簡易檢索 / 詳目顯示

研究生: 劉皓瑜
Hao-Yu Liu
論文名稱: 摻鉻鎂橄欖石晶體光纖的製程改進與光學鍍膜
Fabrication progresses and optical coating on Cr4+:Forsterite crystal fibers
指導教授: 葉秉慧
Ping-hui Yeh
口試委員: 黃升龍
Sheng-lung Huang
徐世祥
Shih-hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 118
中文關鍵詞: 摻鉻鎂橄欖石晶體光纖自發輻射放大光源光學鍍膜
外文關鍵詞: Cr4+:Forsterite crystal fibers, Amplified spontaneous emission, Optical coating
相關次數: 點閱:193下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學同調斷層掃描(Optical coherence tomography, OCT)近年來逐漸成為眼科診察的一項重要儀器,此系統光源需要寬頻光源來達到最佳的縱向解析度,因此利用Cr4+:Forsterite所產生之寬頻光源ASE (Amplified Spontaneous Emission),其光源頻譜從1050nm~1300nm,不僅對於軟性組織具有較小吸收,也可避開1400nm之水分子吸收,有潛力成為OCT替代光源。
    本論文利用雷射加熱基座生長法可生長出直徑為70μm~40μm之Cr4+:Forsterite晶纖,並使用Aluminosilicate與硼酸鹽玻璃包覆為雙纖衣晶體光纖。藉由實驗數據結合理論分析探Cr4+:Forsterite雙纖衣晶體光纖之各項影響因素,包括: 傳輸損耗、吸收係數、側鍍Cr2O3厚度、光纖生長速度、纖衣或纖核激發、與輸入端薄膜製鍍。目前纖核直徑已成功縮小至40μm,有利於日後發展為晶體光纖雷射。
    為了提升Cr4+:Forsterite之ASE斜線效率,我們使用以下兩種方法: (1) 輸入端製鍍薄膜,針對激發光波長為高穿透;對ASE光波長為高反射,促使輸入端反射更多ASE光回到纖核中以增加輸出端光功率。結果發現其ASE功率上升幅度與側鍍厚度有關,最佳上升幅度為57.8%,側鍍厚度為38nm。雖然增加側鍍厚度可以增加鉻離子濃度,但由於Cr4+:Forsterite在波長1064nm附近有激發態的吸收(Excited state absorption),反而使得ASE光最強的波段可能被再吸收,其ASE功率上升比例因此下降。(2) 纖核激發,能提升ASE之斜線效率,與纖衣激發相比,其上升幅度與纖核直徑有關。直徑越小,上升幅度越大,當纖核直徑為40μm時,斜線效率上升幅度可達纖衣激發時的三倍。


    Optical coherence tomography (OCT) becomes an important instrument for ophthalmic diagnosis nowadays. It requires wideband broadband light source to achieve good axial resolution. Thus Cr4+: Forsterite, which emits wideband amplified spontaneous emission (ASE) of 1050nm ~ 1300nm in wavelength, not only at minimal absorption for biological soft tissue, but also away from the OH- absorption near 1400nm, is a potential replacement for OCT broadband light source.
    In this study we used the laser heated pedestal growth (LHPG) method to make Cr4+: Forsterite crystal fibers of 70μm~40μm in diameter. The crystal fibers were then grown into double-cladded fiber (DCF) with two capillary tubes of aluminosilicate and borosilicate. By means of experiments and theoretical analysis, the affecting factors of Cr4+: Forsterite DCF were studied including the propagation loss, absorption coefficient, thickness of Cr2O3 side deposition, speed of fiber growth, cladding or core pumping, and coating on input facet. We were successful in reducing the core size to 40μmthat would be beneficial for crystal fiber laser development in the future.
    In order to increase the slope efficiency of Cr4+: Forsterite, two methods were used as follows: (1) Coating on input facet of DCF which is both anti-reflection (AR) for pump wavelengths and high-reflection (HR) for ASE wavelengths. It helped reflect more ASE light back to the DCF to increase the output power at the output end. We found the magnitude of ASE power increase varied with the thickness of Cr2O3 side deposition. The highest ratio of ASE power increase was 57.8% when deposited with 38nm Cr2O3. Though thicker Cr2O3 deposition would increase the Cr4+ ion concentration, the chance for ASE light at peak wavelength to be re-absorbed also increased due to the excited state absorption near 1064nm, resulting in less ASE power increase. (2) Core pumping increased the slope efficiency of ASE light source when compared with cladding pumping. And the smaller core size, the higher factor of improvement, was obtained. When using 40μm-core fiber, the slope efficiency of ASE was three times as high as cladding pumped.

    目錄 中文摘要...................................I 英文摘要.................................III 致謝......................................V 目錄.....................................VI 圖目錄...................................IX 表目錄..................................XIV 第一章 緒論................................1 1.1 寬頻光源簡介.......................1 1.2 文獻回顧..........................7 1.3 論文簡介..........................8 第二章 Cr4+:Forsterite材料與光學特性.......10 2.1 Cr4+:Forsterite材料特性..........10 2.2 Cr4+:Forsterite光學特性..........16 2.3 Cr4+:Forsterite晶體光纖原理............19 第三章 雙纖衣晶體光纖製作...................24 3.1 晶體光纖生長架構與方法..............24 3.1.1 雷射加熱基座生長法.............25 3.1.2 周邊蒸鍍Cr2O3................29 3.2 晶體光纖雙纖衣包覆製程..............31 3.3 晶體光纖研磨與拋光.................35 3.3.1 金屬包覆法...................36 3.3.2 銀膠包覆法...................40 3.4 Anritsu-MS9740A光譜儀簡介.......42 第四章 光學薄膜特性分析與電子槍蒸鍍系統.......45 4.1 光學薄膜特性分析與設計.............45 4.1.1 光學薄膜理論.................45 4.1.2 薄膜材料特性分析..............53 4.1.3 Macleod薄膜設計模擬軟體.......55 4.2 電子槍蒸鍍系統....................60 4.2.1 電子槍蒸鍍系統原理.............60 4.2.2 光學監控-定值監控法...........63 4.3 晶體光纖雷射共振腔設計..............66 4.3.1 共振腔設計....................66 4.3.2 晶體光纖端面鍍膜...............70 第五章 晶體光纖光源實驗結果與討論.............74 5.1 傳輸損耗..........................74 5.2 吸收係數..........................81 5.3 纖衣激發 - ASE功率.................84 5.4 纖核激發 - ASE功率.................94 5.5 光譜量測.........................100 5.6 輸入端薄膜.......................102 第六章 結論與未來展望......................109 參考文獻...................................113

    [1]B.R. Wu, C.F. Lin, L.W. Laih, and T.T. Shih, "Extremely broadband InGaAsP/InP superluminescent diodes, " Electron. Lett., 36, 2093 (2000).
    [2]J. W. Lou, T. J. Xia, O. Boyraz, C. X. Shi, G. A. Nowak, and M. N. Islam, "Broader and flatter suppercontinuum spectra in dispersion-tailored fibers, "Technical Degist, 32 (1997).
    [3]Y. Shi and O. Poulsen, " High-power broadband single mode Pr3+-doped fibersuperfluorescence light source, " Electron. Lett., 29, 1945 (1993).
    [4]K.Takada, I.Yokohama, K. Chida, and J.Noda, " New measurement system for fault location in optical waveguide devices based on an interferometric technique, " Appl. Opt.,26, 1603 (1987).
    [5]B. Danielson and C. Whittenberg, " Guided-wave with micrometer resolution, " Appl. Opt.,26,2836 (1987).
    [6]D. Engin, " Complex optical low coherence reflectometry with tunable source, " IEEE Photon, Technol.Lett.,16, 1346(2004).
    [7]D. Anderson and F. Bell, " Optical time-domain reflectometry, " Tektronix Inc., Wilsonville (1997).
    [8]D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J.Fujimoto, " Optical coherence tomography, " Science, 254, 1178 (1991).
    [9]M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J.Fujimoto, " Optical Coherence Tomography for Ophthalmic Imaging, " IEEE Eng. Med. Biol., 95, 0739-5175 (1995).
    [10]Cheong, W.F., P.S.A., and A.J. Welch, " A review of optical properties of biological tissues, " IEEE Journal of Quantum Electronics (1990).
    [11]V.Petricevic, S.K. Gayen, R.R. Alfano, K. Yamagishi, H. AnZai, and Y. Yamaguchi, " Laser action in chromium-doped forsterite, "Appl. Phys. Lett., 52, 1040 (1988).
    [12]V.Petricevic, S.K. Gayen, and R.R. Alfano, " Laser action in chromium-activated forsterite for near-infrared excitation: Is Cr4+ the lasing ion?, " Appl. Phys. Lett., 53, 2590 (1988).
    [13]V.Petricevic, S.K. Gayen, and R.R. Alfano, " Continuous-wave laser operation of chromium-doped forsterite, " Received September 21, 1988; accepted March 12, (1989).
    [14]A. Sennaroglu, C. Pollock, and H. Nathel, " Generation of Tunable Femtosecond Pulses in the 1.21-1.27 pm and 605-635 nm wavelength region by using a regeneratively initiated Self-Mode-Locked Cr4+:Forsterite Laser, " IEEE J. Quantum Electron., Vol. 30, No.8, August (1994).
    [15]A. Sennaroglu, F. Kaertner, and J. Fujimoto, " Low-threshold, room temperature femtosecond Cr4+:Forsterite laser, " J. Opt. Soc. Am. Vol. 15, No. 20, October (2007).
    [16]A. Sennaroglu, " Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state laser, " J. Opt. Soc. Am. B, Vol. 18, No.11, November (2001).
    [17]吳書宏, "摻鉻鎂橄欖石雙纖衣晶體光纖之研製, "國立台灣科 技大學光電工程所碩士論文(2010).
    [18]吳俊霖, "摻鉻鎂橄欖石寬頻光源斜線效率的影響因素, "國立台灣科技大學電子工程所碩士論文(2010).
    [19]Cz. Koepke, K. Wisniewski, and M. Grinberg, "Excited statespectr-
    oscopy of chromium ions in various valence states inglass," J. of Alloys and Compounds, 341, 19 ( 2002).
    [20]U. Hommerich, X. Wu, and V. R. Davis, " Demonstration ofroom-temperature laser action at 2.5 μm fromCr2+:Cd0.85Mn0.15Te, " Opt. Lett., 22, 1180 (1997).
    [21]S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev "CW and pulsed Cr2+:ZnS and ZnSe microchip lasers, "Technical Digest, Conference on Lasers and Electro-Optics,120 (2002).
    [22]J. McKay, K. L. Schepler and G. C. Catella, "Efficientgrating-tuned mid-infrared Cr2+:CdSe laser," Optics Letters,24, 1575 (1999).
    [23]S. Kuck, K. Petermann, and G. Huber, "Spectroscopicinvestigation of the Cr4+-center in YAG, " OSA Proceedings onAdvanced Solid-State Lasers, 10, 92 (1991).
    [24]Al. A. Kaminskii, " Laser crystal,"1st ed, Springer-Verlag BerlinHeidelberg New York, pp. 241, 381, 382 (1981).
    [25]S. Aoshima, H. Itoh, K. Kuroyanagi, Y. Takiguchi, Y.Ohbayashi, I. Hirano, and Y. Tsuchiya, " Tunable picosecondall solid-state Cr:LiSAF laser, " IEEE, IMTC’94, 937 (1994).
    [26]Yen-Kuang Kuo, Man-Fang Huang, and Milton Bimbaum, "Tunable Cr4+:YSO Q-switched Cr:LiCAF laser," J. of QuantumElectron., 31, 657 (1995).
    [27]T. Fujii, M. Nagano, and K. Nemoto, "Spectroscope and laseroscillation characteristics of high Cr4+-doped forsterite, " J. of Quantum Electron., 32, 1497 (1996).
    [28]S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G.Huber, "Spectroscopic and laser studies of Cr4+:YAG andCr4+:Y2SiO5, " OSA Proceedings on Advanced Solid-StateLasers, 15, 334 (1993).
    [29]Richard MoncorgC, Member, IEEE, G. Cormier, D. J. Simkin, and J.A. Capobianco, " Fluorescence Analysis of Chromium-Doped Fonterlte, " IEEE J. Quantum of Electron., Vol. 27, No. I, January (1991).
    [30]Deer WA, Howie RA, Zussman J "Rock Forming Minerals 2nd ed, " Vol 1 A, p 5, Longman, London (1982).
    [31]Y. Noel, M. Catti, Ph. D'Arco and R. Dovesi , "The vibrational frequencies of Forsterite Mg2SiO4; an all-electron ab initio study with the CRYSTAL code," Phys. Chem. Minerals, 33, 383-393 (2006).
    [32]Weiyi Jia,Huimin Liu,S.Jaffe,and W.M.Yen, "Spectroscope of Cr3+
    and Cr4+ ions in forsterite, " Physical Review B volume 43, Number 7
    (1991)
    [33]B. Dussardier, Valerie Felice, "Cr4+-doped silica- based optical fibers fluorescence from 0.8 μm to 1.7 μm," Gerard Monnom Lab. De la Physique de la Matiere Condensee, France, Optical Society of America, paper MB18-1 (2001).
    [34]N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, and G. Huber, " Excited-state absorption and stimulated emission measurements in Cr4+:forsterite, " J. of Lumin. 75, 319 (1997)
    [35]N. V. Kuleshov, A. V. Podlipensky, V. G. Shcherbitsky, A. A.
    Lagatsky, and V. P. Mikhailov, " Excited-state absorption in the
    range of pumping and laser efficiency of Cr4+:forsterite, " Opt. Lett.,
    Vol. 23, No. 13 , July 1(1998).
    [36]G. Keiser, "Optical Fiber communications, 3rd ed, " McGraw-Hill, Ch. 2, Ch. 3 (2000).
    [37]J. Palais, "Fiber Optic Communications, 5th ed" Prentice Hall (2004).
    [38]Zhang Shoudu, Wang Siting, Shen Xingda, Wang Haobing, Zhong
    Heyu, Zhang Shunxing, and Xu Jun, "Czochralski growth of rare-earth orthosilicates-Y2SiO5 single crystals," Journal of Crystal Growth, 197, 901 (1999).
    [39]C. A. Burrus and J. Stone, " Single-crystal fiber optical devices: A Nd:YAG fiber laser, " Appl. Phys. Lett., 26, 318 (1975).
    [40]G. A. Magel, M. M. Fejer, and R. L. Byer, " Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3, " Appl. Phys. Lett., 56, 108 (1990).
    [41]R. S. Feigelson, D. Gazit, and D. K. Fork, " Superconducting Bi-Ca-Sr-Cu-O fibers grown by the laser-heated pedestal growth method, " Science, 240, 1642 (1988).
    [42]張金倉, 霍玉晶, 何豫生, "激光加熱浮區生長強織構高溫超導 晶纖的研究," 中國激光, 第20 卷, 第8期(1993).
    [43]L. Hesseling, and S. Redfield, "Photorefractive holographic recording in strontium barium niobate fiber, " Opt. Lett., Vol. 13, pp. 877-879,1988.
    [44]李正中, "薄膜光學與鍍膜技術",第七版,藝軒出版社,2012
    [45]林晏聖, "以側鍍方法提升四價摻鉻晶體光纖螢光強度之研究, "國立中山大學光電工程研究所碩士論文(2004).
    [46]A. D. Nunzio, M. D. Giulio, M. C. Ferrara, M. R. Perrone, L. Protopapa, and Vasanelli, "Deposition of SiO2 films with high laser damage thresholds by ion-assisted electron-beam evaporation, " Applied Optics, 38, 1237 (1999).
    [47]A. F. Stewart and A. H. Guenther, "Laser-induced particle emission as a precursor to laser damage, " Applied Optics, 27, 4423 (1998).
    [48]D. Milam, W. H. Lowdermilk, F. Rainer, J. E. Swain, C. K. Carniglia, and T. T. Hart, "Influence of deposition parameters on laser-damage threshold of silica-tantala AR coatings, " Applied Optics, 21, 3689 (1982).
    [49]O. Arnon and P. Baumeister, "Electric field distribution and the reduction of laser damage in multilayers, " Applied Optics, 19, 1853 (1980).
    [50]G. P. Agrawal, "Fiber-Optic Communication Systems, 3rd Edition, " Wiley (1997).
    [51]Y. S. Lin, "Ce3+- Doped YAG Functional Crystal Fibers ," Doctoral Dissertation, National Taiwan University (2011).

    QR CODE