簡易檢索 / 詳目顯示

研究生: 洪郁雯
YU-WEN HUNG
論文名稱: 纖維素奈米結晶及細菌纖維素奈米纖維製備皮克林乳液及其應用之研究
Preparation of Pickering Emulsion by Cellulose Nanocrystals and Bacterial Cellulose Nanofibers and Its Application
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 蔡伸隆
Shen-Long Tsai
王鐘毅
Chung-Yih Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 81
中文關鍵詞: 纖維素奈米結晶細菌纖維素皮克林乳液聚苯乙烯
外文關鍵詞: Cellulose Nanocrystals, Bacterial Cellulose, Pickering Emulsion, Polystyrene
相關次數: 點閱:269下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   水包油之乳液(oil-in-water (O/W) emulsion)是油在連續相的水中乳化的結果,常需以表面活性劑或聚合物來製備。而奈米顆粒或微粒亦可吸附至油水界面,而穩定O/W的乳化作用,此利用固體顆粒來乳化所得之乳液稱之為皮克林乳液(Pickering emulsion)。本論文研究中,皮克林乳液是以纖維素奈米晶體(Cellulose Nanocrystals,CNCs)及細菌纖維素奈米纖維(Bacterial Cellulose Nanofibers,BCNFs)來製備,利用0.1 wt% CNCs或BCNFs可將苯乙烯(Styrene,St)形成穩定的O/W型皮克林乳液。在油水體積比為1/4下,以CNCs製備的皮克林乳液平均直徑為8.03±2.51 μm,若於水相中添加20 mM NaCl,可提升乳液之穩定性,降低油滴平均直徑為3.32±1.15 μm。而於油相中添加1g奈米磁粉OA-Fe3O4,會降低乳液之穩定性,可得到平均直徑為7.26±2.44 μm的磁性油滴。然而,以BCNFs來製備的皮克林乳液時,油滴大小為6.17±2.34 μm,但在水相中添加20 mM NaCl卻會降低乳液之穩定性,油滴平均直徑會增加為12.62±4.22 μm。將皮克林乳液中之苯乙烯加以聚合,可得核心為聚苯乙烯(Polystyrene,PS),外殼為CNCs或BCNFs之顆粒。BCNFs製備的皮克林乳液可聚合出實心與空心之PS顆粒,比表面積分別為0.79m²/g及1.04m²/g,表面多孔之空心PS顆粒能經由溶劑處理得到表面平整之顆粒。在利用溶於苯乙烯之OA-Fe3O4 NPs可製備磁性皮克林乳液,經聚合作用,可得核心具有磁性,表面具有纖維素覆蓋之顆粒,此顆粒能用於吸附具有纖維素結合功能域之蛋白外,由於顆粒表面上之纖維素是具有-SO3-或-COO-負電荷,能與帶正電性之ε-Polylysine(ε-PL)吸附,修飾成具有正電性之磁性皮克林乳液顆粒,表面之ε-PL具抗菌性,能使此PS微粒成為具有抗菌性之功能性磁性顆粒。


    Oil-in-water (O/W) emulsions are usually prepared by emulsification of oil in water in the presence of surfactants or polymers. The nanoparticles or microparticles can also adsorb onto the oil-water interface to stabilize the O/W emulsion which is known as Pickering emulsion. In this work, Pickering emulsions were prepared by using cellulose nanocrystals (CNCs) and bacterial cellulose nanofibers (BCNFs) to stabilize the O/W emulsion. Styrene was employed as oil phase to be emulsified in 0.1 wt% CNCs or BCNFs solution. With oil-water volume ratio of 1: 4, the average diameter of oil droplets in Pickering emulsion prepared by CNCs is 8.03±2.51 μm. With addition of NaCl to 20 mM to the aqueous phase, the stability of emulsion was significantly improved with the average size of oil droplets reduced to 3.32±1.15 μm. The styrene in the Pickering emulsion could be polymerized to obtain polystyrene (PS) microparticles with a shell of CNCs or BCNFs. Hollow PS particles with open pores could be obtained by freeze-drying the polymerized emulsion prepared by BCNFs with specific surface areas of 1.04 m2/g. Magnetic Pickering emulsion could also be prepared by adding oleic acid surface modified Fe3O4 NPs in styrene. After polymerization, microparticles with magnetic core and cellulose-coated surface could be obtained. The particle can be used to specifically capture recombinant proteins fused with cellulose-binding domain. Since the CNCs or BCNFs shell of the microparticles carrie a negative charge (-SO3- or-COO-), the positively charged ε-polylysine (ε-PL) can be easily grafted onto the surface via electrostatic interaction. The grafted ε-PL will confer the particles with antimicrobial activity to kill the bacteria encountered.

    第一章 緒論 1 1.1 前言 1 1.2 研究目的及內容 2 第二章 文獻回顧 3 2.1 纖維素奈米結晶(Cellulose Nanocrystals, CNCs) 3 2.2 微膠囊(Microcapsule) 7 2.3 皮克林乳液(Pickering emulsion) 8 2.4 表面具有孔洞之中空高分子微粒(Polymer hollow particles with holes on surface) 10 2.5 纖維素結合功能域(Cellulose-Binding Domain, CBD) 12 2.6 Epsilon-polylysine 13 2.5.1 物理化學性質 13 2.5.2 抗微生物活性 13 第三章 實驗流程、材料與方法 14 3.1 實驗架構 14 3.2 實驗材料及設備 15 3.2.1 菌株 15 3.2.2 質體 15 3.2.3 實驗藥品 15 3.2.4 實驗設備 16 3.3 溶液配置 18 3.3.1 液態培養基與固態培養基之製備 18 3.3.2 緩衝溶液之製備 18 3.3.3 蛋白質電泳反應液之製備 19 3.4 實驗方法 20 3.5.1 菌株培養及融合蛋白(CBD-AgBP)之生產 20 3.5.1.1 E.coli BL21(DE3)菌株培養 20 3.5.1.2 融合蛋白(CBD-AgBP)之加熱純化 21 3.5.1.3 蛋白質濃度分析 21 3.5.2 纖維素溶液製備 22 3.5.4.1 CNCs溶液製備 22 3.5.4.2 細菌纖維素(Bacterial cellulose,BC)製備 22 3.5.4.3 BCNFs溶液製備 23 3.5.3 皮克林乳液(Pickering emulsion)製備 24 3.5.3.1 磁性苯乙烯 24 3.5.3.2 皮克林乳液 24 3.5.3.3 皮克林乳液之乳化聚合 25 3.5.3.4 CBD-AgBP於纖維之吸附 26 3.5.3.5 ε-Polylysine顆粒製備 26 3.5.4 性質分析 27 3.5.4.1 穩定性分析 27 3.5.4.2 界面電位分析 27 3.5.4.3 熱穩定性分析 27 3.5.4.4 磁性分析 27 3.5.4.5 螢光顯微鏡之分析 28 3.5.4.6 原子力顯微鏡之分析 28 3.5.4.7 掃描式電子顯微鏡之分析 28 3.5.4.8 表面積及孔徑分析儀之分析 28 3.5.5 蛋白質電泳分析 29 3.5.5.1 SDS-PAGE膠片 29 3.5.5.2 待測樣品前處理 30 3.5.5.3 電泳分析 30 3.5.6 抗菌分析 31 第四章 結果與討論 32 4.1 CNCs及BCNFs之表面結構 32 4.2 皮克林乳液 34 4.2.1 表面結構 34 4.2.2 乳液穩定性 38 4.3 皮克林乳液之乳化聚合 40 4.3.1 PS-CNCs及PS-BCNFs 40 4.3.2 SEM-EDS表面元素分析 44 4.3.3 TGA/DTG分析 45 4.3.4 BET分析 48 4.4 磁性皮克林乳液之聚合 49 4.4.1 MPS-CNCs及MPS-BCNFs 49 4.4.2 磁性分析 51 4.4.3 TGA/DTG分析 52 4.4.4 CBD融合蛋白於纖維之吸附 53 4.4.5 界面電位分析 55 4.4.6 抗菌分析 56 第五章 結論 57 5.1 CNCs及BCNFs 57 5.2 皮克林乳液 57 5.3 PS-CNCs及PS-BCNFs 58 5.4 MPS-CNCs及MPS-BCNFs 59

    1 Kalashnikova, I., Bizot, H., Cathala, B. & Capron, I. New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27, 7471-7479, doi:10.1021/la200971f (2011).
    2 Feng, J. et al. Antimicrobial activity of silver nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose. Cellulose 21, 4557-4567 (2014).
    3 Zhang, Y., Karimkhani, V., Makowski, B. T., Samaranayake, G. & Rowan, S. J. Nanoemulsions and nanolatexes stabilized by hydrophobically functionalized cellulose nanocrystals. Macromolecules 50, 6032-6042 (2017).
    4 Nypelo, T., Rodriguez-Abreu, C., Kolen'ko, Y. V., Rivas, J. & Rojas, O. J. Microbeads and hollow microcapsules obtained by self-assembly of pickering magneto-responsive cellulose nanocrystals. ACS Appl Mater Interfaces 6, 16851-16858, doi:10.1021/am504260u (2014).
    5 Kaushik, M., Fraschini, C., Chauve, G., Putaux, J.-L. & Moores, A. in The Transmission Electron Microscope - Theory and Applications Ch. Chapter 6, (2015).
    6 Nickerson, R. & Habrle, J. Cellulose intercrystalline structure. Industrial & Engineering Chemistry 39, 1507-1512 (1947).
    7 Ullah, H., Wahid, F., Santos, H. A. & Khan, T. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate polymers 150, 330-352 (2016).
    8 Iguchi, M., Yamanaka, S. & Budhiono, A. Bacterial cellulose—a masterpiece of nature's arts. Journal of materials science 35, 261-270 (2000).
    9 Kim, Y. H., Park, S., Won, K., Kim, H. J. & Lee, S. H. Bacterial cellulose–carbon nanotube composite as a biocompatible electrode for the direct electron transfer of glucose oxidase. Journal of Chemical Technology & Biotechnology 88, 1067-1070 (2013).
    10 Lin, S.-P. et al. Biosynthesis, production and applications of bacterial cellulose. Cellulose 20, 2191-2219 (2013).
    11 Żywicka, A. et al. Bacterial cellulose yield increased over 500% by supplementation of medium with vegetable oil. Carbohydrate polymers 199, 294-303 (2018).
    12 Chung, H. Efficient Bacterial Cellulose Production from Buffered Fruit Juices, 서울대학교 대학원, (2016).
    13 Wang, S. et al. Super‐Strong, Super‐Stiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers. Advanced Materials 29, 1702498 (2017).
    14 Kim, J. H. et al. Alginate/bacterial cellulose nanocomposite beads prepared using Gluconacetobacter xylinus and their application in lipase immobilization. Carbohydr Polym 157, 137-145, doi:10.1016/j.carbpol.2016.09.074 (2017).
    15 Kim, B. J. et al. Cytoprotective alginate/polydopamine core/shell microcapsules in microbial encapsulation. Angewandte Chemie International Edition 53, 14443-14446 (2014).
    16 Habibi, Y., Lucia, L. A. & Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews 110, 3479-3500 (2010).
    17 Brinchi, L., Cotana, F., Fortunati, E. & Kenny, J. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydrate Polymers 94, 154-169 (2013).
    18 Lee, K.-Y., Aitomäki, Y., Berglund, L. A., Oksman, K. & Bismarck, A. On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology 105, 15-27 (2014).
    19 Mahanta, N., Teow, Y. & Valiyaveettil, S. Viscoelastic hydrogels from poly (vinyl alcohol)–Fe (iii) complex. Biomaterials Science 1, 519-527 (2013).
    20 Islam, M., Chen, L., Sisler, J. & Tam, K. Cellulose nanocrystal (CNC)–inorganic hybrid systems: synthesis, properties and applications. Journal of Materials Chemistry B 6, 864-883 (2018).
    21 Rusli, R., Shanmuganathan, K., Rowan, S. J., Weder, C. & Eichhorn, S. J. Stress Transfer in Cellulose Nanowhisker Composites Influence of Whisker Aspect Ratio and Surface Charge. Biomacromolecules 12, 1363-1369 (2011).
    22 Molnes, S. N., Paso, K. G., Strand, S. & Syverud, K. The effects of pH, time and temperature on the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in enhanced oil recovery. Cellulose 24, 4479-4491 (2017).
    23 Boluk, Y., Lahiji, R., Zhao, L. & McDermott, M. T. Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids and Surfaces A: Physicochemical and Engineering Aspects 377, 297-303 (2011).
    24 Shafiei-Sabet, S., Hamad, W. & Hatzikiriakos, S. Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21, 3347-3359 (2014).
    25 Bondeson, D. & Oksman, K. Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Composites Part A: Applied Science and Manufacturing 38, 2486-2492 (2007).
