簡易檢索 / 詳目顯示

研究生: 高猛祥
Meng-Hsiang Kao
論文名稱: 適用於太陽能轉換之變頻式增量電導最大功率追蹤控制器
Variable-Frequency Incremental conductance maximum power point tracking controller for PV converter
指導教授: 劉昌煥
Chang-Huan Liu
謝冠群
Guan-Chyun Hsieh
口試委員: 羅有綱
Yu-Kang Lo
賴炎生
Yen-Shin Lai
蔡明傑
Ming-chieh Tsai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 97
中文關鍵詞: 太陽能電池模組增量電導法返馳式直流轉換器
外文關鍵詞: Solar Cells, Incremental Conductance Method, Flyback Converter
相關次數: 點閱:227下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的是實現一獨立運轉型太陽能電池模組發電與儲能系統
    ,並採用Microchip公司所設計的8位元微控制器PIC18F452作為控制核心
    ,其具低成本及程式易於撰寫之特點,適合用來實現太陽能電池模組最
    大功率追蹤控制器,本系統可分為太陽能電池陣列模組、返馳式直流轉
    換器、太陽能電池模組電壓與電流回授電路、PIC18F452控制電路、功
    率驅動級與電阻性負載。
    本論文並設計變頻式增量電導法之控制策略演算法,有效達成太陽
    能電池模組最大功率追蹤以及能量的轉換,此演算法不但能在環境照度
    與溫度瞬間變化時作穩定的功率追蹤,更能快速的追蹤太陽能電池的最
    大功率點。相較於傳統的增量電導法,本論文更節省回授電路的複雜
    度,以及建構數位濾波器強化了感測器之抗雜訊的能力,並簡化複雜的
    追蹤演算法,可使最大功率追蹤控制器在計算上,大幅降低錯誤率,而
    能平穩的追蹤照度的變化。
    最後,透過實際量測與結果數據,驗證此變頻式增量電導法控制策
    略應用於太陽能最大功率追蹤控制器的可行性。


    The thesis presents the design and implementation of a stand-alone
    charging and storage system for Solar Cells based on a Microchip
    microcontroller with high performance, low cost and programmability,
    PIC18F452. The whole system is divided into solar cell array, flyback
    DC-DC converter, voltage and current sensing circuits of solar cell,
    micro-controller PIC18F452, power stage and resistor load.
    This thesis also builds and develops a new control algorithm called
    Variable-frequency incremental conductance method to enhance photovoltaic
    maximum power point tracking and energy conversion. The proposed
    incremental conductance MPPT can adaptively track the energy pumped from
    PV array and make the PV output power maximum when insolation changes.
    Compared with traditional method, this presented method simplifies the
    complexity of sensing circuits. Besides, by building the digital filter so as to
    improve the noise immunity and simplifying algorithm, the higher accuracy
    of MCU computation can be ensured.
    The result of the experiment shows that Variable-frequency incremental
    conductance method is able to work well in solar cell maximum power point
    tracking controller.

    中文摘要.........................................................................................................I 英文摘要....................................................................................................II 致謝.........................................................................................................III 目錄.........................................................................................................IV 圖表索引........................................................................................ VII 第一章 緒論....................................................................................1 1.1 研究背景與動機..............................................................................1 1.2 研究目的..........................................................................................2 1.3 內容大綱..........................................................................................3 第二章 太陽能電池簡介................................................................5 2.1 前言..................................................................................................5 2.2 太陽能電池原理..............................................................................5 2.3 太陽能電池種類..............................................................................8 2.3.1 單晶矽太陽能電池..............................................................10 2.3.2 多晶矽太陽能電池..............................................................11 2.3.3 非晶矽太陽能電池..............................................................12 2.4 太陽能電池特性分析....................................................................14 2.5 太陽能電池模組最大功率追蹤法則............................................21 V 2.5.1 電壓回授法..........................................................................22 2.5.2 功率回授法..........................................................................22 2.5.3 直線近似法..........................................................................23 2.5.4 實際量測法..........................................................................23 2.5.5 擾動觀察法..........................................................................24 2.5.6 增量電導法..........................................................................24 2.5.7 各種最大功率追蹤法之優缺點比較..................................25 2.6 太陽能電池模組應用考量............................................................26 第三章 變頻式增量電導法控制原理之分析.............................30 3.1 變頻式增量電導法........................................................................31 3.2 返馳式直流轉換器........................................................................36 3.2.1 返馳式直流轉換器非連續導通模式分析..........................38 第四章 系統硬體設計與軟體規劃..............................................51 4.1 責任週期1 D 設定...........................................................................51 4.2 變壓器設計...................................................................................54 4.2.1 變壓器鐵心選擇..................................................................54 4.2.2 變壓器磁化電感設計..........................................................55 4.2.3 變壓器鐵心大小設計..........................................................55 4.2.4 決定一次側最大電流值......................................................58 4.2.5 決定一次側、二次側圈數..................................................59 4.2.6 決定一次側、二次側線徑大小..........................................59 4.2.7 氣隙墊片的厚度..................................................................59 4.3 緩振器電路...................................................................................60 VI 4.4 功率開關切換頻率範圍設定.......................................................62 4.5 功率開關選擇...............................................................................63 4.6 電壓與電流回授電路...................................................................65 4.6.1 電壓回授電路.....................................................................65 4.6.2 電流回授電路.....................................................................66 4.7 功率開關驅動電路.......................................................................67 4.8 軟體規劃.......................................................................................68 4.8.1 系統控制核心.....................................................................68 4.8.2 系統相關暫存器.................................................................70 4.9 系統架構.......................................................................................75 第五章 測試結果..........................................................................76 5.1 返馳式直流轉換器規格量測........................................................76 5.2 最大功率追蹤動態波形量測........................................................79 5.3 控制器啟動時與氣候變化時波形量測........................................85 5.4 在實際照度變化下太陽能系統量測數據統計............................86 5.5 太陽能電池模組輸出特性量測....................................................87 第六章 結論與未來建議...........................................................90 6.1 結論...............................................................................................90 6.2 未來建議......................... .............................................................90 參考文獻.......................................................................................................92 VII 圖表索引 圖次 圖2-1 太陽能電池發電原理...........................................................................5 圖2-2 太陽能電池基本結構斷面圖...............................................................6 圖2-3 太陽光譜分佈曲線...............................................................................8 圖2-4 太陽能電池分類...................................................................................9 圖2-5 單晶矽太陽能電池.............................................................................11 圖2-6 多晶矽太陽能電池.............................................................................12 圖2-7 非晶矽太陽能電池結構圖.................................................................13 圖2-8 非晶矽太陽能電池.............................................................................14 圖2-9 太陽能電池輸出特性.........................................................................15 圖2-10 太陽能電池等效電路.......................................................................16 圖2-11 多晶矽太陽能電池模組電器規格...................................................18 圖2-12 不同照度下對太陽能電池輸出電壓跟輸出電流影響...................19 圖2-13 不同照度下對太陽能電池輸出電壓跟輸出功率影響...................19 圖2-14 不同日照量下對太陽能電池的P-V-I 3D 曲線...............................20 圖2-15 不同溫度下對太陽能電池輸出電壓跟輸出電流影響...................20 圖2-16 不同溫度下對太陽能電池輸出電壓跟輸出功率影響...................21 圖2-17 太陽能電池陣列示意圖...................................................................28 VIII 圖2-18 太陽能模組熱斑效應示意圖...........................................................28 圖2-19 因陰影所造成模組輸出特性...........................................................29 圖3-1 太陽能電池最大功率時pv pv P V − 和pv pv I V − 比較圖.........................31 圖3-2 增量電導法控制演算法.....................................................................32 圖3-3 增量電導法架構圖.............................................................................33 圖3-4 變頻式增量電導法架構圖.................................................................35 圖3-5 變頻式增量電導法控制演算法.........................................................36 圖3-6 返馳式直流轉換器架構圖.................................................................38 圖3-7 返馳式直流轉換器在不連續模式各點波形.....................................39 圖3-8 磁化電感儲能狀態圖.........................................................................40 圖3-9 磁化電感釋能狀態圖.........................................................................41 圖3-10 磁化電感無能量狀態圖...................................................................42 圖3-11 輸入各點波形圖...............................................................................46 圖3-12 照度變化對多片太陽能電池輸出電壓及輸出電流影響...............47 圖3-13 照度變化對多片太陽能電池輸出電壓及輸出功率影響...............47 圖3-14 溫度變化對多片太陽能電池輸出電壓及輸出電流影響...............48 圖3-15 溫度變化對多片太陽能電池輸出電壓及輸出功率影響...............48 圖3-16 頻率對太陽能電池輸出電流影響...................................................49 圖3-17 頻率對太陽能電池輸出電壓影響...................................................49 IX 圖3-18 頻率對太陽能電池輸出功率影響...................................................50 圖3-19 太陽能電池特性、太陽能電池電導和頻率關係...........................50 圖4-1 切換頻率對2 D 之影響........................................................................51 圖4-2 切換頻率對返馳式直流轉換器操作區之影響.................................52 圖4-3 照度1000W/m²-責任週期變化對輸出功率和頻率之影響.............52 圖4-4 照度750W/m²-責任週期變化對輸出功率和頻率之影響...............53 圖4-5 照度500W/m²-責任週期變化對輸出功率和頻率之影響...............53 圖4-6 照度250W/m²-責任週期變化對輸出功率和頻率之影響...............54 圖4-7 一次側電感電壓電流(DCM) ............................................................55 圖4-8 EE 型變壓器結構................................................................................56 圖4-9 變壓器實體..........................................................................................57 圖4-10 R-C-D 緩振器電路............................................................................62 圖4-11 切換頻率與太陽能電池輸出電流之關係.......................................63 圖4-12 功率開關IRFP460A 規格................................................................65 圖4-13 太陽能電池模組電壓回授電路.......................................................66 圖4-14 太陽能電池模組電流回授電路.......................................................67 圖4-15 功率開關驅動電路...........................................................................67 圖4-16 哈佛結構與本紐曼結構圖...............................................................68 圖4-17 PIC18F452 周邊電路.........................................................................69 X 圖4-18 PIC18F452 電路實體.........................................................................70 圖4-19 類比數位轉換器模組.......................................................................71 圖4-20 PWM結構示意圖..............................................................................72 圖4-21 太陽能充電系統...............................................................................73 圖4-22 太陽能電池模組實體.......................................................................74 圖4-23 變頻式增量電導法最大功率追蹤系統實體...................................74 圖4-24 鉛酸電池實體...................................................................................75 圖4-25 電阻式負載.......................................................................................75 圖5-1 返馳式直流轉換器輸入波形.............................................................77 圖5-2 返馳式直流轉換器輸出波形.............................................................77 圖5-3 Vpv=72.2V, Ipv=17.26, Ppv=1245W...................................................78 圖5-4 Vo=161.7V, Io=6.315A, Pout=1021W..................................................78 圖5-5 Vpv、Ip、Vgs 波形...................................................................................80 圖5-6 Is、Ic、Io 關係......................................................................................82 圖5-7 手動變頻控制返馳式直流轉換器......................................................83 圖5-8 Vpv、Ip、Vgs波形....................................................................................84 圖5-9 控制器啟動時,功率追蹤波形............................................................85 圖5-10 環境劇烈變化,系統追蹤情形..........................................................85 圖5-11 實際照度變化下頻率對太陽能電池輸出電壓影響........................86 XI 圖5-12 實際照度變化下頻率對太陽能電池輸出電流影響........................86 圖5-13 實際照度變化下頻率對太陽能電池輸出功率影響........................87 圖5-14 實驗示意圖........................................................................................88 圖5-15 太陽能模組實際輸出電流對輸出電壓曲線....................................88 圖5-16 太陽能模組實際輸出功率對輸出電壓曲線....................................89 XII 表次 表2-1 各種最大功率追蹤法之優缺點比較.................................................10 表2-2 常見的太陽電池材料的特性與比較.................................................26 表 4-1 變壓器參數表....................................................................................58 表4-2 類比數位轉換器暫存器.....................................................................71

    [1] M. Kennedy, “Power in the sun,” Power Engineering Journal, Vol. 14, No.
    6, pp. 297-304, 2000
    [2] M. Veerachary, T. Senjyu, K. Uezato, “Voltage-based maximum power
    point tracking control of PV system,” IEEE Trans. on Aerospace and
    Electronic Systems, Vol. 38, pp. 262-270, 2002
    [3] I. H. Altas, A. M. Sharaf, “A novel on-line MPP search algorithm for PV
    arrays,” IEEE Trans. on Energy Conversion, Vol. 11, pp. 748-754, 1996
    [4] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a
    microcontroller-based photovoltaic maximum power point tracking
    control system,” IEEE Trans. on Power Electronics, Vol. 16, pp. 46-54,
    2001
    [5] Y. C. Kuo, T. J. Liang, and J. F. Chen, “Novel maximum-power-point
    tracking controller for photovoltaic energy conversion system,” IEEE
    Trans. on Industrial Electronics, Vol. 48, pp. 594-601, 2001
    [6] D. Shmilovitz, “Photovoltaic maximum power point tracking employing
    load parameters,” IEEE Trans. on ISIE, pp. 1037-1042, 2005
    [7] P. Midya, P. T. Krein, R. J. Turnbull, R. Reppa, and J. Kimball, “Dynamic
    maximum power point tracker for photovoltaic applications,” IEEE Tran.
    on PESC, Vol. 2, pp. 1710-1716, 1996
    [8] C. C. Hua, J. R. Lin, and C. M. Shen, “Implementation of a
    DSP-controlled photovoltaic system with peak power tracking,” IEEE
    Trans. on Industrial Electronics, Vol. 45, pp. 99-107, 1998
    [9] G. C. Hsieh, H. L. Chen, Y. H. Chen, C. M. Tsai, and S. S. Shyu,
    “Variable frequency controlled incremental conductance derived MPPT
    93
    photovoltaic stand-along DC bus system,” Proc. IEEE APEC 2008,
    Austin, TX, pp. 1849-1854, Feb. 2008.
    [10] S. Jain, V. Agarwal, “A new algorithm for rapid tracking of approximate
    maximum power point in photovoltaic systems,” IEEE, Power
    Electronics Letters, Vol. 2, pp. 16-19, 2004
    [11] K. K. Tse, M. T. Ho, H. S. Chung, S. Y. Hui, “A novel maximum power
    point tracker for PV panels using switching frequency modulation,” IEEE
    Trans. on Power Electronics, Vol. 17, pp. 980-989, 2002
    [12] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum
    photovoltaic power tracking: an algorithm for rapidly changing
    atmospheric conditions,” IEE Proceedings, Transmission and
    Distribution Generation, Vol. 142, pp. 59-64, 1995
    [13] K. Irisawa, T. Saito, I. Takano, and Y. Sawada, “Maximum power point
    tracking control of photovoltaic generation system under non-uniform
    insolation by means of monitoring cells,” IEEE Trans. on PSC, pp.
    1707-1710, 2000
    [14] V. Fernando, P. F. Puleston, “Supervisor control for a stand-alone hybrid
    generation system using wind and photovoltaic Energy,” IEEE Trans. of
    Energy Conversion, Vol. 20, No2. pp. 398-405, 2005
    [15] S. Toshihisa, H. Osamu, K. Gunji, “A novel high-performance
    utility-interactive photovoltaic inverter system,” IEEE Trans. on Power
    Electronics, Vol. 18, No. 2, 2003
    [16] J. A. Gow, C. D. Manning, “Development of a photovoltaic array model
    for use in power-electronics simulation studies,” IEE
    Proceedings-Electric Power Applications, Vol. 146, pp. 193-200, 1999
    [17] S. J. Chiang, K. T. Chang, and C. Y. Yen, “Residential photovoltaic
    94
    energy storage system,” IEEE Trans. on Industrial Electronics, Vol. 45,
    pp. 385-394, 1998
    [18] H. Yongji, L. Deheng, “A new method for optimal output of a solar cell
    array,” Proceedings of the IEEE International Symposium, Industrial
    Electronics, Vol. 1, pp. 456-459, 1992
    [19] Y. T. Tan, D. S. Kirschen, N. Jenkins, “A model of PV generation
    suitable for stability analysis,” IEEE Trans. on Energy Conversion, Vol.
    19, pp. 748-755, 2004
    [20] N. Kasa, T. Iida, and L. Chen, “Flyback inverter controlled by sensorless
    surrent MPPT for photovoltaic power system,” IEEE Trans. on Industrial
    Electronics, Vol. 52, pp. 1145-1152, 2005
    [21] M. A. S. Masoum, S. M. M. Badejani, E. F. Fuchs,
    “Microprocessor-controlled new class of optimal battery chargers for
    photovoltaic applications,” IEEE Trans. on Power Engineering Society
    General Meeting, Vol. 2, pp. 1489, 2004
    [22] A. Pandey, N. Dasgupta, and A. K. Mukerjee, “A simple single-sensor
    MPPT solution,” IEEE Trans. on Power Electronics, Vol. 22, pp. 698-700,
    2007
    [23] J. H. R. Enslin, M. S. Wolf, D. B. Snyman, W. Swiegers, “Integrated
    photovoltaic maximum power point tracking converter,” IEEE Trans. on
    Industrial Electronics, Vol. 44, pp. 769-773, 1997
    [24] D. Y. Lee, H. J. Noh, D. S. Hyun, I. Choy, “An improved MPPT
    converter using current compensation method for small scaled
    PV-applications,” IEEE Trans. on APEC, Vol. 1, pp. 540-545, 2003
    [25] K. Y. Khouzam, “Optimum load matching in direct-coupled
    photovoltaic power systems-application to resistive loads,” IEEE Trans.
    95
    on Energy Conversion, Vol. 5, pp. 265-271, 1990
    [26] A. S. Kislovski, R. Redl, “Maximum-power-tracking using positive
    feedback,” IEEE Trans. on PESC, Vol. 2, pp. 1065-1068, 1994
    [27] C. C. Hua, J. R. Lin, “DSP-based controller application in battery
    storage of photovoltaic system,” IEEE IECON, Vol. 3, pp. 1705-1710,
    1996
    [28] T. Y. Kim, H. G. Ahn, S. K. Park, Y. K. Lee, “A novel maximum power
    point tracking control for photovoltaic power system under rapidly
    changing solar radiation,” IEEE International Symposium on Industrial
    Electronics, Vol. 2, pp. 1011-1014, 2001
    [29] G. J. Yu, Y. S. Jung, J. Y. Choi, I. Choy, J. H. Song, G. S. Kim, “A novel
    two-mode MPPT control algorithm based on comparative study of
    existing algorithms,” IEEE Trans. on PSC, pp. 1531-1534, 2002
    [30] Y. Yusof, S. H. Sayuti, M. Abdul Latif, M. Z. C. Wanik, “Modeling and
    simulation of maximum power point tracker for photovoltaic system,”
    PECon, pp. 88-93, 2004
    [31] C. T. Pan, J. Y. Chen, C. P. Chu, Y. S. Huang, “A fast maximum power
    point tracker for photovoltaic power systems,” IEEE of IECON, Vol. 1, pp.
    390-393, 1999
    [32] B. T. Irving, Y. Panov, M. M. Jovanovic, “Small-signal model of
    variable-frequency flyback converter,” IEEE of APEC, Vol. 2, pp.
    977-982, 2003
    [33] R. D. Middlebrook and S. Cuk, “A general unified approach to
    modeling switching-converter power stage,” IEEE Power Electronics
    Specialists Conference Record, pp. 18-34, 1976
    96
    [34] 陳耀驊,「增量電導法太陽能最大功率點追蹤控制器在直流埠應用之
    研製」,國立台灣科技大學,碩士論文,民國九十六年。
    [35] 陳郁方,「應用於太陽能模組之串接返馳式轉換器」,國立成功大學
    碩士論文,民國九十六年。

    QR CODE