簡易檢索 / 詳目顯示

研究生: 吳書宏
Shu-hung Wu
論文名稱: 摻鉻鎂橄欖石雙纖衣晶體光纖之研製
Fabrication of Cr:forsterite double-clad crystal fiber
指導教授: 葉秉慧
Ping-hui Yeh
口試委員: 黃升龍
Sheng-lung Huang
徐世祥
Shih-hsiang Hsu 
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 106
中文關鍵詞: 單纖衣雙纖衣晶體光纖雷射加熱基座生長法側鍍鎂橄欖石
外文關鍵詞: single-clad, double-clad, crystal fiber, LHPG, side deposition, forsterite
相關次數: 點閱:183下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學同調斷層掃描技術 (optical coherence tomography; OCT) 為一新穎性的光學顯微系統,是一種及時、具備非侵入性切片能力及高解析度的掃描技術,其縱向與橫向掃描相互獨立,縱向解析度與光源的頻寬成反比,橫向解析度取決於光源於聚焦平面上光點大小。本實驗室所研製的摻鉻鎂橄欖石晶體光纖,具寬頻的自發輻射頻譜,且避開水吸收的波段,故適合做為光學同調斷層掃描技術的光源。
    本論文為研製摻鉻鎂橄欖石雙纖衣晶體光纖,利用雷射加熱基座生長法,將原始晶棒拉提成直徑為 69μm 之單晶棒,並置於兩種不同材料的玻璃毛細管內,再拉提成雙纖衣晶體光纖,進行超寬頻自發輻射放大光源功率量測,相較於先前單纖衣晶體光纖之光源功率提升 5成之多。
    為了提升晶體光纖的自發輻射放大光源功率,我們嘗試幾種方法提升晶體光纖內之 Cr2O3 及 Cr4+ 的濃度:(1) 直徑 290μm 之單晶棒周邊蒸鍍 Cr2O3 再加熱擴散進入,(2) 直徑 69μm 之單晶棒於氧環境下,進行 800℃ 之退火實驗, (3) 使用離子佈植的方式,將氧離子佈植於晶體內。最有成效的是周邊蒸鍍 Cr2O3。當蒸鍍厚度為 109nm,鉻離子濃度提升為 0.011 ± 0.003 wt%,於幫浦功率為 1.33W 時,產生 CW 1.04mW 的 ASE 寬頻光源。相較於無周邊蒸鍍之單纖衣晶體光纖,其功率提升至少 1 倍。


    Optical coherence tomography (OCT) is a novel real-time non-invasive optical scanning technique with ultrahigh resolution. OCT axial resolution is inversely proportional to the bandwidth of the light source and the lateral resolution depends on the spot size of the light at the focal plane. Cr:forsterite crystal has broad bandwidth and appropriate wavelengths away from water absorption peaks. It′s ideal for OCT application.
    This study is on the fabrication of Chromium ions doped Forsterite double-clad crystal fiber. By the means of laser heated pedestal growth (LHPG) method, single crystal fibers of 69μm in diameter were produced first. They were inserted into two capillary tubes of different refractive index and matched size, and then were grown into Cr:forsterite double-clad crystal fiber. Compared with the single-clad crystal fiber, the amplified spontaneous emission (ASE) power was increased up to 50%.
    In order to increase the ASE power, we tried several methods to increase the concentration of Cr2O3 and Cr4+ as follows: (1) Using electron gun to deposit Cr2O3 on 290μm-diameter single crystal fiber which was then laser-heated to in-diffuse Chromium, (2) Annealing 69μm-diameter single crystal fiber at 800℃ in oxygen environment, and (3) Using ion implantation to implant oxygen ions into crystal fibers. The most effective method was Cr2O3 deposition. When a thickness of 109nm was deposited, the Chromium ion concentration was raised up to 0.011 ± 0.003 wt%. When pumped with 1.33W incident power, CW 1.04mW ASE power was generated that was twice as much as that of crystal fibers without Cr2O3 deposition.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 第二章 Cr:forsterite晶體特性與ASE 寬頻光源特性 2.1 晶體特性分析 2.2 寬頻光源 2.3 能階模型 2.4 傳輸模態 2.5 傳輸損耗 第三章 晶體光纖生長與元件製備 3.1 晶體生長架構與方法 3.1.1 雷射加熱基座生長法 3.1.2 周邊蒸鍍Cr2O3 3.1.3 離子佈植 3.1.4 氧環境退火 3.2 製作纖衣結構 3.2.1 單纖衣晶體光纖製作 3.2.2 雙纖衣晶體光纖製作 3.3 晶體光纖之金屬包覆 3.4 元件之研磨與拋光 3.5 電子微探儀樣品製作 第四章 實驗方法與結果 4.1 鉻離子濃度分析 4.1.1 電子微探儀原理 4.1.2 鉻離子濃度分析 4.2 Cr:forsterite 雙纖衣晶體光纖光學折射率量測與分析 4.2.1 折射率量測架構 4.2.2 量測結果與分析 4.3 Cr:forsterite 晶體光纖 ASE 光源特性量測 4.3.1 ASE 光源功率量測架構 4.3.2 量測結果與分析 第五章 結論與未來展望 參考文獻

    [1] M. G. Pomper, “Molecular imaging: an overview,” Acad. Radiol.,8, 1141 (2001).
    [2] K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt., 26,1603 (1987).
    [3] B. Danielson and C. Whittenberg, “Guided-wave with micrometer resolution,” Appl. Opt., 26, 2836 (1987).
    [4] D. Engin, “Complex optical low coherence reflectometry with tunable source,” IEEE Photon. Technol. Lett., 16, 1346 (2004).
    [5] D. Anderson and F. Bell, “Optical time-domain reflectometry,” Tektronix Inc., Wilsonville (1997).
    [6] D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J.Fujimoto, “Optical coherence tomography,” Science, 254, 1178 (1991).
    [7] A. M. Rollins, M. V. Sivak, S. Radhakrishnan, J. H. Lass, D.Huang, K. D. Cooper, and J. A. Izatt, “Emerging clinical applications of optical coherence tomography,” Opt. Photon. News, 13, 36 (2002).
    [8] P. Flournoy, R. McClure, and G. Wyntjes, “White-light I interferometric thickness gauge,” Appl. Opt., 11, 1907 (1972).
    [9] B.R. Wu, C.F. Lin, L.W. Laih, and T.T. Shih, "Extremely broadband InGaAsP/InP superluminescent diodes, " Electron. Lett., 36, 2093 (2000).
    [10] J. W. Lou, T. J. Xia, O. Boyraz, C. X. Shi, G. A. Nowak, and M. N. Islam, "Broader and flatter suppercontinuum spectra in dispersion-tailored fibers, "Technical Degist, 32 (1997).
    [11] Y. Shi and O. Poulsen, " High-power broadband single mode Pr3+-doped fibersuperfluorescence light source, " Electron. Lett., 29, 1945 (1993).
    [12] B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, " Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography, " Opt. Lett., 21, 1839 (1996).
    [13] R. S. Feigelson, W. L. Kway, and R. K. Route, " Single crystal fibers by the laser-heated pedestal growth method," Opt. Eng., 24, 1102 (1985).
    [14] J. S. Haggerty, "Production of fibers by a floating zone fiber drawing technique," Final Report NASA-CR-120948, May (1972).
    [15] C. A. Burrus and J. Stone, " Single-crystal fiber optical devices: A Nd:YAG fiber laser, " Appl. Phys. Lett., 26, 318 (1975).
    [16] M. M. Fejer, G. A. Magel, and R. L. Byer, " High-speed high-resolution fiber diameter variation measurement system, " Appl. Opt., 24, 2362 (1985).
    [17] 王先佑, "摻鉻鎂橄欖石晶體光纖製作與特性量測",碩士畢業論文,國立台灣科技大學(2009)
    [18] Cz. Koepke, K. Wisniewski, and M. Grinberg, "Excited statespectroscopy of chromium ions in various valence states inglass," J. of Alloys and Compounds, 341, 19 ( 2002).
    [19] U. Hommerich, X. Wu, and V. R. Davis, " Demonstration ofroom-temperature laser action at 2.5 μm fromCr2+:Cd0.85Mn0.15Te, " Opt. Lett., 22, 1180 (1997).
    [20] S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev "CW and pulsed Cr2+:ZnS and ZnSe microchip lasers, "Technical Digest, Conference on Lasers and Electro-Optics,120 (2002).
    [21] J. McKay, K. L. Schepler and G. C. Catella, "Efficientgrating-tuned mid-infrared Cr2+:CdSe laser," Optics Letters,24, 1575 (1999).
    [22] S. Kuck, K. Petermann, and G. Huber, "Spectroscopicinvestigation of the Cr4+-center in YAG, " OSA Proceedings onAdvanced Solid-State Lasers, 10, 92 (1991).
    [23] Al. A. Kaminskii, " Laser crystal,"1st ed, Springer-Verlag BerlinHeidelberg New York, pp. 241, 381, 382 (1981).
    [24] S. Aoshima, H. Itoh, K. Kuroyanagi, Y. Takiguchi, Y.Ohbayashi, I. Hirano, and Y. Tsuchiya, " Tunable picosecondall solid-state Cr:LiSAF laser, " IEEE, IMTC’94, 937 (1994).
    [25] Yen-Kuang Kuo, Man-Fang Huang, and Milton Bimbaum, "Tunable Cr4+:YSO Q-switched Cr:LiCAF laser," J. of QuantumElectron., 31, 657 (1995).
    [26] T. Fujii, M. Nagano, and K. Nemoto, "Spectroscope and laseroscillation characteristics of high Cr4+-doped forsterite, " J. ofQuantum Electron., 32, 1497 (1996).
    [27] S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G.Huber, "Spectroscopic and laser studies of Cr4+:YAG andCr4+:Y2SiO5, " OSA Proceedings on Advanced Solid-StateLasers, 15, 334 (1993).
    [28] Deer WA, Howie RA, Zussman J (1982) Rock Forming Minerals 2nd ed, vol 1 A, p 5, Longman, London
    [29] N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kück, K. Petermann, and G. Huber, " Excited-state absorption and stimulated emission measurements in Cr4+:forsterite, " J. of Lumin. 75, 319 (1997).
    [30] W. K. Burns, C. Chen and R. P. Moeller, "Fiber-optic gyroscopes with broad-band sources," IEEE/OSA J. Lightwave Technol., vol. LT-1, 98 (1983).
    [31] K. Takada, T. Kitagawa, W. Shimizu, and M. Horiguchi, "High-sensitivity low coherence reflectometer using erbium-doped superfluorescent fiber source and erbium-doped power amplifier," Electron. Lett., 29, 365 (1993).
    [32]李建木, "長波段放大自發性輻射光纖光源之研究," 碩士畢業論 文,國立中山大學, 2002.
    [33] N. V. Kuleshov, A. V. Podlipensky, V. G. Shcherbitsky, A. A. Lagatsky, and V. P. Mikhailov, " Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite, " Opt. Lett., 23, 1028 (1998).
    [34] B. Dussardier, Valerie Felice, "Cr4+-doped silica- based optical fibers fluorescence from 0.8 μm to 1.7 μm," Gerard Monnom Lab. De la Physique de la Matiere Condensee, France, Optical Society of America, paper MB18-1 (2001).
    [35] V. Shcheslavskiy, N. Zhavoronkov, V. Petrov, F. Noack, and M. Bouvier, "Kilohertz gain-switched laser operation and femtosecond regenerative amplification in Cr:forsterite" IEEE J. of quantum electro., 35, 1123 (1999).
    [36] G. Keiser, “Optical Fiber communications, ” 3rd ed, McGraw-Hill, Ch. 2, Ch. 3 (2000).
    [37] G. P. Agrawal, Fiber-Optic Communication Systems, 3rd Edition, Wiley (1997).
    [38] G. A. Magel, M. M. Fejer, and R. L. Byer, " Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3, " Appl. Phys. Lett., 56, 108 (1990).
    [39] L. Hesseling, and S. Redfield, "Photorefractive holographic recording in strontium barium niobate fiber, " Opt. Lett., 13, 877 (1988).
    [40] R. S. Feigelson, D. Gazit, and D. K. Fork, " Superconducting Bi-Ca-Sr-Cu-O fibers grown by the laser-heated pedestal growth method, " Science, 240, 1642 (1988).
    [41] 張金倉,霍玉晶,何豫生,"激光加熱浮區生長強織構高溫超導 晶纖的研究",中國激光,第20 卷,第8 期 (1993).
    [38] G. A. Magel, M. M. Fejer, and R. L. Byer, " Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3, " Appl. Phys. Lett., 56, 108 (1990).
    [39] L. Hesseling, and S. Redfield, "Photorefractive holographic recording in strontium barium niobate fiber, " Opt. Lett., 13, 877 (1988).
    [40] 李俊緯, "以離子佈植及熱氧化製成氧化鋅奈米結構",碩士畢業論文,國立台灣科技大學(2008)
    [41] 施敏 著。黃調元譯。「半導體元件物理與製作技術」。2003年9月二版。國立交通大學出版社。
    [42] A. Sugimoto, Y. Nobe, T. Yamazaki, Y. Yamaguchi, K. Yamagishi, Y. Segawa, and H. Takei, "Spectroscopic properties of Cr-doped and Cr,Li-doped synthetic forsterite crystals", Phys Chem Minerals (1997)
    [43] M. Higuchi, R. F. Geray, R. Dieckmann, D. G. Park, J. M. Burlitch, D. B. Barber, C. R. Pollock, "Growth of Cr4+-rich, chromium-doped forsterite single crystals by the floating zone method, " Journal of Crystal Growth 148 (1995)
    [44] W. Chen, G. Boulon, "Growth mechanism of Cr:forsterite laser crystal with high Cr concentration", Optical Materials 24 (2003)
    [45] K. Y. Hsu, " Glass-clad crystal fibers based broadband light sources", Doctoral Dissertation, National Taiwan University(2011)
    [46] 陳力俊,張立,梁鉅銘,林文台,楊哲人,鄭晃忠,材料電子顯微鏡學 (1990 ).

    QR CODE