.; Cao, B. Preparation and Characterization of Fluoride-Incorporated Plasma Electrolytic Oxidation Coatings on the AZ31 Magnesium Alloy. Coatings 2019, 9, 826
    [95] H. Soliman & A. S. Hamdy (2017) Effect of fluoride ions modifier and ceramic Al2O3 particles additives on plasma electrolytic oxidation of AZ31, Surface Engineering, 33:10, 767-772
    [96] H. Soliman, M. K. Ahmed & R. Elbadewy (2021) Enhanced corrosion resistance of plasma electrolytic oxidation coatings prepared on Mg alloy ZX using nano-Al2O3 and NaF incorporated electrolyte, Surface Engineering, 37:2, 246-252
    [97] Z. Lujun, L. Hongzhan, M. Qingmei, L. Jiangbo, L. Zhengxian, “The mechanism for tuning the corrosion resistance and pore density of plasma electrolytic oxidation (PEO) coatings on Mg alloy with fluoride addition”, Journal of Magnesium and Alloys, 2021, ISSN 2213-9567
    [98] H. Chen, G. Lv, G. Zhang, H. Pang, X. Wang, H. Lee, S. Yang, “Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives”, Surface and Coatings Technology, Volume 205, Supplement 1, 2010, Pages S32-S35, ISSN 0257-8972
    [99] A. Heydarian, M. Atapour, A. Hakimizad, K. Raeissi, “The effects of anodic amplitude and waveform of applied voltage on characterization and corrosion performance of the coatings grown by plasma electrolytic oxidation on AZ91 Mg alloy from an aluminate bath”, Surface and Coatings Technology, Volume 383, 2020, 125235, ISSN 0257- 8972
    [100] Qi Chen, Yun Zheng, Shuai Dong, Xiao-Bo Chen, Jie Dong, ”Effects of fluoride ions as electrolyte additives for a PEO/Ni-P composite coating onto Mg alloy AZ31B”, Surface and Coatings Technology, Volume 417, 2021, 126883, ISSN 0257-8972
    [101] Hongping Duan, Chuanwei Yan, Fuhui Wang, “Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D”, Electrochimica Acta, Volume 52, Issue 11, 2007, Pages 3785-3793, ISSN 0013-4686,
    [102] A. B. Khiabani, A. Ghanbari, B. Yarmand, A. Zamanian, M. Mozafari, “Improving corrosion behavior and in vitro bioactivity of plasma electrolytic oxidized AZ91 magnesium alloy using calcium fluoride containing electrolyte”, Materials Letters, 212 (2018) 98-102
    [103] Z.P. Yao, X.R. Liu, L.L. Li, S.F. Qi, and Z.H. Jiang, “Effects of Sodium Fluoride on Structure and Corrosion Resistance of Plasma Electrolytic Oxidation Ceramic Coatings on Magnesium Alloys”, Corrosion, 2010-08-01
    [104] M. Mohedano, B.J.C. Luthringer, B. Mingo, F. Feyerabend, R. Arrabal, P.J. Sanchez-Egido, C. Blawert, R. Willumeit-Römer, M.L. Zheludkevich, E. Matykina, “Bioactive plasma electrolytic oxidation coatings on Mg-Ca alloy to control degradation behaviour”, Surface and Coatings Technology, Volume 315, 2017, Pages 454-467, ISSN 0257-8972
    [105] P. Tian, F. Peng, D. Wang, X. Liu, “Corrosion behavior and cytocompatibility of fluoride-incorporated plasma electrolytic oxidation coating on biodegradable AZ31 alloy”, Regenerative Biomaterials, Volume 4, Issue 1, February 2017, Pages 1–10
    [106] G. Lv, H. Chen, X. Wang, H. Pang, G.L. Zhang, B. Zou, H.J. Lee, S.Z. Yang, “Effect of additives on structure and corrosion resistance of plasma electrolytic oxidation coatings on AZ91D magnesium alloy in phosphate based electrolyte”, Surface & Coatings Technology 205 (2010) S36–S40
    [107] L. Wang, L. Chen, Z. Yan, H. Wang, J. Peng, “Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy”, Journal of Alloys and Compounds 480 (2009) 469–474
    [108] Wei, C. B., Tian, X. B., Yang, S. Q., Wang, X. B., Fu, R. K., & Chu, P. K. (2007). Anode current effects in plasma electrolytic oxidation. Surface and Coatings Technology, 201(9-11), 5021-5024.
    [109] S. Moon, C. Yang, S. Na, ‘Effects of Hydroxide and Silicate ions on the Plasma Electrolytic Oxidation of AZ31 Mg Alloy’, J. Kor. Inst. Surf. Eng. Vol. 47, No. 4, 2014
    [110] L. Wang, L. Chen, Z. Yan, H. Wang, J. Peng, “Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy”, Journal of Alloys and Compounds 480 (2009) 469–474
    [111] Cheng, Y. L., Xue, Z. G., Wang, Q., Wu, X. Q., Matykina, E., Skeldon, P., & Thompson, G. E. (2013). New findings on properties of plasma electrolytic oxidation coatings from study of an Al–Cu–Li alloy. Electrochimica Acta, 107, 358-378.
    [112] Luo, H., Cai, Q., Wei, B., Yu, B., Li, D., He, J., & Liu, Z. (2008). Effect of (NaPO3)6 concentrations on corrosion resistance of plasma electrolytic oxidation coatings formed on AZ91D magnesium alloy. Journal of alloys and compounds, 464(1-2), 537-543.
    [113] Cheng, Y. L., Xue, Z. G., Wang, Q., Wu, X. Q., Matykina, E., Skeldon, P., & Thompson, G. E. (2013). New findings on properties of plasma electrolytic oxidation coatings from study of an Al–Cu–Li alloy. Electrochimica Acta, 107, 358-378.
    [114] Fengyan Hou, Rukmini Gorthy, Ian Mardon, Da Tang, and Chris Goode, ‘Protecting Light Metal Alloys Using a Sustainable Plasma Electrolytic Oxidation Process’ ACS Omega 2022 7 (10), 8570-8580
    [115] An, L., Ma, Y., Sun, L., Wang, Z., & Wang, S. (2020). Investigation of mutual effects among additives in electrolyte for plasma electrolytic oxidation on magnesium alloys. Journal of Magnesium and Alloys, 8(2), 523-536.
    [116] Lu, X., Blawert, C., Kainer, K. U., & Zheludkevich, M. L. (2016). Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles. Electrochimica Acta, 196, 680-691.
    [117] Han, B., Yang, Y., Li, J., Deng, H., & Yang, C. (2018). Effects of the graphene additive on the corrosion resistance of the plasma electrolytic oxidation (PEO) coating on the AZ91 magnesium alloy. Int. J. Electrochem. Sci, 13, 9166-9182.
    [118] Asgari, M., Aliofkhazraei, M., Darband, G. B., & Rouhaghdam, A. S. (2020). How nanoparticles and submicron particles adsorb inside coating during plasma electrolytic oxidation of magnesium?. Surface and Coatings Technology, 383, 125252.
    [119] Kamil, M. P., Al Zoubi, W., Yoon, D. K., Yang, H. W., & Ko, Y. G. (2020). Surface modulation of inorganic layer via soft plasma electrolysis for optimizing chemical stability and catalytic activity. Chemical Engineering Journal, 391, 123614.
    [120] An, L., Ma, Y., Sun, L., Wang, Z., & Wang, S. (2020). Investigation of mutual effects among additives in electrolyte for plasma electrolytic oxidation on magnesium alloys. Journal of Magnesium and Alloys, 8(2), 523-536.
    [121] Hongping Duan, Chuanwei Yan, Fuhui Wang, “Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D”, Electrochimica Acta, Volume 52, Issue 11, 2007, Pages 3785-3793, ISSN 0013-4686.
    [122] Asgari, M., Aliofkhazraei, M., Darband, G. B., & Rouhaghdam, A. S. (2020). How nanoparticles and submicron particles adsorb inside coating during plasma electrolytic oxidation of magnesium?. Surface and Coatings Technology, 383, 125252.
    [123] Nomine, A., Troughton, S. C., Nominé, A. V., Henrion, G., & Clyne, T. W. (2015). High speed video evidence for localised discharge cascades during plasma electrolytic oxidation. Surface and Coatings Technology, 269, 125- 130.
    [124] Keyvani, A., Zamani, M., Bahamirian, M., Nikoomanzari, E., Fattah-Alhosseini, A., & Sina, H. (2021). Role of incorporation of ZnO nanoparticles on corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation technique. Surfaces and Interfaces, 22, 100728.
    [125] Toro, L., Zuleta, A. A., Correa, E., & Echeverría, F. (2022). Hydrothermal Sealing of Plasma Electrolytic Oxidation Coatings Developed on AZ31 Alloy. Journal of Materials Engineering and Performance, 1-9.
    [126] Molaei, M., Babaei, K., & Fattah-alhosseini, A. (2021). Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano-and micro-sized additives into the electrolytes: a review. Journal of Magnesium and Alloys, 9(4), 1164-1186.
    [127] Peitao, G., Mingyang, T., & Chaoyang, Z. (2019). Tribological and corrosion resistance properties of graphite composite coating on AZ31 Mg alloy surface produced by plasma electrolytic oxidation. Surface and Coatings Technology, 359, 197-205.
    [128] Dehnavi, V., Luan, B. L., Liu, X. Y., Shoesmith, D. W., & Rohani, S. (2015). Correlation between plasma electrolytic oxidation treatment stages and coating microstructure on aluminum under unipolar pulsed DC mode. Surface and Coatings Technology, 269, 91-99
    [129] Peitao, G., Mingyang, T., & Chaoyang, Z. (2019). Tribological and corrosion resistance properties of graphite composite coating on AZ31 Mg alloy surface produced by plasma electrolytic oxidation. Surface and Coatings Technology, 359, 197-205.
    [130] Jin, F., Chu, P. K., Tong, H., & Zhao, J. (2006). Improvement of surface porosity and properties of alumina films by incorporation of Fe micrograins in micro-arc oxidation. Applied Surface Science, 253(2), 863-868.
    [131] Bala Srinivasan, P., Liang, J., Blawert, C., Störmer, M., & Dietzel, W. (2010). Development of decorative and corrosion resistant plasma electrolytic oxidation coatings on AM50 magnesium alloy. Surface engineering, 26(5), 367-370.
    [132] Timoshenko, A. V., & Magurova, Y. V. (2005). Investigation of plasma electrolytic oxidation processes of magnesium alloy MA2-1 under pulse polarisation modes. Surface and Coatings Technology, 199(2-3), 135-140.
    [133] Wei, C. B., Tian, X. B., Yang, S. Q., Wang, X. B., Fu, R. K., & Chu, P. K. (2007). Anode current effects in plasma electrolytic oxidation. Surface and Coatings Technology, 201(9-11), 5021-5024.
    [134] Matykina, E., Arrabal, R., Skeldon, P., & Thompson, G. E. (2009). Investigation of the growth processes of coatings formed by AC plasma electrolytic oxidation of aluminium. Electrochimica acta, 54(27), 6767-6778.
    [135] H. Soliman, M. K. Ahmed & R. Elbadewy (2021) Enhanced corrosion resistance of plasma electrolytic oxidation coatings prepared on Mg alloy ZX using nano-Al2O3 and NaF incorporated electrolyte, Surface Engineering, 37:2, 246-252
    [136] Arrabal, R., Matykina, E., Hashimoto, T., Skeldon, P., & Thompson, G. E. (2009). Characterization of AC PEO coatings on magnesium alloys. Surface and coatings technology, 203(16), 2207-2220.
    [137] Nominé, A., Martin, J., Noël, C., Henrion, G., Belmonte, T., Bardin, I. V., ... & Rakoch, A. G. (2014). The evidence of cathodic micro-discharges during plasma electrolytic oxidation process. Applied Physics Letters, 104(8), 081603.
    [138] Tu, X., Miao, C., Zhang, Y., Xu, Y., & Li, J. (2018). Plasma electrolytic oxidation of magnesium alloy AZ31B in electrolyte containing Al2O3 sol as additives. Materials, 11(9), 1618
    [139] J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, W. Liu, T. Xu, “Effects of NaAlO2 on structure and corrosion resistance of microarc oxidation coatings formed on AM60B magnesium alloy in phosphate–KOH electrolyte”, Surface and Coatings Technology, Volume 199, Issues 2–3, 2005, Pages 121-126, ISSN 0257-8972
    [140] Aktuğ, S. L., Durdu, S., Kutbay, I., & Usta, M. (2016). Effect of Na2SiO3· 5H2O concentration on microstructure and mechanical properties of plasma electrolytic oxide coatings on AZ31 Mg alloy produced by twin roll casting. Ceramics International, 42(1), 1246-1253.
    [141] L. Wang, L. Chen, Z. Yan, H. Wang, J. Peng, “Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy”, Journal of Alloys and Compounds 480 (2009) 469–474
    [142] S. Moon, C. Yang, S. Na, ‘Effects of Hydroxide and Silicate ions on the Plasma Electrolytic Oxidation of AZ31 Mg Alloy’, J. Kor. Inst. Surf. Eng. Vol. 47, No. 4, 2014
    [143] Y. G. Ko, S. Namgung, D. H. Shin, ‘Correlation between KOH concentration and surface properties of AZ91 magnesium alloy coated by plasma electrolytic oxidation’, Surface & Coatings Technology 205 (2010) 2525-2531
    [144] Huan, C., Guo-Hua, L., Gu-Ling, Z., Hua, P., Xing-Quan, W., You-Wei, Z., ... & Si-Ze, Y. (2009). Effect of the pulse duty cycle on characteristics of plasma electrolytic oxidation coatings formed on AZ31 magnesium alloy. Chinese Physics Letters, 26(9), 096802.
    [145] Lu, X., Blawert, C., Mohedano, M., Scharnagl, N., Zheludkevich, M. L., & Kainer, K. U. (2016). Influence of electrical parameters on particle uptake during plasma electrolytic oxidation processing of AM50 Mg alloy. Surface and Coatings Technology, 289, 179-185.
    [146] Hussein, R. O., Zhang, P., Nie, X., Xia, Y., & Northwood, D. O. (2011). The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62. Surface and Coatings Technology, 206(7), 1990-1997.
    [147] Hussein, R. O., Northwood, D. O., & Nie, X. (2014). Processing-microstructure relationships in the plasma electrolytic oxidation (PEO) coating of a magnesium alloy. Materials Sciences and Applications, 2014.
    [148] Su, P., Wu, X., Guo, Y., & Jiang, Z. (2009). Effects of cathode current density on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on ZK60 Mg alloy. Journal of alloys and compounds, 475(1-2), 773-777.
    [149] Guo, Y., Rogov, A., Hird, A., Mingo, B., Matthews, A., & Yerokhin, A. (2022). Plasma electrolytic oxidation of magnesium by sawtooth pulse current. Surface and Coatings Technology, 429, 127938.
    [150] Rahmati, M., Raeissi, K., Toroghinejad, M. R., Hakimizad, A., & Santamaria, M. (2021). Corrosion and wear resistance of coatings produced on AZ31 Mg alloy by plasma electrolytic oxidation in silicate-based K2TiF6 containing solution: Effect of waveform. Journal of Magnesium and Alloys.
    [151] Alateyah, A. I., Aljohani, T. A., Alawad, M. O., Elkatatny, S., & El-Garaihy, W. H. (2021). Improving the Corrosion Behavior of Biodegradable AM60 Alloy through Plasma Electrolytic Oxidation. Metals, 11(6), 953.
    [152] A. Heydarian, M. Atapour, A. Hakimizad, K. Raeissi, “The effects of anodic amplitude and waveform of applied voltage on characterization and corrosion performance of the coatings grown by plasma electrolytic oxidation on AZ91 Mg alloy from an aluminate bath”, Surface and Coatings Technology, Volume 383, 2020, 125235, ISSN 0257- 8972
    [153] Tian, H., Zhang, Y., Hao, X., Zhang, H., Wu, W., Han, G., ... & Chen, F. (2022). Preparation and characterization of the low-energy plasma electrolysis oxide coatings on MgLi alloy. Surface and Coatings Technology, 440, 128445.
    [154] Luo, H., Cai, Q., Wei, B., Yu, B., He, J., & Li, D. (2009). Study on the microstructure and corrosion resistance of ZrO2-containing ceramic coatings formed on magnesium alloy by plasma electrolytic oxidation. Journal of Alloys and Compounds, 474(1-2), 551-556.
    [155] Srinivasan, P. B., Liang, J., Blawert, C., Störmer, M., & Dietzel, W. (2009). Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy. Applied Surface Science, 255(7), 4212-4218
    [156] Shahri, Z., Allahkaram, S. R., Soltani, R., & Jafari, H. (2020). Optimization of plasma electrolyte oxidation process parameters for corrosion resistance of Mg alloy. Journal of Magnesium and Alloys, 8(2), 431-440.
    [157] Sah, S. P., Tsuji, E., Aoki, Y., & Habazaki, H. (2012). Cathodic pulse breakdown of anodic films on aluminium in alkaline silicate electrolyte–understanding the role of cathodic half-cycle in AC plasma electrolytic oxidation. Corrosion Science, 55, 90-96.
    [158] Rogov, A. B., Yerokhin, A., & Matthews, A. (2017). The role of cathodic current in plasma electrolytic oxidation of aluminum: Phenomenological concepts of the “soft sparking” mode. Langmuir, 33(41), 11059-11069.
    [159] Yang, K., Zeng, J., Huang, H., Chen, J., & Cao, B. (2019). A novel self-adaptive control method for plasma electrolytic oxidation processing of aluminum alloys. Materials, 12(17), 2744.
    [160] Tjiang, F., Ye, L. W., Huang, Y. J., Chou, C. C., & Tsai, D. S. (2017). Effect of processing parameters on soft regime behavior of plasma electrolytic oxidation of magnesium. Ceramics International, 43, S567-S572.
    [161] Cheng, Y. L., Xue, Z. G., Wang, Q., Wu, X. Q., Matykina, E., Skeldon, P., & Thompson, G. E. (2013). New findings on properties of plasma electrolytic oxidation coatings from study of an Al–Cu–Li alloy. Electrochimica Acta, 107, 358-378.
    [162] Sreekanth, D., Rameshbabu, N., & Venkateswarlu, K. (2012). Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation. Ceramics International, 38(6), 4607-4615.
    [163] Tsai, D. S., & Chou, C. C. (2021). Influences of growth species and inclusions on the current–voltage behavior of plasma electrolytic oxidation: A review. Coatings, 11(3), 270.
    [164] F. Jaspard-Mécuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Dujardin, A. Viola, J. Beauvir, “Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process”, Surface and Coatings Technology, Volume 201, Issue 21, 2007, Pages 8677-8682, ISSN 0257-8972
    [165] Rapheal, G., Kumar, S., Scharnagl, N., & Blawert, C. (2016). Effect of current density on the microstructure and corrosion properties of plasma electrolytic oxidation (PEO) coatings on AM50 Mg alloy produced in an electrolyte containing clay additives. Surface and Coatings Technology, 289, 150-164.
    [166] Guo, Y., Rogov, A., Hird, A., Mingo, B., Matthews, A., & Yerokhin, A. (2022). Plasma electrolytic oxidation of magnesium by sawtooth pulse current. Surface and Coatings Technology, 429, 127938.
    [167] Nomine, A., Martin, J., Henrion, G., & Belmonte, T. (2015). Effect of cathodic micro-discharges on oxide growth during plasma electrolytic oxidation (PEO). Surface and Coatings Technology, 269, 131-137.
    [168] W. Gębarowski and S. Pietrzyk, “Influence of the cathodic pulse on the formation and morphology of oxide coatings on aluminium produced by plasma electrolytic oxidation.” Arch. Metall. Mater. 58, 241 (2013).
    [169] Aliramezani, R., Raeissi, K., Santamaria, M., & Hakimizad, A. (2017). Effects of pulse current mode on plasma electrolytic oxidation of 7075 Al in KMnO4 containing solution. Journal of The Electrochemical Society, 164(12), C690.
    [170] Sreekanth, D., Rameshbabu, N., & Venkateswarlu, K. (2012). Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation. Ceramics International, 38(6), 4607-4615.
    [171] Zhao, J., Xie, X., & Zhang, C. (2017). Effect of the graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy. Corrosion Science, 114, 146-155.
    [172] Tu, X., Miao, C., Zhang, Y., Xu, Y., & Li, J. (2018). Plasma electrolytic oxidation of magnesium alloy AZ31B in electrolyte containing Al2O3 sol as additives. Materials, 11(9), 1618.
    [173] Nomine, A., Martin, J., Henrion, G., & Belmonte, T. (2015). Effect of cathodic micro-discharges on oxide growth during plasma electrolytic oxidation (PEO). Surface and Coatings Technology, 269, 131-137.
    [174] Martin, J., Haraux, P., Ntomprougkidis, V., Migot, S., Bruyère, S., & Henrion, G. (2020). Characterization of metal oxide micro/nanoparticles elaborated by plasma electrolytic oxidation of aluminium and zirconium alloys. Surface and Coatings Technology, 397, 125987.
    [175] Tu, X., Miao, C., Zhang, Y., Xu, Y., & Li, J. (2018). Plasma electrolytic oxidation of magnesium alloy AZ31B in electrolyte containing Al2O3 sol as additives. Materials, 11(9), 1618.
    [176] Martin, J., Leone, P., Nomine, A., Veys-Renaux, D., Henrion, G., & Belmonte, T. (2015). Influence of electrolyte ageing on the plasma electrolytic oxidation of aluminium. Surface and Coatings Technology, 269, 36-46.
    [177] Pezzato, L., Brunelli, K., Gross, S., Magrini, M., & Dabalà, M. (2014). Effect of process parameters of plasma electrolytic oxidation on microstructure and corrosion properties of magnesium alloys. Journal of Applied Electrochemistry, 44(7), 867-879.
    [178] Martin, J., Melhem, A., Shchedrina, I., Duchanoy, T., Nomine, A., Henrion, G., ... & Belmonte, T. (2013). Effects of electrical parameters on plasma electrolytic oxidation of aluminium. Surface and coatings technology, 221, 70-76.
    [179] Rogov, A. B., Huang, Y., Shore, D., Matthews, A., & Yerokhin, A. (2021). Toward rational design of ceramic coatings generated on valve metals by plasma electrolytic oxidation: The role of cathodic polarisation. Ceramics International, 47(24), 34137-34158.
    [180] Apelfeld, A., Krit, B., Ludin, V., Morozova, N., Vladimirov, B., & Wu, R. Z. (2017). The characterization of plasma electrolytic oxidation coatings on AZ41 magnesium alloy. Surface and Coatings Technology, 322, 127-133.
    [181] Tu, X., Miao, C., Zhang, Y., Xu, Y., & Li, J. (2018). Plasma electrolytic oxidation of magnesium alloy AZ31B in electrolyte containing Al2O3 sol as additives. Materials, 11(9), 1618.
    [182] Pezzato, L., Brunelli, K., Gross, S., Magrini, M., & Dabalà, M. (2014). Effect of process parameters of plasma electrolytic oxidation on microstructure and corrosion properties of magnesium alloys. Journal of Applied Electrochemistry, 44(7), 867-879.
    [183] Liu, F., Shan, D., Song, Y., Han, E. H., & Ke, W. (2011). Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation. Corrosion Science, 53(11), 3845-3852.
    [184] Darband, G. B., Aliofkhazraei, M., Hamghalam, P., & Valizade, N. (2017). Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. Journal of Magnesium and Alloys, 5(1), 74-132.
    [185] Daroonparvar, M., Yajid, M. A. M., Yusof, N. M., & Bakhsheshi-Rad, H. R. (2016). Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1% Ca alloy formed in aluminate electrolyte containing titania nano-additives. Journal of Alloys and Compounds, 688, 841-857.
    [186] Martin, J., Akoda, K., Ntomprougkidis, V., Ferry, O., Maizeray, A., Bastien, A., ... & Henrion, G. (2020). Duplex surface treatment of metallic alloys combining cold-spray and plasma electrolytic oxidation technologies. Surface and Coatings Technology, 392, 125756.
    [187] Mori, Y., Koshi, A., Liao, J., Asoh, H., & Ono, S. (2014). Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate–Silicate mixture electrolytes. Corrosion science, 88, 254-262.
    [188] Rogov, A. B., Matthews, A., & Yerokhin, A. (2019). Role of cathodic current in plasma electrolytic oxidation of Al: A quantitative approach to in-situ evaluation of cathodically induced effects. Electrochimica Acta, 317, 221- 231.
    [189] Němcová, A., Skeldon, P., Thompson, G. E., Morse, S., Čížek, J., & Pacal, B. (2014). Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy. Corrosion science, 82, 58-66.
    [206] Rogov, A. B., Matthews, A., & Yerokhin, A. (2020). Relaxation kinetics of plasma electrolytic oxidation coated Al electrode: Insight into the role of negative current. The Journal of Physical Chemistry C, 124(43), 23784-23797.
    [208] Chen, H., Lv, G., Zhang, G., Pang, H., Wang, X., Lee, H., & Yang, S. (2010). Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives. Surface and Coatings Technology, 205, S32-S35.
    [209] Cao, F. H., Cao, J. L., Zhang, Z., Zhang, J. Q., & Cao, C. N. (2007). Plasma electrolytic oxidation of AZ91D magnesium alloy with different additives and its corrosion behavior. Materials and Corrosion, 58(9), 696-703.
    [193] Hwang, M., & Chung, W. (2018). Effects of a carbon nanotube additive on the corrosion-resistance and heatdissipation properties of plasma electrolytic oxidation on AZ31 magnesium alloy. Materials, 11(12), 2438.
    [194] Han, B., Yang, Y., Li, J., Deng, H., & Yang, C. (2018). Effects of the graphene additive on the corrosion resistance of the plasma electrolytic oxidation (PEO) coating on the AZ91 magnesium alloy. Int. J. Electrochem. Sci, 13, 9166-9182.
    [195] Aliramezani, R., Raeissi, K., Santamaria, M., & Hakimizad, A. (2017). Effects of pulse current mode on plasma electrolytic oxidation of 7075 Al in KMnO4 containing solution. Journal of The Electrochemical Society, 164(12), C690.
    [196] Baron-Wiecheć, A., Curioni, M., Arrabal, R., Matykina, E., Skeldon, P., & Thompson, G. E. (2013). Plasma electrolytic oxidation of coupled light metals. Transactions of the IMF, 91(2), 107-112.
    [197] Toulabifard, A., Rahmati, M., Raeissi, K., Hakimizad, A., & Santamaria, M. (2020). The effect of electrolytic solution composition on the structure, corrosion, and wear resistance of PEO coatings on AZ31 magnesium alloy. Coatings, 10(10), 937.
    [198] Fatkullin, A. R., Parfenov, E. V., Yerokhin, A., Lazarev, D. M., & Matthews, A. (2015). Effect of positive and negative pulse voltages on surface properties and equivalent circuit of the plasma electrolytic oxidation process. Surface and Coatings Technology, 284, 427-437.
    [199] Cao, F. H., Lin, L. Y., Zhang, Z., Zhang, J. Q., & Cao, C. N. (2008). Environmental friendly plasma electrolytic oxidation of AM60 magnesium alloy and its corrosion resistance. Transactions of Nonferrous Metals Society of China, 18(2), 240-247
    [200] Kashapov, L. N., Kashapov, N. F., & Kashapov, R. N. (2013, December). Research of the impact acidity of electrolytic cathode on the course of the plasma-electrolytic process. In Journal of Physics: Conference Series (Vol. 479, No. 1, p. 012011). IOP Publishing.
    [201] Lu, X., Blawert, C., Mohedano, M., Scharnagl, N., Zheludkevich, M. L., & Kainer, K. U. (2016). Influence of electrical parameters on particle uptake during plasma electrolytic oxidation processing of AM50 Mg alloy. Surface and Coatings Technology, 289, 179-185.

    無法下載圖示 全文公開日期 2028/02/09 (校內網路)
    全文公開日期 2028/02/09 (校外網路)
    全文公開日期 2028/02/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE