簡易檢索 / 詳目顯示

研究生: 楊宗翰
Zong-Han Yang
論文名稱: 橫向飛躍抓枝機器人之設計改良與運動控制研究
Improved Design and Motion Control of a Transverse Ricochetal Brachiation Robot
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 郭重顯
Chung-Hsien Kuo
林沛群
Pei-Chun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 124
中文關鍵詞: 橫向飛躍抓技機器人身軀姿態補償參數最佳化仿人式夾爪
外文關鍵詞: Transverse ricochetal brachiation robot, Body posture compensation, Parameter optimization, Anthropomorphic gripper
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
橫向飛躍握桿是一種模仿運動員以手指抓持突出壁面之橫桿的方式反覆擺盪後飛躍並抓握目標桿的特殊動作。本論文主要在探討本實驗室所開發之第二代與第三代橫向飛躍抓技機器人系統設計與運動控制效能。在機構設計部分,我們以參數最佳化方式求得滿足目標飛躍距離的機構參數與重量配置。為了在擺盪階段能以單獨擺盪尾巴的方式進行系統激振,我們以電磁離合器實現手臂的可變剛性切換並設計一具急放功能的仿人式電動夾爪使其提供足夠夾持力,藉此完成擺盪階段的能量累積並切換至飛躍階段。系統激振所需之尾巴參考輸入亦為根據機器人擺盪階段動態模型以最佳化方式求得。為了改善機器人在滯空飛躍因身軀旋轉造成的影響,本研究以推導之滯空動態模型分別探討以開迴路姿態補償與閉迴路姿態補償對於機器人身軀姿態調整的效果。模擬與實驗結果皆證實使用閉迴路身軀姿態補償可有效改善飛行姿態與飛躍距離,結合合適之手臂擺動策略則可獲得最理想之飛躍距離與著陸成功率。


Abstract
Transverse ricochetal brachiation is a unique locomotion style that mimics the sport players to swing their bodies with hands held on the ledges on the wall and then release their hands to fly and grab the targeted ledge. This thesis aims to present the development and motion control of second and third generation of transverse ricochetal brachiation robots (TRBR). For the mechanism part, the design parameters are obtained by formulating an optimization method with the goal of reaching maximum flying distance. A variable stiffness design equipped with electromagnets is applied to implement the mechanical resonance excitation by solely swinging the designed tail during swing phase and enable tight arm-and-body engagement during flying phase. Particularly, the electrically driven anthropomorphic grippers are designed to satisfy the required holding forces and quick-releasing functionality so that the kinetic energy accumulated during swing phase can be smoothly transferred to the flying phase for desired locomotive behaviors. The reference trajectory of the robot tail for resonance excitation is obtained through an optimization method based on the dynamic model during swing phase. The dynamic model during flying phase is derived to elucidate the effects of midair body rotation and applied to develop various kinds of body posture compensation methods for deeper investigation. Simulation and experiments demonstrate that the proposed body posture compensation method based on the successive loop closure design can effectively improve the flying posture and traveled distance. Moreover, the proper integration of arm swing motion strategy can achieve the largest flying distance and highest success rate of robot landing.

目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第1章 緒論 1 第2章 系統構想與參數設計 8 2.1 橫向擺盪跳躍機器人作動流程分析 8 2.3 第二代橫向飛躍機器人機構參數設計 12 2.4 第三代橫向飛躍機器人參數設計 14 第3章 系統架構 19 3.1 機器人動力傳動配置 21 3.1 機器人夾爪 23 3.2 值流馬達選用 26 3.3 直流馬達參數識別 33 3.3.1 直流馬達動態方成 33 3.3.2 直流馬達參數識別實驗平台架設 35 3.3.3 直流馬達參數識別實驗 37 3.2 機器人嵌入式電路設計 42 3.2.1 系統控制晶片 43 3.2.2 馬達驅動模組電路 45 3.2.3 馬達編碼器解碼電路 47 3.2.4 慣性量測單元(IMU)感測器 49 3.2.5 夾爪力量感測器 51 3.1.1 SRAM與SD卡 54 第4章 系統模型推導 57 1.1 橫向飛躍機器人擺盪模型推導 57 4.2 橫向跳躍機器人滯空模型推導 61 第5章 系統動態分析 68 5.1 機器人擺盪姿態控制模擬 68 5.2 機器人滯空姿態控制模擬 70 5.2.1 身軀姿態估測 70 5.2.2 滯空姿態控制器設計 72 5.2.3 滯空姿態控制器模擬 75 第6章 擺盪橫向飛躍實驗 82 6.1 第二代機器人橫向飛躍實驗 82 6.1.1 第二代機器人實驗架設 82 6.1.2 第二代機器人擺盪階段實驗 83 6.1.3 第二代機器人橫向飛躍實驗 84 6.2 第三代機器人橫向飛躍實驗 88 6.2.1 第三代機器人實驗架設 88 6.1.1 第三代機器人橫向飛躍實驗 90 第7章 結論與未來目標 104 參考文獻 106

[1] T. Fukuda, H. Hosokai, and Y. Kondo, “Brachiation type of mobile robot.” in Proc. IEEE Int. Conf. Advanced Robotics, Pisa, Italy, 1991, pp. 915-920.
[2] J. Nakanishi, and S. Vijayakumar, “Exploiting passive dynamics with variable stiffness actuation in robot brachiation,” in Robotics: Science and Systems, Sydney, Australia, 2013, pp. 305.
[3] F. Stöckli, and K. Shea, “Automated Synthesis of Passive Dynamic Brachiating Robots Using a Simulation-Driven Graph Grammar Method,” in ASME J. Mech. Des., vol. 139, no. 9, pp. 092301-092301-9, 2017.
[4] J. Nakanishi, T. Fukuda, and D. E. Koditschek, “Preliminary studies of a second generation brachiation robot controller,” in Proc. IEEE Int. Conf. Robotics Automation, Albuquerque, NM, 1997, pp. 2050-2056.
[5] F. Saito, T. Fukuda, and F. Arai, “Swing and locomotion control for a two-link Brachiation robot,” in Proc. IEEE Int. Conf. Robotics Automation, Atlanta, GA, 1993, pp. 719-724.
[6] J. Bertram, A. Ruina, C. Cannon, Y. H. Chang, and M. J. Coleman, “A point-mass model of gibbon locomotion,” in J. Exp. Biol. vol. 202, pp. 2609-2617, 1999.
[7] T. Fukuda, F. Satio, F. Arai, and K. Kosuge, “Study on the brachiation type of mobile robot (3rd report, Heuristic creation of driving input and control),” in Trans. Jpn. Soc. Mech. Eng. C, vol. 57-541, pp. 2930-2937,1991.
[8] J. Nakanishi, T. Fukuda, and D. E. Koditschek, “A hybrid swing up controller for a two-link brachiating robot.” in Proc. IEEE/ASME AIM Conf., Atlanta, USA, 1999, pp. 549-554.
[9] V. M. De Oliveira, and W. F. Lages, “Comparison between two actuation schemes for underactuated brachiation robots,” in Proc. IEEE/ASME AIM Conf., Zurich, Switzerland, 2007.
[10] Y. Zhao, H. Cheng, and X. Zhang, “Swing control for two-link brathiation robot based on SMC,” in Proc. Chinese Control and Decision Conference, Yantai, Shandong, China, 2008, pp. 1704-1708.
[11] S. Tashakori, G. Vossoughi, and E. A. Yazdi, “Geometric control of the brachiation robot using controlled Lagrangians method,” in 2nd RSI/ISM Conf. Robotics and Mechatronics, Tehran, Iran, 2014, pp. 706-710.
[12] K. Ebrahimi, and M. Namvar, “Port-Hamiltonian control of a brachiating robot via generalized canonical transformations.” in IEEE/ACC Conf., Boston, MA, USA, pp. 3026-3031.
[13] K. D. Nguyen, and D. Liu, “Robust control of a brachiating robot.” in IEEE/RSJ IROS Conf., Vancouver, BC, Canada, 2017, pp. 6555-6560.
[14] T. Fukuda, Y. Hasegawa, K. Shimojima, and F. Saito, “Self scaling reinforcement learning for fuzzy logic controller,” in Proc. IEEE Trans. Industrial Electronics, pp. 1123-1131, 1999.
[15] H. Kajima, Y. Hasegawa, M. Doi, and T. Fukuda, “Energy‐based swing‐back control for continuous brachiation of a multilocomotion robot,” Int. J. Intelligent Systems, vol. 21, no. 9, pp. 1025-1043, 2006.
[16] A. Meghdari, S. M. H. Lavasani, M. Norouzi, and M. S. R. Mousavi, “Minimum control effort trajectory planning and tracking of the CEDRA brachiation robot,” in Robotica, vol. 31, no. 7, pp. 1119-1129, 2013.
[17] J. Nakanishi, T. Fukuda, and D. E. Koditschek, “Experimental implementation of a `target dynamics' controller on a two-link brachiating robot,” in Proc. IEEE Int. Conf. Robotics and Automation, Leuven, Belgium, 2002, pp. 787-792.
[18] J. Nakanishi, T. Fukuda, and D. E. Koditschek, “Brachiating robot controller,” in IEEE Trans. Robot. Automat., vol. 16, pp. 109-123, 2000.
[19] Y. Yamakawa, Y. Ataka, and M. Ishikawa, “Development of a brachiation robot with hook-shaped end effectors and realization of brachiation motion with a simple strategy,” in IEEE Int. Conf. ROBIO., Qingdao, China, 2016, pp. 737-742.
[20] J. Nakanishi, T. Fukuda, and D. E. Koditschek, “Brachiation on a ladder with irregular intervals,” in Proc. IEEE Int. Conf. Robotics and Automation, Detroit, MI, USA, 1999, pp. 2717-2722.
[21] C. T. Kuo, W. Y. Li, Y. H. Wang, and P. C. Lin, “Dynamic modeling analysis of a spider monkey robot.” in IEEE/ARIS Int. Conf., Taipei, Taiwan, 2017, pp. 99-99.
[22] W. Y. Li, Y. H. Wang, C. T. Kuo, and P. C. Lin, “Design and implementation of a spider monkey robot.” in IEEE/ARIS Int. Conf., Taipei, Taiwan, 2017, pp. 62-62.
[23] J. Nakanishi, and T. Fukuda, “Leaping maneuver for a brachiating robot,” in Proc. IEEE/ICRA Int. Conf., San Francisco, CA, USA, 2000, pp. 2822-2827.
[24] M. W. Gomes, and A. L. Ruina, “A five-link 2D brachiating ape model with life-like zero-energy-cost motions,” in J. Theor. Biol., vol. 237, no. 3, pp. 265-278, 2005.
[25] D. Wan, H. Cheng, G. Ji, and S. Wang, “Non-horizontal ricochetal brachiation motion planning and control for two-link Bio-primate robot,” in Proc. Int. Conf. ROBIO., Zhuhai, China, 2015, pp. 19-24.
[26] C. H.-t. W. D.-k. H. Li-na, “Ricochetal Brachiation Motion Planning and Control for Two-Link Bio-primate Robot,” in Journal of Northeastern University Natural Science, vol. 38, no. 2, pp. 168-173, 2017-02-15, 2017.
[27] C.-Y. Lin, S.-J. Shiu, Z.-H. Yang, and R.-S. Chen, “Design and swing strategy of a bio-inspired robot capable of transverse ricochetal brachiation,” in IEEE Int. Conf. Mechatronics and Automation, Takamatsu, Japan, 2017, pp. 943-948.
[28] Z.-H. Yang, and C.-Y. Lin, “Experimental Investigation on Flying Motion of Transverse Brachiation Robot,” in Proc. IEEE/ASME AIM Conf., Auckland, New Zealand, 2018.
[29] J. Hodgins, and M. H. Raibert, “Biped gymnastics,” in Int. J. Robot. Res., Vol. 9, No.2, pp. 79, 1990.
[30] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, “A solution to the simultaneous localization and map building (SLAM) problem,” in IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 229-241, 2001.
[31] L. Pei-Chun, H. Komsuoglu, and D. E. Koditschek, “Sensor data fusion for body state estimation in a hexapod robot with dynamical gaits,” in IEEE Transactions on Robotics, vol. 22, no. 5, pp. 932-943, 2006.
[32] C. Huang, H. Tan, and B. Shen, “Robust recursive filter for uncertain multi-rate system in sensor networks.” in Chiness Control Conference, Dalian, China, 2017, pp. 5328-5333.
[33] L. Armesto, S. Chroust, M. Vincze, and J. Tornero, “Multi-rate fusion with vision and inertial sensors.” in Proc. IEEE Int. Conf. Robotics and Automation, New Orleans, LA, USA, 2004, pp. 193-199.
[34] L. Armesto, J. Tornero, and M. Vincze, “Fast Ego-motion Estimation with Multi-rate Fusion of Inertial and Vision,” in Int. J. Robot. Res., vol. 26, no. 6, pp. 577-589, 2007.
[35] Y. Liang, T. Chen, and Q. Pan, “Multi-rate optimal state estimation,” in Int. J. Control, vol. 82, no. 11, pp. 2059-2076, 2009/11/01, 2009.
[36] S. Xinguang, H. Biao, L. J. Min, X. Fangwei, and E. Aris, “Bayesian method for multirate data synthesis and model calibration,” in AIChE J., vol. 57, no. 6, pp. 1514-1525, 2011.
[37] H. Tan, B. Shen, Y. Liu, A. Alsaedi, and B. Ahmad, “Event-triggered multi-rate fusion estimation for uncertain system with stochastic nonlinearities and colored measurement noises,” in Inf. Fusion, vol. 36, pp. 313-320, 2017.
[38] A. Feddaoui, N. Boizot, E. Busvelle, and V. Hugel, “High-gain extended Kalman filter for continuous-discrete systems with asynchronous measurements,” in HAL Id: hal-01785473, 2018.
[39] C. Y. Chan, and Y. C. Liu, “Towards a walking, turning, and jumping quadruped robot with compliant mechanisms.” in IEEE/ASME AIM Int. Conf., Banff, AB, Canada, 2016, pp. 614-620.
[40] B. R. Jun, Y. J. Kim, and S. Jung, “Design and control of jumping mechanism for a Kangaroo-inspired robot.” in IEEE/BioRob Int. Conf., Singapore, Singapore, 2016, pp. 436-440.
[41] J. Zhao et al., “MSU Tailbot: Controlling aerial maneuver of a miniaturetailed jumping robot,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 6, pp. 2903–2914, Dec. 2015.
[42] Lyndon O. Barton (1993). “Mechanism Analysis: Simplified and Graphical Techniques,” Second Edition. United States: CRC.
[43] 田宏, 石岫昆, 石秀權, 王越. “中華人民共和國男性青年人體質量的分佈,” 吉林大學基礎醫學院人體解剖學教研室, vol.23, No.3, pp.127-128, 2001.
[44] Maxon mootor, Available from:
https://www.maxonmotor.com.tw/maxon/view/content/index
[45] Nick Morozovsky “Motor Modeling and Identification for Fun and Profit,” University of California San Diego, robotic.ucsd.edu.
[46] INTERLINK ELECTRONICS, Available from:
https://www.interlinkelectronics.com/
[47] Petit Fat File System Module, Available from:
http://elm-chan.org/fsw/ff/00index_p.html
[48] Berg, M., Amit, N., and Powell, “Multirate digital control system design,” IEEE Trans. AutomaT. Control, AC-33(12), 1139, 1988.

無法下載圖示 全文公開日期 2023/08/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE