簡易檢索 / 詳目顯示

研究生: 拉瑪王
Ramadhani - Kurniawan Subroto
論文名稱: 利用改良式快速時域法之多階轉換器諧波模型
Harmonic Modeling of a Multilevel Converter using Modified Fast Time-Domain Method
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 李育杰
Yuh-Jye Lee
鮑興國
Hsing-Kuo Pao
楊宗銘
Chung-Ming Young
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 56
中文關鍵詞: 多電平變換器快速時域方法穩態分析Krylov子空間方法諧波分析
外文關鍵詞: Multilevel converters, fast time-domain method, steady-state analysis, Krylov subspace method, Harmonic analysis
相關次數: 點閱:238下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

作為多電平換流器的應用已經擴散出,其對系統的諧波影響可能是顯著並研究在各種情況下,包括那些不均衡諧波的影響是重要的。有許多方法來分析諧波,如蠻力時域,快時域和頻域。相對於其他方法,快速時域方法提供準確的解決方案來評估多電平變換器的諧波。然而,快速的時域方法的性能仍然有待改善,尤其是在大型稀疏矩陣處理,以減少計算時間。因此,本文提出利用Krylov子空間方法,以提高快速時域法。根據模擬結果,該方法的計算時間比PSCAD / EMTDC的短約兩倍。而且,從該方法得到的結果與PSCAD / EMTDC的一致


As the applications of multilevel converters have spread-out, their harmonic influence on system could be significant and it is important to study the harmonic impact under various situations including unbalanced ones. There are many methods to analyze the harmonics, such as brute-force time domain, fast-time domain, and frequency domain. Compared to other methods, fast-time domain method provides accurate solution to evaluate harmonics of multilevel converters. However, the performance of fast-time domain method still needs to be improved, especially in dealing with large and sparse matrix to reduce the computation time. Therefore, this thesis proposes to use Krylov subspace method to improve fast-time domain method. According to simulation results, the computation time of the proposed method is about two times shorter than that of PSCAD/EMTDC. Moreover, the results obtained from the proposed method are consistent with those of PSCAD/EMTDC.

ABSTRACT i ACKNOWLEDGEMENTS ii TABLE OF CONTENTS iv LIST OF FIGURES vii LIST OF TABLES ix CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Problem Statement 4 1.3 Outline 4 CHAPTER 2 LITERATURE REVIEW 6 2.1 Harmonic Analysis 6 2.1.1 Harmonic Analysis using BF Time-Domain Method 6 2.1.2 Harmonic Analysis using Frequency-Domain Method 7 2.1.3 Harmonic Analysis using Fast Time-Domain Method 8 CHAPTER 3 MATHEMATICAL MODEL OF CHB MULTILEVEL CONVERTER 10 3.1 Cascaded H-Bridge Multilevel VSC Topologies 10 3.2 State-Space Differential Equations for CMC 13 3.3 Augmenting Harmonic States to Differential Equations 16 3.4 Steady-State Analysis 18 CHAPTER 4 EXPONENTIAL MATRIX APPROXIMATION 20 4.1 Taylor Series 21 4.2 Pade Approximation 21 4.3 Scaling and Squaring 22 4.4 Krylov Subspace Method 22 CHAPTER 5 MULTICARRIER PULSE WIDTH MODULATION 26 5.1 Phase Shifted Multicarrier Modulation 26 5.2 Level Shifted Multicarrier Modulation 31 CHAPTER 6 SYSTEM DESIGN 33 6.1 PSCAD/EMTDC 33 6.2 Proposed Method 33 CHAPTER 7 CASE STUDY 37 7.1 Simulation Setup 37 7.2 Case 1: Balanced System 39 7.3 Case 2: Unbalanced System 43 CHAPTER 8 CONCLUSION AND FUTURE WORK 51 8.1 Conclusion 51 8.2 Future Work 51 REFERENCES 53

[1] Leopoldo G. Franquelo, Jose Rodriguez, Jose I. Leon, Samir Kuoro, Ramon Portillo, Maria A.M. Prats, “The Age of Multilevel Converters Arrives”, IEEE Industrial Electronics Magazine, pp. 28 – 39, 2008.
[2] Mariusz Malinowski, K. Gopakumar, Jose Rodriguez, Marcelo A. Perez, “A Survey on Cascaded Multilevel Inverter”, IEEE Transactions on Industrial Electronics, vol. 57, no. 7, 2010.
[3] Laxman Maharjan, Tsukasa Yamagishi, Hirofumi Akagi, Jun Asakura, “Fault-Tolerant Operation of a Battery-Energy-Storage System Based on a Multilevel Cascade PWM Converter with Star Configuration”, IEEE Transactions on Power Electronics, vol. 25, no. 9, pp. 2386 – 2396.
[4] L.M Tolbert and F.Z. Peng, “Multilevel Converters as a Utility Interface for Renewable Energy Systems”, IEEE Power Engineering Society Summer Meeting, pp. 1271 – 1274, 2000, Seattle.
[5] Jose Rodriguez, Jih-Sheng Lai, Fang Zheng Peng, “Multilevel Inverters: A Survey of Topologies, Controls, and Applications”, IEEE Transactions on Industrial Electronics, vol. 49, no. 4, 2002.
[6] Jianzhong Xu, Chengyong Zhao, Wenjing Liu, Chunyi Guo, “Accelerated Model of Modular Multilevel Converter”, IEEE Transactions on Power Delivery, vol. 28, no. 1, pp. 129 – 136, 2013.
[7] J. Dixon, L. Moran, E.Rodriguez, and R.Domke, “Reactive Power Compensation Technologies: State-of-art Review”, Proc. of IEEE, vol. 93, no. 12, pp. 2144 – 2164, 2005.
[8] L.A. Tolbert, F.Z. Peng, T. Cunnyngham, and J.N. Chiasson, “Charge Balance Control Schemes for Cascade Multilevel Converter in Hybrid Electric Vehicle”, IEEE Transaction on Industrial Electronics, vol. 49, no. 5, pp. 1058 – 1064, 2002.
[9] U. Gnanarathna, A. Gole, and R. Jayasinghe, “Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs”, IEEE Transactions on Power Delivery, vol. 26, no. 1, pp. 316 – 324, 2011.
[10] K. Strunz and E. Carlson, “Nested Fast and Simultaneous Solution for Time-Domain Simulation of Integrative Power-Electric and Electronic Systems”, IEEE Transactions on Power Delivery, vol. 22, no. 1, pp. 277 – 287, 2007.
[11] S. Teeuwsen, “Simplified Dynamic Model of a Voltage-Sourced Converter with Modular Multilevel Converter Design”, IEEE/PES in Power Systems Conference and Exposition, 2009, pp. 1 – 6.
[12] K.L. Lian and P. Lehn, “Real-time Simulation of Voltage Source Converter Based on Time Averaged Method”, IEEE Transactions on Power System, vol. 20, no. 1, pp. 110 – 118, 2005.
[13] K. Ilves, S. Norrga, and H. Nee, “Steady-state Analysis of Interaction Between Harmonic Components of Arm and Line Quantities of Modular Multilevel Converters”, IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 57 – 68, 2012.
[14] C. I. Odeh and O. Ojo, “Analytical Model of Four-Cell Grid-Connected Multilevel Cascaded H-Bridge DC to AC Converter”, Electric Power Components and Systems, vol. 41, no. 1, pp. 824 – 842, 2013.
[15] N. E. Rueger, H. Kuhn, and A. Mertens, “Harmonic Distortion of Multicarrier PWM Strategies in Cascaded Multilevel Converters with Unequal DC Sources”, European Conference on Power Electronics and Applications, Aalborg, Denmark, 2007.
[16] D. Jovcic and R. Sternberger, “Frequency-domain Analytical Model for a Cascaded Multilevel STATCOM”, IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 2139 – 2147, 2008.
[17] K.W. Louie, P.Wilson, R.A. Rivas, A. Wang, “Discussion on Power System Harmonic Analysis in the Frequency Domain”, IEEE Transmission and Distribution Conference and Exposition, 2006, Caracas, pp. 1 – 6.
[18] A. Medina, et.al, “Harmonic Analysis in Frequency and Time Domain”, IEEE Transactions on Power Delivery, vol. 28, no. 3, pp. 1813 – 1821, 2013.
[19] E. Acha, M. Madrigal, Power Systems Harmonics Computer Modeling and Analysis, New Jersey, USA, Wiley, 2001.
[20] P. Lehn and K. L. Lian, “Frequency Coupling Matrix of a Voltage-Source Converter Derived from Piecewise Linear Differential Equations”, IEEE Transactions on Power Delivery, vol. 22, no. 3, pp. 1603 – 1612, 2007.
[21] K. Lian, “Derivation of a Small-Signal Harmonic Model for Closed-Loop Power Converters based on the State-Variable Sensitivity Method”, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no.4, pp. 833 – 845, 2012.
[22] P. Lehn, “Direct Harmonic Analysis of the Voltage Source Converter”, IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 1034 – 1042, 2003.
[23] Roger B. Sidje, “EXPOKIT: A Software Package for Computing Matrix Exponentials”, ACM Trans. Math. Software, 1998.
[24] C. Moler and C. Van Loan, “Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later”, SIAM Review, vol. 45, no.1, pp.3 – 49, 2003.
[25] Marina Popolizo, “Acceleration Techniques for Approximating the Matrix Exponential”, Dissertation, University of Bari, 2008.
[26] A. Semlyen, “Fundamental Concepts of a Krylov Subspace Power Flow Methodology”, IEEE Transactions on Power Systems, vol. 11, no. 3, pp. 1528 – 1537, 1996.
[27] Y. Saad, “Analysis of Some Krylov Subspace Approximations to the Matrix Exponential Operator”, SIAM Journal on Numerical Analysis, vol. 29, no. 1, pp. 209 – 228, 1992.
[28] R. B. Sidje, W. J. Stewart, “A Numerical Study of Large Sparse Matrix Exponentials Arising in Markov Chains”, Computational Statistics and Data Analysis, pp. 345 – 368, 1999.
[29] B. Wu, High-Power Converters and AC Drives, New Jersey, USA, Wiley, 2006.
[30] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. Franquelo, B. Wu, J. Rodriguez, M. Perez, and J. Leon, “Recent Advances and Industrial Applications of Multilevel Converters”, IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2553 – 2580, 2010.
[31] G. Carrara, S. Gardella, M. Marchesoni, R. Salutari, and G. Sciutto, “A New Multilevel PWM Method: A Theoretical Analysis”, IEEE Transactions on Power Electronics, vol.7, no. 3, pp. 497 – 505, 1992.
[32] M. Angulo, P. Lezana, S. Kouro, J. Rodriguez, and B. Wu, “Level-shifted PWM for Cascaded Multilevel Inverters with Even Power Distribution”, IEEE in Power Electronics Specialists Conference, 2007, pp. 2373 – 2378, 2002.

無法下載圖示 全文公開日期 2017/01/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE