簡易檢索 / 詳目顯示

研究生: 廖倚賢
Yi-Sian Liao
論文名稱: 聚苯乙烯/五羰基鐵奈米球之合成及其有機金屬框架之發展
Synthesis of polystyrene/iron carbonyl nanospheres with development of metal organic frameworks
指導教授: 陳建光
Jem-Kun Chen
口試委員: 鄭智嘉
Chih-Chia Cheng
詹益慈
Yi-Tsu Chan
張棋榕
Chi-Jung Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 102
中文關鍵詞: 聚苯乙烯五羰基鐵配位聚合物金屬有機高分子無乳化劑聚合
外文關鍵詞: Polystyrene, Pentacarbonyl iron, Coordinate polymer, organometalic polymers, Emulsifier free emulsion polymerization
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過無乳化劑聚合法,反應物分別為苯乙烯單體與五羰基鐵,此兩樣反應物屬於有機相,因此可直接透過均相聚合的方式使五羰基鐵與苯乙烯單體聚合成聚苯乙烯鐵核奈米粒子[1]。
    本篇研究成功製備出含有鐵的聚苯乙烯奈米粒子,以不同的五羰基鐵濃度聚合均能獲得粒徑均一的奈米粒子,通過Zeta-potential 表面電位分析,相較於純聚苯乙烯奈米粒子,含鐵的聚苯乙烯奈米粒子擁有更負的電位,因此粒子較為分散且穩定。對聚苯乙烯奈米粒子與含鐵的粒子作粒徑成長隨時間變化的比較,發現加入五羰基鐵可以有效限制粒徑的成長,推測是因為五羰基鐵會與苯乙烯單體有著競爭反應,使得單體間的聚合受到影響。透過GPC分子量分析及玻璃轉移溫度的測定,發現在加入鐵後的粒子的分子量會顯著的降低,玻璃轉移溫度亦為降低,可以共同佐證五羰基鐵和苯乙烯之間的競爭關係。透過XRD結晶分析、FT-IR光譜分析、XPS光譜分析及NMR光譜分析,可以得知五羰基鐵與苯乙烯有著一定的相互作用,並在經過高溫燒結後得到高結晶性的單晶。


    The emulsifier-free polymerization approach was applied in this investigation. Styrene monomer and iron pentacarbonyl were the reactants. The organic phase contained these two reactants. As a result, homogeneous polymerization can be used to directly polymerize the monomers of styrene and iron pentacarbonyl.
    In this study, iron-cored polystyrene nanoparticles were effectively created. Styrene polymerization with various iron pentacarbonyl concentrations could produce nanoparticles with homogenous particle size. Iron-containing polystyrene nanoparticles have a greater negative potential than pure polystyrene nanoparticles, which makes them more diffused and stable. This is determined by zeta-potential surface potential analysis. The addition of iron pentacarbonyl can effectively limit the growth of particle size, according to a comparison of the particle size growth of polystyrene nanoparticles and iron-containing particles over time. This is likely because iron pentacarbonyl will have a competitive reaction with styrene monomer, affecting the polymerization between monomers. The molecular weight of the particles was significantly reduced after adding iron, and the glass transition temperature was also reduced, which can together prove the competitive relationship between iron pentacarbonyl and styrene. It is possible to determine that iron pentacarbonyl and styrene interact in a specific way by XRD crystallization analysis, FT-IR spectral analysis, XPS spectral analysis, and NMR spectral analysis. And after high temperature sintering, achieve a single crystal with great crystallinity.

    目錄 摘要 Abstract 致謝 目錄 圖目錄 表目錄 第1章 前言 1.1 研究背景 1.2 研究動機與目的 第2章 理論與文獻回顧 2.1 聚合物/無機複合材料奈米粒子 2.2 聚苯乙烯奈米粒子 2.2.1 乳化劑聚合法 2.2.2 無乳化劑聚合法 2.2.3 分散聚合法 2.2.4 懸浮聚合法 2.3 磁性材料[15] 2.3.1 磁性材料特性 2.3.2 共沉澱法(Co-precipitation) 2.3.3 微乳化法(Micro-emulsion) 2.3.4 水熱法(Solvothermal reaction) 2.4 五羰基鐵 2.5 配位聚合物 2.6 自組裝 第3章 儀器原理 3.1 動態光散射粒徑分析儀(Dynamic Light Scattering, DLS) 3.2 示差掃描熱量分析儀 (Differential Scanning Calorimetry, DSC) 3.3 凝膠滲透層析儀(Gel permeation chromatography, GPC) 3.4 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer, FT-IR) 3.5 核磁共振儀(Nuclear Magnetic Resonance) 3.6 高解析度場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope, FE-SEM) 3.7 場發射穿透式電子顯微鏡(Field-Emission Transmission Electron Microscope, FE-TEM) 3.8 X光繞射分析儀(X-ray diffractometer, XRD) 3.9 熱重量分析儀(Thermogravimetric Analysis, TGA) 3.10 X射線光電子能譜儀(X-Ray Photoelectron Spectroscope, XPS) 第4章 實驗流程與方法 4.1 實驗流程圖 4.2 實驗藥品 4.3 實驗儀器 4.4 實驗步驟 4.4.1 聚苯乙烯鐵核殼粒子之製備 4.4.2 箱型高溫爐燒結 4.5 實驗樣品命名 第5章 結果與討論 5.1 PSF奈米粒子之影像型態分析 5.1.1 SEM表面型態分析 5.1.1.1不同濃度之PSF奈米粒子SEM表面型態分析 5.1.1.2不同濃度之PSF奈米粒子Mapping表面元素分析 5.1.1.3隨時間變化之PSF奈米粒子SEM表面型態分析 5.2 PSF奈米粒子之定性分析 5.2.1 DLS粒徑分析 5.2.1.1不同濃度之PSF奈米粒子DLS粒徑分析 5.2.1.3隨時間變化之PSF奈米粒子DLS粒徑分析 5.2.1.3 PS與PSF奈米粒子隨時間變化比較 5.2.2 Zeta-potential 表面電位分析 5.2.2.1 PSF隨時間變化的Zeta電位分析 5.2.3 TGA熱重分析 5.2.4 DSC轉移溫度分析 5.2.5 GPC分子量分析 5.2.6 FT-IR光譜分析 5.2.7 XRD結晶分析 5.2.8 XPS光譜分析 5.2.9 NMR光譜分析 5.3 HPSF之定性分析 5.3.1 SEM表面型態分析 5.3.2 TEM穿透型態分析 5.3.3 XRD結晶分析 第6章 結論 參考文獻