    26 Uddin, A. J., Araki, J. & Gotoh, Y. Characterization of the poly (vinyl alcohol)/cellulose whisker gel spun fibers. Composites Part A: Applied Science and Manufacturing 42, 741-747 (2011).
    27 Hu, Z., Berry, R. M., Pelton, R. & Cranston, E. D. One-pot water-based hydrophobic surface modification of cellulose nanocrystals using plant polyphenols. ACS Sustainable Chemistry & Engineering 5, 5018-5026 (2017).
    28 Abraham, E. et al. Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS applied materials & interfaces 8, 28086-28095 (2016).
    29 Abraham, E. et al. Highly hydrophobic thermally stable liquid crystalline cellulosic nanomaterials. ACS Sustainable Chemistry & Engineering 4, 1338-1346 (2016).
    30 Chowdhury, R. A., Clarkson, C. & Youngblood, J. Continuous roll-to-roll fabrication of transparent cellulose nanocrystal (CNC) coatings with controlled anisotropy. Cellulose 25, 1769-1781 (2018).
    31 Lewis, L., Derakhshandeh, M., Hatzikiriakos, S. G., Hamad, W. Y. & MacLachlan, M. J. Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromolecules 17, 2747-2754 (2016).
    32 Suenaga, S. & Osada, M. Self-sustaining cellulose nanofiber hydrogel produced by hydrothermal gelation without additives. ACS Biomaterials Science & Engineering 4, 1536-1545 (2018).
    33 Abraham, E., Weber, D. E., Sharon, S., Lapidot, S. & Shoseyov, O. Multifunctional cellulosic scaffolds from modified cellulose nanocrystals. ACS applied materials & interfaces 9, 2010-2015 (2017).
    34 Otoni, C. G. et al. Recent advances on edible films based on fruits and vegetables—a review. Comprehensive Reviews in Food Science and Food Safety 16, 1151-1169 (2017).
    35 Hu, Z., Marway, H. S., Kasem, H., Pelton, R. & Cranston, E. D. Dried and redispersible cellulose nanocrystal Pickering emulsions. ACS Macro Letters 5, 185-189 (2016).
    36 Li, X. et al. Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions. Carbohydrate polymers 183, 303-310 (2018).
    37 Rivkin, A. et al. Bionanocomposite films from resilin-CBD bound to cellulose nanocrystals. Industrial Biotechnology 11, 44-58 (2015).
    38 Meirovitch, S. et al. Spider silk-CBD-cellulose nanocrystal composites: Mechanism of assembly. International journal of molecular sciences 17, 1573 (2016).
    39 Kafy, A., Kim, H. C., Zhai, L., Kim, J. W. & Kang, T. J. Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Scientific reports 7, 17683 (2017).
    40 Lundahl, M. J., Klar, V., Wang, L., Ago, M. & Rojas, O. J. Spinning of Cellulose Nanofibrils into Filaments: A Review. Industrial & Engineering Chemistry Research 56, 8-19, doi:10.1021/acs.iecr.6b04010 (2016).
    41 Yao, J. et al. Macrofibers with High Mechanical Performance Based on Aligned Bacterial Cellulose Nanofibers. ACS Appl Mater Interfaces 9, 20330-20339, doi:10.1021/acsami.6b14650 (2017).
    42 Isogai, A., Saito, T. & Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71-85 (2011).
    43 Sone, A., Saito, T. & Isogai, A. Preparation of Aqueous Dispersions of TEMPO-Oxidized Cellulose Nanofibrils with Various Metal Counterions and Their Super Deodorant Performances. ACS Macro Letters 5, 1402-1405, doi:10.1021/acsmacrolett.6b00786 (2016).
    44 Wu, C.-N. & Cheng, K.-C. Strong, thermal-stable, flexible, and transparent films by self-assembled TEMPO-oxidized bacterial cellulose nanofibers. Cellulose 24, 269-283, doi:10.1007/s10570-016-1114-8 (2016).
    45 Wu, C.-N. et al. TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules 19, 544-554 (2018).
    46 Guo, J. et al. Complexes of Magnetic Nanoparticles with Cellulose Nanocrystals as Regenerable, Highly Efficient, and Selective Platform for Protein Separation. Biomacromolecules 18, 898-905, doi:10.1021/acs.biomac.6b01778 (2017).
    47 Ghosh, S. K. Functional coatings and microencapsulation: a general perspective. Functional coatings, 1-28 (2006).
    48 Mikulcová, V., Bordes, R. & Kašpárková, V. On the preparation and antibacterial activity of emulsions stabilized with nanocellulose particles. Food Hydrocolloids 61, 780-792 (2016).
    49 Chevalier, Y. & Bolzinger, M.-A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 439, 23-34 (2013).
    50 Pickering, S. U. Cxcvi.—emulsions. Journal of the Chemical Society, Transactions 91, 2001-2021 (1907).
    51 Ramsden, W. Separation of solids in the surface-layers of solutions and ‘suspensions’(observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).—Preliminary account. Proceedings of the royal Society of London 72, 156-164 (1904).
    52 杨飞, 王君, 蓝强, 孙德军 & 李传宪. Pickering 乳状液的研究进展. 化学进展 21, 1418-1426 (2009).
    53 Binks, B. P. & Lumsdon, S. Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16, 8622-8631 (2000).
    54 Velikov, K. P. & Velev, O. D. 277À306 (Wiley Online Library, 2007).
    55 Piao, S. H., Gao, C. Y. & Choi, H. J. Pickering emulsion-polymerized conducting polymer nanocomposites and their applications. Chemical Papers 71, 179-188 (2017).
    56 Pekarek, K. J., Jacob, J. S. & Mathiowitz, E. Double-walled polymer microspheres for controlled drug release. Nature 367, 258 (1994).
    57 Huang, H., Remsen, E. E., Kowalewski, T. & Wooley, K. L. Nanocages derived from shell cross-linked micelle templates. Journal of the American Chemical Society 121, 3805-3806 (1999).
    58 Wong, M. S., Cha, J. N., Choi, K.-S., Deming, T. J. & Stucky, G. D. Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano Letters 2, 583-587 (2002).
    59 Hentze, H.-P. & Kaler, E. W. Polymerization of and within self-organized media. Current Opinion in Colloid & Interface Science 8, 164-178 (2003).
    60 Pochan, D. J. et al. Toroidal triblock copolymer assemblies. Science 306, 94-97 (2004).
    61 Li, Z., Kesselman, E., Talmon, Y., Hillmyer, M. A. & Lodge, T. P. Multicompartment micelles from ABC miktoarm stars in water. Science 306, 98-101 (2004).
    62 Ramli, R. A. Hollow polymer particles: a review. RSC Advances 7, 52632-52650, doi:10.1039/c7ra10358a (2017).
    63 Terpe, K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Applied microbiology and biotechnology 60, 523-533 (2003).
    64 Credou, J. & Berthelot, T. Cellulose: from biocompatible to bioactive material. Journal of Materials Chemistry B 2, 4767-4788 (2014).
    65 Linder, M., Salovuori, I., Ruohonen, L. & Teeri, T. T. Characterization of a double cellulose-binding domain synergistic high affinity binding to crystalline cellulose. Journal of Biological Chemistry 271, 21268-21272 (1996).
    66 Linder, M. & Teeri, T. T. The roles and function of cellulose-binding domains. Journal of biotechnology 57, 15-28 (1997).
    67 Wang, A. A., Mulchandani, A. & Chen, W. Whole‐cell immobilization using cell surface‐exposed cellulose‐binding domain. Biotechnology progress 17, 407-411 (2001).
    68 Wetlaufer, D. B. & Stahmann, M. A. The interaction of methyl orange anions with lysine polypeptides. Journal of Biological Chemistry 203, 117-126 (1953).
    69 Yoshida, T. & Nagasawa, T. ε-Poly-L-lysine: microbial production, biodegradation and application potential. Applied microbiology and biotechnology 62, 21-26 (2003).
    70 Hiraki, J. ε-Polylysine; its development and utilization. Fine Chem. 29, 18-25 (2000).
    71 Shima, S., MATSUOKA, H., IWAMOTO, T. & SAKAI, H. Antimicrobial action of ε-poly-L-lysine. The Journal of antibiotics 37, 1449-1455 (1984).
    72 Shukla, S. C., Singh, A., Pandey, A. K. & Mishra, A. Review on production and medical applications of ɛ-polylysine. Biochemical Engineering Journal 65, 70-81 (2012).
    73 Zhu, S. G. et al. Poly (l‐lysine)‐modified silica nanoparticles for the delivery of antisense oligonucleotides. Biotechnology and applied biochemistry 39, 179-187 (2004).
    74 Minigo, G. et al. Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 25, 1316-1327 (2007).
    75 Babic, M. et al. Poly (L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate chemistry 19, 740-750 (2008).
    76 Kalashnikova, I., Bizot, H., Cathala, B. & Capron, I. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules 13, 267-275 (2011).
    77 Yan, H. et al. Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocolloids 72, 127-135, doi:10.1016/j.foodhyd.2017.05.044 (2017).
    78 Jeong, U., Im, S. H., Camargo, P. H., Kim, J. H. & Xia, Y. Microscale fish bowls: a new class of latex particles with hollow interiors and engineered porous structures in their surfaces. Langmuir 23, 10968-10975 (2007).
    79 Guan, G. et al. Single-Hole Hollow Polymer Microspheres toward Specific High-Capacity Uptake of Target Species. Advanced Materials 19, 2370-2374, doi:10.1002/adma.200700984 (2007).
    80 Wu, Q., Qin, Y.-F., Chen, L. & Qin, Z.-Y. in Computer Science and Engineering Technology (CSET2015), Medical Science and Biological Engineering (MSBE2015) 670-675 (2016).
    81 Celebi, H. & Kurt, A. Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydrate polymers 133, 284-293 (2015).
    82 Cao, X., Habibi, Y. & Lucia, L. A. One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. Journal of Materials Chemistry 19, 7137-7145 (2009).
    83 Chen, L., Zhu, J., Baez, C., Kitin, P. & Elder, T. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chemistry 18, 3835-3843 (2016).
    84 Chen, Y., Tan, T., Lee, H. & Abd Hamid, S. Easy fabrication of highly thermal-stable cellulose nanocrystals using Cr (NO3) 3 catalytic hydrolysis system: a feasibility study from macro-to nano-dimensions. Materials 10, 42 (2017).
    85 Hachani, S. E. et al. Effects of Magnesia Incorporation on Properties of Polystyrene/Magnesia Composites. Acta Chimica Slovenica 65, 646-651, doi:10.17344/acsi.2018.4305 (2018).
    86 Chae, H. S., Piao, S. H., Han, W. J. & Choi, H. J. Core/Shell Polystyrene/Magnetite Hybrid Nanoparticles Fabricated by Pickering Emulsion Polymerization and Their Magnetorheological Response. Macromolecular Chemistry and Physics 219, doi:10.1002/macp.201700408 (2018).
    87 Lu, X. et al. Highly charged, magnetically sensitive magnetite/polystyrene colloids: synthesis and tunable optical properties. Journal of Materials Science 54, 7628-7636, doi:10.1007/s10853-019-03445-4 (2019).
    88 Peng, Y. et al. Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20, 2379-2392 (2013).
    89 Li, Y., Afzaal, M. & O'Brien, P. The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility. Journal of Materials Chemistry 16, doi:10.1039/b517351e (2006).
    90 Patil, R. M. et al. Non-aqueous to aqueous phase transfer of oleic acid coated iron oxide nanoparticles for hyperthermia application. RSC Adv. 4, 4515-4522, doi:10.1039/c3ra44644a (2014).
    91 Zhong, W., Liu, P., Shi, H. G. & Xue, D. S. Ferroferric oxide/polystyrene (Fe3O4/PS) superparamagnetic nanocomposite via facile in situ bulk radical polymerization. Express Polymer Letters 4, 183-187, doi:10.3144/expresspolymlett.2010.23 (2010).
    92 Shih, T.-Y. & Tsai, S.-L. Simultaneous silver recovery and bactericidal bionanocomposite formation via engineered biomolecules. RSC Adv. 4, 40994-40998, doi:10.1039/c4ra05824k (2014).
    93 Bayer, E. A., Chanzy, H., Lamed, R. & Shoham, Y. Cellulose, cellulases and cellulosomes. Current opinion in structural biology 8, 548-557 (1998).
    94 Tomme, P. et al. Characterization and affinity applications of cellulose-binding domains. Journal of Chromatography B: Biomedical Sciences and Applications 715, 283-296 (1998).
    95 Jose, L. et al. Magnetically steerable Fe3O4@Ni2+-NTA-polystyrene nanoparticles for the immobilization and separation of his6-protein. European Polymer Journal 112, 524-529, doi:10.1016/j.eurpolymj.2019.01.024 (2019).

    QR CODE