簡易檢索 / 詳目顯示

研究生: 林韋丞
Wei-Cheng Lin
論文名稱: 具最大功率追蹤之三階升壓型轉換器研製
Study and Implementation of Three-level Boost Converter with Maximum Power Point Tracking
指導教授: 謝耀慶
Yau-Ching Hsieh
邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
口試委員: 林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 76
中文關鍵詞: 最大功率追蹤擾動觀察法三階升壓型轉換器
外文關鍵詞: Maximum power point tracking, perturbation and observation method, three-level boost DC/DC converter
相關次數: 點閱:348下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研製一台應用於太陽光伏系統,具有最大功率追蹤控制的三階升壓型直流/直流轉換器,採用的演算法為擾動觀察法。最大功率追蹤使轉換器能夠在不同的日照強度及環境溫度下,準確操作在最大功率點上,達到最佳的發電效益。在高壓輸出的條件下,相較於傳統升壓型轉換器,本論文架構可使用較低耐壓的功率開關與較小體積的電感達成目標。
    本論文所設計與實作之三階升壓型轉換器規格如下,寬範圍輸入電壓480V~700V、輸出電壓750V、最大轉換功率為5kW。最大功率追蹤法則是搭配TMS320F28035數位訊號處理器來實現,轉換器效率可達到98%以上。


    This thesis aims to study and design a three-level boost DC/DC converter with maximum power point tracking (MPPT) control, which can be applied to solar photovoltaics. The perturbation and observation method (P&O) is adopted as the control algorithm. Converter can be operated precisely at the maximum power point in different irradiation condition and environmental temperature with MPPT control. Compared with the conventional boost converter, the studied converter topology has the advantages of low device stresses and small inductor.
    A 5kW three-level boost converter with a wide range input voltage from 480V to 700V and high output voltage up to 750V was implemented. The MPPT control is realized by a digital signal processor (DSP) TMS320F28035. The efficiency of the prototype system can reach to 98%.

    摘要 Abstract 誌謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究背景 1.2 研究動機與目的 1.3 內容編排方式 第二章 太陽能電池與最大功率追蹤介紹 2.1 太陽能電池介紹 2.1.1 太陽能電池原理 2.1.2 太陽能電池種類 2.1.3 太陽能電池之電氣特性 2.2 最大功率追蹤介紹 2.2.1 開路電壓法 2.2.2 短路電流法 2.2.3 實際量測法 2.2.4 直線近似法 2.2.5 增量電導法 2.2.6 擾動觀察法 2.2.7 各種演算法之比較 第三章 系統架構與三階升壓型轉換器電路設計 3.1 整機系統架構 3.2 三階升壓型轉換器之動作原理 3.2.1 第一區間操作原理 3.2.2 第二區間操作原理 3.3 三階升壓型轉換器之電路設計 3.3.1. 輸入電感設計 3.3.2. 功率開關與其驅動電路設計 3.3.3. 輸出二極體設計 3.3.4. 輸出電容設計 3.4 共模雜訊與差模雜訊分析 3.5 損耗分析 3.5.1 功率開關損耗分析 3.5.2 電感損耗 3.5.3 輸出二極體損耗 3.5.4 輸出電容損耗 3.5.5 總損耗 第四章 數位系統分析與韌體流程規劃 4.1 數位信號處理器簡介 4.1.1 TMS320F28035 4.1.2 ADC模組 4.1.3 ePWM模組 4.2 CV模式閉迴路韌體流程規劃 4.3 MPPT韌體規劃流程 第五章 實驗結果與分析 5.1 三階升壓型轉換器實測波形與數據 5.1.1 實測波形 5.1.2 實測數據 5.2 最大功率追蹤之實測結果 5.3 電路實作與量測問題整理 第六章 結論與未來研究方向 6.1 結論 6.2 未來研究方向 參考文獻

    [1]Renewable Energy Policy Network for the 21st Century, Available at: http://www.ren21.net/.
    [2]顧鴻濤,太陽能電池元件導論:材料、元件、製程、系統,全威圖書,民國98 年10 月。
    [3]翁敏航、楊茹媛、管鴻、晁成虎,太陽能電池:原理、元件、材料、製程與檢測技術,東華書局,民國99 年5 月。
    [4]M. F. Ishengoma and E. L. Norum, “Design and implementation of a digitally controlled stand-alone photovoltaic power supply,” Nordic Workshop on Power and Industrial Electronics, pp. 12-14, 2002.
    [5]M. A. Eltawil and Z. Zhao, "MPPT techniques for photovoltaic applications," Renewable and Sustainable Energy Reviews, vol. 25, pp. 793-813, Jun. 2013.
    [6]蔡俊嘉,非對稱型模糊控制太陽能發電系統最大功率追蹤技術研究,國立台灣科技大學電機工程系碩士學位論文,民國102 年 1 月。
    [7]黃嘉偉,適用於快速變動環境之太陽能最大功率追蹤技術研究,國立台灣科技大學電機工程系博士學位論文,民國101 年 7 月。
    [8]K. Ishaque and Z. Salam, "A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition," Renewable and Sustainable Energy Reviews, vol. 19, pp. 475-488, Mar. 2013.
    [9]F. Chekired, A. Mellit, S. A. Kalogirou, and C. Larbes, "Intelligent maximum power point trackers for photovoltaic applications using FPGA chip: A comparative study," Solar Energy, vol. 101, pp. 83-99, Jan. 2014.
    [10]T. Esram, and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439-449, 2007.
    [11]E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Transactions on Power Electronics, vol. 16, no. 1, pp. 46-54, 2001.
    [12]R. Gules, J. D. P. Pacheco, H. L. Hey, and J. Imhoff, “A Maximum Power Point Tracking System With Parallel Connection for PV Stand-Alone Applications,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2674-2683, 2008.
    [13]M. T. Zhang, J. Yimin, F. C. Lee, and M. M. Jovanovic, "Single-phase three-level boost power factor correction converter," in Applied Power Electronics Conference and Exposition, 1995. APEC '95. Conference Proceedings 1995., Tenth Annual, 1995, pp. 434-439.
    [14]V. Vorobei, J. Zakis, O. Husev, O. Veligorskyi, and O. Savenko, "Simulation study of the three-level boost DC-DC converter with full ZVS for PV application," in Power Electronics and ECCE Asia (ICPE-ECCE Asia), 2015 9th International Conference on, 2015, pp. 2038-2043.
    [15]ST, " STW45NM60," Technical Information, Data Sheet, 2006.
    [16]Avago Technologies, “HCPL-3120 2.5 Amp Output Current IGBT Gate Driver Optpcoupler,” Datasheet, 2008.
    [17]Cree, " C3D20060D," Technical Information, Data Sheet, 2013.
    [18]邱培銘,多層低溫共燒陶磁共模濾波器之設計,國立交通大學電信工程學系碩士論文,2005年。
    [19]Richtek Technology Corporation, “Conducted EMI Reduction by Means of Hybrid Common Choke,” Technical Information, Application note, 2014.
    [20]吳義利,切換式電源轉換器,第二版,文笙書局,2015年。
    [21]Texas Instruments Inc., “TMS320F28035 Piccolo Microcontrollers, Rev. J,” Datasheet, 2013.
    [22]Texas Instruments Inc., “TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator, Rev. B,” Datasheet, 2009.
    [23]Texas Instruments Inc., “TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM) Module, Rev. C,” Datasheet, 2009.
    [24]Texas Instruments Inc., “TMS320F2803x Piccolo System Control and Interrupts, Rev. B,” datasheet, 2009.
    [25]Trina solar, “TSM-245 PC/PA05,” datasheet, 2012.

    QR CODE