    1. Wu, L., et al., Organic phase syntheses of magnetic nanoparticles and their applications. Chemical reviews, 2016. 116(18): p. 10473-10512.
    2. Sharma, G., et al., Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. Journal of King Saud University-Science, 2019. 31(2): p. 257-269.
    3. Ghosh Chaudhuri, R. and S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews, 2012. 112(4): p. 2373-2433.
    4. Robin, A.Y. and K.M. Fromm, Coordination polymer networks with O-and N-donors: What they are, why and how they are made. Coordination Chemistry Reviews, 2006. 250(15-16): p. 2127-2157.
    5. Li, S., et al., Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano reviews, 2010. 1(1): p. 5214.
    6. Wünsch, J.R., Polystyrene: Synthesis, production and applications. 2000.
    7. Mahajan, D., et al., Synthesis and characterization of nanosized metals embedded in polystyrene matrix. Composites Part B: Engineering, 2006. 37(1): p. 74-80.
    8. Voulgaris, D. and D. Petridis, Emulsifying effect of dimethyldioctadecylammonium-hectorite in polystyrene/poly (ethyl methacrylate) blends. Polymer, 2002. 43(8): p. 2213-2218.
    9. Harkins, W.D., A General Theory of the Mechanism of Emulsion Polymerization1. Journal of the American Chemical Society, 1947. 69(6): p. 1428-1444.
    10. Fitch, R.M., M.B. Prenosil, and K.J. Sprick. The mechanism of particle formation in polymer hydrosols. I. kinetics of aqueous polymerization of methyl methacrylate. in Journal of Polymer Science Part C: Polymer Symposia. 1969. Wiley Online Library.
    11. Shouldice, G.T., G.A. Vandezande, and A. Rudin, Practical aspects of the emulsifier-free emulsion polymerization of styrene. European polymer journal, 1994. 30(2): p. 179-183.
    12. Fu, Y., et al., Self-assembly of Polystyrene Sphere Colloidal Crystals by in Situ Solvent Evaporation Method. Synthetic Metals, 2009. 159: p. 1744-1750.
    13. Kawaguchi, S. and K. Ito, Dispersion polymerization. Polymer Particles, 2005: p. 299-328.
    14. Yuan, H., G. Kalfas, and W. Ray, Suspension polymerization. Journal of Macromolecular Science, Part C: Polymer Reviews, 1991. 31(2-3): p. 215-299.
    15. Tumanski, S., Modern magnetic materials—the review. Przeglad elektrotechniczny, 2010. 4: p. 10.
    16. Friák, M., A. Schindlmayr, and M. Scheffler, Ab initio study of the half-metal to metal transition in strained magnetite. New journal of physics, 2007. 9(1): p. 5.
    17. Jiles, D., Recent advances and future directions in magnetic materials. Acta materialia, 2003. 51(19): p. 5907-5939.
    18. Bychkov, Y.A. and E.I.J.J.o.p.C.S.s.p. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. 1984. 17(33): p. 6039.
    19. Ozkaya, T., et al., Synthesis of Fe3O4 nanoparticles at 100 C and its magnetic characterization. Journal of Alloys and Compounds, 2009. 472(1-2): p. 18-23.
    20. Kittel, C., Introduction to Solid State Physics, 6th edn., 1986. Wiley.
    21. Ngo, A., et al., Nanoparticles of: Synthesis and superparamagnetic properties. 1999. 9(4): p. 583-592.
    22. Valenzuela, R., et al., Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method. Journal of Alloys and Compounds, 2009. 488(1): p. 227-231.
    23. Rani, S. and G.D. Varma, Superparamagnetism and metamagnetic transition in Fe3O4 nanoparticles synthesized via co-precipitation method at different pH. Physica B: Condensed Matter, 2015. 472: p. 66-77.
    24. Liu, S., et al., Magnetically separable and recyclable Fe3O4–polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts. Journal of colloid and interface science, 2016. 469: p. 69-77.
    25. Liu, Y.-W., et al., Facile and straightforward synthesis of superparamagnetic reduced graphene oxide–Fe3O4 hybrid composite by a solvothermal reaction. Nanotechnology, 2012. 24(2): p. 025604.
    26. Bergt, M., et al., Controlling the femtochemistry of Fe (CO) 5. The Journal of Physical Chemistry A, 1999. 103(49): p. 10381-10387.
    27. Bauschlicher Jr, C.W. and P.S. Bagus, The metal–carbonyl bond in Ni (CO) 4 and Fe (CO) 5: A clear‐cut analysis. The Journal of chemical physics, 1984. 81(12): p. 5889-5898.
    28. Wen, J.Z., et al., Detailed kinetic modeling of iron nanoparticle synthesis from the decomposition of Fe (CO) 5. The Journal of Physical Chemistry C, 2007. 111(15): p. 5677-5688.
    29. Kumar, V., et al. Annealing effect on the structural and dielectric properties of hematite nanoparticles. in AIP Conference Proceedings. 2018. AIP Publishing LLC.
    30. Besora, M., et al., A combined theoretical and experimental study on the role of spin states in the chemistry of Fe (CO) 5 photoproducts. Journal of the American Chemical Society, 2009. 131(10): p. 3583-3592.
    31. Spokoyny, A.M., et al., Infinite coordination polymer nano-and microparticle structures. Chemical Society Reviews, 2009. 38(5): p. 1218-1227.
    32. Umemura, A., et al., Morphology design of porous coordination polymer crystals by coordination modulation. Journal of the American Chemical Society, 2011. 133(39): p. 15506-15513.
    33. Thorkelsson, K., P. Bai, and T. Xu, Self-assembly and applications of anisotropic nanomaterials: A review. Nano Today, 2015. 10(1): p. 48-66.
    34. Whitesides, G.M. and B. Grzybowski, Self-assembly at all scales. Science, 2002. 295(5564): p. 2418-2421.
    35. Stetefeld, J., S.A. McKenna, and T.R. Patel, Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical reviews, 2016. 8(4): p. 409-427.
    36. Freire, E., Differential scanning calorimetry. Protein stability and folding, 1995: p. 191-218.
    37. Moore, J., Gel permeation chromatography. I. A new method for molecular weight distribution of high polymers. Journal of Polymer Science Part A: General Papers, 1964. 2(2): p. 835-843.
    38. Gellerstedt, G., Gel permeation chromatography, in Methods in lignin chemistry. 1992, Springer. p. 487-497.
    39. Griffiths, P.R., Fourier transform infrared spectrometry. Science, 1983. 222(4621): p. 297-302.
    40. Hore, P.J., Nuclear magnetic resonance. 2015: Oxford University Press, USA.
    41. Chalmers, G.R., R.M. Bustin, and I.M. Power, Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG bulletin, 2012. 96(6): p. 1099-1119.
    42. Segal, L., et al., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile research journal, 1959. 29(10): p. 786-794.
    43. Coats, A. and J. Redfern, Thermogravimetric analysis. A review. Analyst, 1963. 88(1053): p. 906-924.
    44. Ratner, B.D. and D.G. Castner, Electron spectroscopy for chemical analysis. Surface analysis: the principal techniques, 2009. 2: p. 374-381.
    45. Lemine, O., Microstructural characterisation of α-Fe2O3 nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR. Superlattices and Microstructures, 2009. 45(6): p. 576-582.
    46. Gardella, J.A., S.A. Ferguson, and R.L. Chin, π*← π shakeup satellites for the analysis of structure and bonding in aromatic polymers by X-ray photoelectron spectroscopy. Applied spectroscopy, 1986. 40(2): p. 224-232.

    無法下載圖示 全文公開日期 2025/08/29 (校內網路)
    全文公開日期 2025/08/29 (校外網路)
    全文公開日期 2025/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE