簡易檢索 / 詳目顯示

研究生: Yihalem Abebe Alemayehu
Yihalem Abebe Alemayehu
論文名稱: 光響應性核鹼基功能化超分子微胞的開發及在癌症治療的應用
Development of Photo-Responsive Nucleobases-functionalized Supramolecular Micelles for Potential Applications in Treatment of Cancer
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 戴子安
Chi-An Dai
楊長謀
Chang-Mou Yang
張雍
Yung Chang
陳建光
Jem-Kun Chen
曾堯宣
Yao-Hsuan Tseng
鄭如忠
Ru-Jong Jeng
鄭智嘉
Chih-Chia Cheng
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 177
中文關鍵詞: 超分子聚合光敏感性pH響應和熱響應行為LCST光二聚化奈米結構配位聚合物隱性細胞毒自組裝微胞穩定性靶向藥物傳遞
外文關鍵詞: Light sensitive, thermoresponsive behaviors, Photodimerization, nanostructure coordination poly, Block-cytotoxicity, micellar stability, target drug delivery, Hela cells-selective internalization, drug-free organometallic polymer
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在生物醫學和材料科學領域,新型智能奈米材料的開發已有顯著的發展。在過去的幾十年中,開發了許多具有不同形狀、大小和結構的奈米材料,其中包括樹枝狀聚合物、聚合物奈米顆粒及超分子聚合物微胞作為藥物遞送系統。值得注意的是,最近在生物工程和奈米技術領域中,刺激響應性奈米材料受到了極大的關注。智能奈米材料因具有較高穩定性、標靶特性及生物利用度而具有巨大的潛力,且能夠有效克服疏水性藥物(如抗癌療法)所造成的負向影響,利用標靶特性來識別癌症組織並釋放其藥物。然而,由於有著藥物的過早釋放和非目標性釋放藥物的缺點,在眾多研究中的奈米載體只有極少數通過了臨床階段。為了克服這些挑戰,透過利用次級相互作用(如多重氫鍵、π-π堆積、主體-客體相互作用及離子相互作用力)來建構聚合物微胞,以改善其結構穩定性與靶向遞送效率。在本篇論文中,包含三種基於次級相互作用力所設計的不同智能型超分子奈米載體並評估其癌症治療的效果。
    首先,我們開發了一種具高光敏性的尿嘧啶功能化超分子微胞,由於尿嘧啶的自互補性氫鍵相互作用和高載藥量,在水溶液中表現出穩定的自組裝行為。有趣的是,細胞攝取分析與膜聯蛋白V /碘化丙啶雙重染色實驗結果表明,膠束的光二聚化加速癌細胞吞噬的效果,從而導致癌細胞中有更高程度的細胞凋亡。因此,將光敏性尿嘧啶基團導入超分子微胞結構中是增進藥物安全性及癌症治療有效性的重要關鍵。
    第二,透過腺嘌呤及尿嘧啶結合的官能化聚丙二醇而形成互補性氫鍵體系並具有溫度和光敏感的特性。這些互補體系可在水中自組裝成球形微胞,其微胞具有特異的兩親性、可調控的光誘導相變行為、優異的生物相容性及可控的形態及尺寸。除此之外,可以對藥物含量和包封效率進行調控,並可以透過溫度和光照射的變化來調節藥物釋放動力學,因此極具潛力應用於藥物傳遞及癌症治療。重要的是,經由細胞毒性和流式細胞儀分析證實,照光後的載藥微胞對癌細胞具有更強的細胞毒性作用,並且比原始的藥物和載藥微胞表現出更高的細胞吞噬效率,表明照光後的載藥微胞夠迅速進入腫瘤細胞內部,誘導大量細胞凋亡。因此,此新開發的超分子系統可作為安全及有效的奈米載體,有效抑制原發性腫瘤的生長和擴散。
    第三,透過一種簡單且突破性的策略,將尿嘧啶官能化的聚丙二醇和二價汞離子結成來形成一種新型的金屬超分子聚合物。超分子聚合物的存在誘導複合體在水中自組裝成奈米尺寸的球形微胞。此外,汞離子配位到超分子聚合物結構中還提供其他特異的物理特性,例如在生物體環境中具有高度的結構穩定性、獨特的螢光特性、高靈敏的pH響應性來誘導汞離子釋放。有趣的是,細胞毒性和螢光影像結果證實,此新型微胞具有選擇性内吞作用進入癌細胞内部並毒殺細胞,並且不會影響正常細胞,這些優點使其微胞成為極具吸引力的抗癌奈米材料。除此之外,使用雙重染色的流式細胞儀研究結果證實,微胞表現出對於癌細胞具有快速且高比例的細胞凋亡,同時也因其選擇性內吞特性,可以使正常細胞不受影響。因此,本次研究成功證實此新方法能用於開發安全有效的金屬超分子奈米微胞並大幅增進癌症治療的效果。


    Abstract
    Development of new smart nanomaterials have been grown significantly in the field of biomedical and material sciences. In the past decades, several nanomaterials have been reported with different shape, size and architecture including dendrimers, polymeric nanoparticles, and polymeric micelles as drug delivery systems. More importantly, stimuli-responsive nanomaterials have received significant attentions in the field of bioengineering and nanotechnology recently. Smart nanomaterials due to their higher plasma stability, target specificity, and bioavailability, have great potential to overcome the adverse effect of hydrophobic drugs like anticancer therapeutics because they are capable of intelligently responding to the tumor microenvironment for target specific release of their drug payloads. However, only few of the numerous reported nanocarriers passed clinical stage due to the listed challenges, premature release and non-targeted delivery of their cargo. To address these challenges, many polymeric micelles have been developed based on secondary interactions such as, multiple hydrogen bonding, π-π stacking, host-guest interactions and ionic interactions to improve structural stability and targeted delivery efficiency. In this dissertation we have included three different intelligent supramolecular nanocarriers designed based on secondary interactions for effective treatment of cancer.
    First, we developed a highly photosensitive uracil-functionalized supramolecular micelle which exhibits stable self-assembly behavior in aqueous solutions due to the self-complementary hydrogen bonding interactions between uracil moieties and high drug loading content. Interestingly, the cellular uptake analysis and the Annexin V/PI (propidium iodide) double staining assays demonstrated that the Photodimerization of micelles leads to an enhanced cellular internalization which consequently lead to higher degree of apoptosis in cancer cells. Thus, incorporation of photosensitive uracil groups into the supramolecular polymer structures could be an effective strategy to develop a nanocarriers that could enhance safety and efficacy of conventional hydrophobic drugs.
    Second, Thermoresponsive and photosensitive complementary systems were developed by combining adenine (A) and uracil (U) functionalized polypropylene glycol. These complementary systems can self-assembled into spherical micelles with higher stability in aqueous environment. The resulting micelles possess unique amphiphilic properties, photo-induced tunable phase-transition behavior, excellent biocompatibility, well controlled spherical morphology, and can be tailored in size. Moreover, the drug content and entrapment efficiency can be finely tuned, and release kinetics can be modulated using combinations of changes in temperature and photoirradiation, making these micelles attractive drug nanocarriers. Importantly, cytotoxicity and flow cytometric analyses confirmed that drug-loaded irradiated micelles exerted more potent cytotoxic effects against cancer cells and exhibited much higher cellular uptake efficiency than the free drug and drug-loaded non-irradiated micelles, indicating that the drug-loaded irradiated micelles rapidly entered the tumor cells to induce massive cell death. Therefore, this newly-developed supramolecular system could serve as a safe, efficient nanocarrier to effectively inhibit the growth and spread of primary tumors.
    Third, a new metal-based supramolecular polymer was synthesized using a simple and breakthrough strategy from uracil-functionalized polypropylene glycol precursors and divalent mercury ions. The presence of the supramolecular polymers leads the complex to self-assembled into uniformly nanosized spherical micelles. Moreover, the coordination of Hg2+ ions into the supramolecular polymer structure provides additional advantages such as high structural stability under physiological environment, and ultra-sensitive pH-responsive Hg2+ release due to dissociation of metal-polymer bond and unique fluorescence emission behaviors. Interestingly, cytotoxic and fluorescence studies confirm that Hg-BU-PPG exhibit cancer cell-selective internalization and cytotoxic effects and minimum toxicity towards the normal cells, these makes the micelle attractive anticancer nanoplatform. In addition, Flow cytometry study using double staining agents confirm that Hg-BU-PPG micelles demonstrate ultra-high apoptosis of cancer cells while keeping normal cells safe due to cancer cell-selective endocytosis of the micelles. Thus, our investigation implies a new approach for the development of safe and efficient drug-free metal containing supramolecular nanocarrier for enhanced treatment of cancer.

    Contents Chapter 1: Introduction 1 1.1. Introduction 1 1.2. Motivation and objectives 8 1.3. Dissertation organization 11 Chapter 2: Literature Review 13 2.1. Supramolecular polymeric micelles 16 2.1.1 The critical micelle concentration and stability of supra molecular micelles 16 2.2. Strategies to improve polymeric micelles stability for effective drug delivery 19 2.2.1 Complementary and Self Complementary H-bonding 20 2.2.2 Photocrosslinking of polymeric micelles 25 2.3. Stimuli-responsive supramolecular polymer nanoparticles 28 2.3.1 pH responsive polymers 30 2.3.2 Temperature responsive polymers 33 2.4. Preparation of nanoparticles 41 2.4.1 Nucleobases-functionalized Supramolecular polymers 41 2.4.2 Metal-coordinated polymers 42 2.5. Biomedical applications of supramolecular polymers: drug delivery 45 Chapter 3: Experimental Section 47 3.1. Chemicals and Materials 47 3.2. Synthesis of BU-PPG and BA-PPG 47 3.3. Preparation of polymeric A-PPG/BU-PPG blends (AU-PPG). 48 3.4. Photo-dimerization of A-PPG, BU-PPG and BU-PPG/A-PPG blend in aqueous solution 48 3.5. Preparation of the DOX-loaded micelles 48 3.6. Synthesis of Hg-BU-PPG 49 3.7. Hg-BU-PPG system nanomaterial preparation 49 3.8. Size and zeta potential measurements. 50 3.9. Cell culture 50 3.10. In vitro cytotoxicity assays 50 3.11. Kinetic Stability of Micelles. 51 3.12. In vitro cellular uptake-qualitative and quantitative assessment 51 3.13. Double staining experiment 52 Chapter 4: Photosensitive Supramolecular Micelle-Mediated Cellular Uptake of Anticancer Drugs Enhances the Efficiency of Chemotherapy 53 4.1. Synthesis of Photosensitive Supramolecular Micelle 54 4.2. Photoreactivity of BU-PPG supramolecular polymers 57 4.3. Self-complementary hydrogen bonding induced self-assembly behavior of BU-PPG 59 4.4. Biocompatibility of pristine BU-PPG micelle before and after irradiation 61 4.5. Cytotoxicity of DOX-loaded BU-PPG micelle before and after irradiation 63 4.6. Photodimerization-induced Enhanced cellular uptake and apoptosis of cancer cells 64 4.7. Summary 69 Chapter 5: Photosensitive Supramolecular Micelles with Complementary Hydrogen Bonding Motifs to Improve the Efficacy of Cancer Chemotherapy 70 5.1. Preparation of BA-PPG/BU-PPG Micelles 71 5.2. Photoirradiation-mediated thermo-responsive properties of BA-PPG/BU-PPG complexes in aqueous solution 77 5.3. Self-Assembly behavior and micellar properties of BA-PPG/BU-PPG complexes in aqueous solution 83 5.4. Evaluation and characterization of drug delivery by photosensitive BA-PPG/BU-PPG micelles 86 5.5. Photosensitive BA-PPG/BU-PPG micelles undergo improved cellular uptake and enhance the cytotoxicity of DOX in vitro 91 5.6. Summary 97 Chapter 6: Block-cytotoxic Mercury-containing Supramolecular Micelles with High pH-Responsiveness for Selective Therapy 99 6.1. Synthesis 100 6.2. Characterization 101 6.2. Self-assembly Behavior 106 6.3. Micellar Stability 107 6.4. Stimuli Responsive Behavior 108 6.5. Cell viability Study 111 6.6. Double Staining Experiment 114 6.7. Summary 117 Chapter 7: Conclusion 118 7.1. Conclusion 118 7.2. Outlook 120 8. Instrumentation 122 9. References 124 Appendix A: Supplementary Figures 144 Appendix B: List of publications 152

    References
    [1] Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS nano 2009;3:16-20.
    [2] Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology and Medicine 2010;6:714-29.
    [3] England RM, Moss JI, Gunnarsson A, Parker JS, Ashford MB. Synthesis and Characterization of Dendrimer-Based Polysarcosine Star Polymers: Well-Defined, Versatile Platforms Designed for Drug-Delivery Applications. Biomacromolecules 2020;21:3332-41.
    [4] Li B, Harlepp S, Gensbittel V, Wells C, Bringel O, Goetz J, Colin, S, Tasso B, Mertz D. Near infra-red light responsive carbon nanotubes@ mesoporous silica for photothermia and drug delivery to cancer cells. Materials Today Chemistry 2020;17:100308.
    [5] Manzano M, Vallet‐Regí M. Mesoporous silica nanoparticles for drug delivery. Advanced Functional Materials 2020;30:1902634.
    [6] Ali MR, Wu Y, El-Sayed MA. Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application. The Journal of Physical Chemistry C 2019;123:15375-93.
    [7] Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine—challenge and perspectives. Angewandte Chemie International Edition 2009;48:872-97.
    [8] Taghizadeh B, Taranejoo S, Monemian SA, Salehi Moghaddam Z, Daliri K, Derakhshankhah H, et al. Classification of stimuli–responsive polymers as anticancer drug delivery systems. Drug delivery 2015;22:145-55.
    [9] Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. 2017.
    [10] Habibi N, Kamaly N, Memic A, Shafiee H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today 2016;11:41-60.
    [11] Srinivasan M, Rajabi M, Mousa SA. Multifunctional nanomaterials and their applications in drug delivery and cancer therapy. Nanomaterials 2015;5:1690-703.
    [12] Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert opinion on drug delivery 2006;3:139-62.
    [13] Rybtchinski B. Adaptive supramolecular nanomaterials based on strong noncovalent interactions. ACS nano 2011;5:6791-818.
    [14] Wang A, Shi W, Huang J, Yan Y. Adaptive soft molecular self-assemblies. Soft Matter 2016;12:337-57.
    [15] Wei X, Wang Y, Xiong X, Guo X, Zhang L, Zhang X, Zhou L. Codelivery of a π–π stacked dual anticancer drug combination with nanocarriers for overcoming multidrug resistance and tumor metastasis. Advanced Functional Materials 2016;26:8266-80.
    [16] Kang X, Zuckerman NB, Konopelski JP, Chen S. Alkyne-functionalized ruthenium nanoparticles: ruthenium–vinylidene bonds at the metal–ligand interface. Journal of the American Chemical Society 2012;134:1412-5.
    [17] Zhang J, Ma PX. Polymeric core–shell assemblies mediated by host–guest interactions: versatile nanocarriers for drug delivery. Angewandte Chemie 2009;121:982-6.
    [18] Cheng C-C, Fan W-L, Wu C-Y, Chang Y-H. Supramolecular Polymer Network-Mediated Structural Phase Transitions within Polymeric Micelles in Aliphatic Alcohols. ACS Macro Letters 2019;8:1541-5.
    [19] Ding J, Chen L, Xiao C, Chen L, Zhuang X, Chen X. Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chemical Communications 2014;50:11274-90.
    [20] Xiong X-B, Uludağ H, Lavasanifar A. Biodegradable amphiphilic poly (ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. Biomaterials 2009;30:242-53.
    [21] Cheng CC, Liang MC, Liao ZS, Huang JJ, Lee DJ. Self‐Assembled Supramolecular Nanogels as a Safe and Effective Drug Delivery Vector for Cancer Therapy. Macromolecular bioscience 2017;17:1600370.
    [22] Lombardo D, Calandra P, Barreca D, Magazù S, Kiselev MA. Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials 2016;6:125.
    [23] Simoes SM, Rey-Rico A, Concheiro A, Alvarez-Lorenzo C. Supramolecular cyclodextrin-based drug nanocarriers. Chemical Communications 2015;51:6275-89.
    [24] Nishiyama N, Jang W-D, Kataoka K. Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene delivery. New Journal of Chemistry 2007;31:1074-82.
    [25] Yan X, Li S, Pollock JB, Cook TR, Chen J, Zhang Y, Ji X, Yu Y, Huang F, Stang P. Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces. Proceedings of the National Academy of Sciences 2013;110:15585-90.
    [26] Ciesielski A, Palma CA, Bonini M, Samorì P. Towards Supramolecular Engineering of Functional Nanomaterials: Pre‐Programming Multi‐Component 2D Self‐Assembly at Solid‐Liquid Interfaces. Advanced Materials 2010;22:3506-20.
    [27] Hill JP, Shrestha LK, Ishihara S, Ji Q, Ariga K. Self-assembly: from amphiphiles to chromophores and beyond. Molecules 2014;19:8589-609.
    [28] Bosman AW, Sijbesma RP, Meijer E. Supramolecular polymers at work. Materials Today 2004;7:34-9.
    [29] Tateishi-Karimata H, Sugimoto N. Structure, stability and behaviour of nucleic acids in ionic liquids. Nucleic acids research 2014;42:8831-44.
    [30] Tang X, Zhou S, Tao X, Wang J, Wang F, Liang Y. Targeted delivery of docetaxel via Pi-Pi stacking stabilized dendritic polymeric micelles for enhanced therapy of liver cancer. Materials science and engineering: C 2017;75:1042-8.
    [31] Abbas M, Zou Q, Li S, Yan X. Self‐assembled peptide‐and protein‐based nanomaterials for antitumor photodynamic and photothermal therapy. Advanced materials 2017;29:1605021.
    [32] Krieg E, Bastings MM, Besenius P, Rybtchinski B. Supramolecular polymers in aqueous media. Chemical reviews 2016;116:2414-77.
    [33] Kim SH, Tan JP, Nederberg F, Fukushima K, Colson J, Yang C, Nelson A, Yang YY, Hedrick JL. Hydrogen bonding-enhanced micelle assemblies for drug delivery. Biomaterials 2010;31:8063-71.
    [34] Tan JP, Kim SH, Nederberg F, Fukushima K, Coady DJ, Nelson A, Yang Y, Hedrick J. Delivery of Anticancer Drugs Using Polymeric Micelles Stabilized by Hydrogen‐Bonding Urea Groups. Macromolecular rapid communications 2010;31:1187-92.
    [35] Hoeben FJ, Jonkheijm P, Meijer E, Schenning AP. About supramolecular assemblies of π-conjugated systems. Chemical reviews 2005;105:1491-546.
    [36] Babu SS, Praveen VK, Ajayaghosh A. Functional π-gelators and their applications. Chemical reviews 2014;114:1973-2129.
    [37] Lützen A. Supramolecular Organization of π-Conjugated Oligomers. Bottom-Up Self-Organization in Supramolecular Soft Matter: Springer; 2015. p. 195-236.
    [38] Dong S, Zheng B, Wang F, Huang F. Supramolecular polymers constructed from macrocycle-based host–guest molecular recognition motifs. Accounts of chemical research 2014;47:1982-94.
    [39] Harada A, Takashima Y, Nakahata M. Supramolecular polymeric materials via cyclodextrin–guest interactions. Accounts of chemical research 2014;47:2128-40.
    [40] Hu J, Liu S. Engineering responsive polymer building blocks with host–guest molecular recognition for functional applications. Accounts of Chemical Research 2014;47:2084-95.
    [41] Zhang J, Liu H-J, Yuan Y, Jiang S, Yao Y, Chen Y. Thermo-, pH-, and light-responsive supramolecular complexes based on a thermoresponsive hyperbranched polymer. ACS Macro Letters 2013;2:67-71.
    [42] Hogan KJ, Mikos AG. Biodegradable thermoresponsive polymers: applications in drug delivery and tissue engineering. Polymer 2020:123063.
    [43] Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess, H. The cellular and molecular basis of hyperthermia. Critical reviews in oncology/hematology 2002;43:33-56.
    [44] Deirram N, Zhang C, Kermaniyan SS, Johnston AP, Such GK. pH‐Responsive Polymer Nanoparticles for Drug Delivery. Macromolecular rapid communications 2019;40:1800917.
    [45] Cheng CC, Sun YT, Lee AW, Huang SY, Fan WL, Chiao YH, Tsai, H, Lai J. Self-Assembled Supramolecular Micelles with pH-Responsive Properties for More Effective Cancer Chemotherapy. ACS Biomaterials Science & Engineering 2020;6:4096-105.
    [46] Xu Z, Zhang K, Hou C, Wang D, Liu X, Guan X, Zhang X, Zhang H. A novel nanoassembled doxorubicin prodrug with a high drug loading for anticancer drug delivery. Journal of Materials Chemistry B 2014;2:3433-7.
    [47] Chécot F, Rodriguez-Hernandez J, Gnanou Y, Lecommandoux S. pH-responsive micelles and vesicles nanocapsules based on polypeptide diblock copolymers. Biomolecular engineering 2007;24:81-5.
    [48] Kelley EG, Albert JN, Sullivan MO, Epps TH. Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chemical Society Reviews 2013;42:7057-71.
    [49] Schumers JM, Fustin CA, Gohy JF. Light‐responsive block copolymers. Macromolecular rapid communications 2010;31:1588-607.
    [50] Lohse B, Vestberg R, Ivanov MT, Hvilsted S, Berg RH, Ramanujam P, Hawker CJ. UV‐photodimerization in uracil‐substituted dendrimers for high density data storage. Journal of Polymer Science Part A: Polymer Chemistry 2007;45:4401-12.
    [51] Wang YS, Cheng CC, Chen JK, Ko FH, Chang FC. Bioinspired supramolecular fibers for mercury ion adsorption. Journal of Materials Chemistry A 2013;1:7745-50.
    [52] Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016;11:673-92.
    [53] Kumar P, Kim K-H, Bansal V, Kumar S, Dilbaghi N, Kim Y-H. Modern progress and future challenges in nanocarriers for probe applications. TrAC Trends in Analytical Chemistry 2017;86:235-50.
    [54] Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH. Lanthanide nanoparticles: from design toward bioimaging and therapy. Chemical reviews 2015;115:10725-815.
    [55] Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews 2010;39:4326-54.
    [56] Wang Y, Feng L, Wang S. Conjugated polymer nanoparticles for imaging, cell activity regulation, and therapy. Advanced Functional Materials 2019;29:1806818.
    [57] Chen D, Luo Z, Li N, Lee JY, Xie J, Lu J. Amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release. Advanced Functional Materials 2013;23:4324-31.
    [58] Yen SK, Janczewski D, Lakshmi JL, Dolmanan SB, Tripathy S, Ho VH, Vijayaragavan,V, Hariharan A, Padmanabhan P, Bhakoo K, Sudhaharan T, Ahmed S, Zhang Y, Selvanet S. Design and synthesis of polymer-functionalized NIR fluorescent dyes–magnetic nanoparticles for bioimaging. ACS nano 2013;7:6796-805.
    [59] Kim BS, Park SW, Hammond PT. Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. ACS nano 2008;2:386-92.
    [60] Li Y, Ding J, Zhu J, Tian H, Chen X. Photothermal effect-triggered drug release from hydrogen bonding-enhanced polymeric micelles. Biomacromolecules 2018;19:1950-8.
    [61] Shi Y, Lammers T, Storm G, Hennink WE. Physico‐chemical strategies to enhance stability and drug retention of polymeric micelles for tumor‐targeted drug delivery. Macromolecular bioscience 2017;17:1600160.
    [62] Saito K, Ingalls LR, Lee J, Warner JC. Core-bound polymeric micellar system based on photocrosslinking of thymine. Chemical communications 2007:2503-5.
    [63] Wu YS, Wu YC, Kuo SW. Thymine-and adenine-functionalized polystyrene form self-assembled structures through multiple complementary hydrogen bonds. Polymers 2014;6:1827-45.
    [64] Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, Bashir A, Mohammed O, Elhassan G, Harguidey S, Reshkin S, Ibrahim M, Rauch C. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer cell international 2015;15:71.
    [65] Zhang J, Dai Q, Park D, Deng X. Targeting DNA replication stress for cancer therapy. Genes 2016;7:51.
    [66] Arrell D, Terzic A. Network systems biology for drug discovery. Clinical Pharmacology & Therapeutics 2010;88:120-5.
    [67] Kinch MS. An analysis of FDA-approved drugs for oncology. Drug discovery today 2014;19:1831-5.
    [68] Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug discovery today 2012;17:1044-52.
    [69] Mishra D, Hubenak JR, Mathur AB. Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2013;101:3646-60.
    [70] Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. International journal of nanomedicine 2018;13:4727.
    [71] Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology 2007;2:751-60.
    [72] Rao NV, Ko H, Lee J, Park JH. Recent progress and advances in stimuli-responsive polymers for cancer therapy. Frontiers in bioengineering and biotechnology 2018;6:110.
    [73] Cheng CC, Lin IH, Chen JK, Liao ZS, Huang JJ, Lee DJ, Xin Z. Nucleobase‐Functionalized Supramolecular Micelles with Tunable Physical Properties for Efficient Controlled Drug Release. Macromolecular Bioscience 2016;16:1415-21.
    [74] McHale R, O’Reilly RK. Nucleobase containing synthetic polymers: advancing biomimicry via controlled synthesis and self-assembly. Macromolecules 2012;45:7665-75.
    [75] Ruckenstein E, Nagarajan R. Critical micelle concentration. Transition point for micellar size distribution. The Journal of Physical Chemistry 1975;79:2622-6.
    [76] Ben-Naim A, Stillinger F. Critical micelle concentration and the size distribution of surfactant aggregates. The Journal of Physical Chemistry 1980;84:2872-6.
    [77] Kim S, Shi Y, Kim JY, Park K, Cheng JX. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle–cell interaction. Expert opinion on drug delivery 2010;7:49-62.
    [78] Lu J, Owen SC, Shoichet MS. Stability of self-assembled polymeric micelles in serum. Macromolecules 2011;44:6002-8.
    [79] Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. European journal of pharmaceutics and biopharmaceutics 2007;65:259-69.
    [80] Mohr A, Talbiersky P, Korth HG, Sustmann R, Boese R, Bläser D, Rehage H. A new pyrene-based fluorescent probe for the determination of critical micelle concentrations. The Journal of Physical Chemistry B 2007;111:12985-92.
    [81] Turro NJ, Kuo PL. Pyrene excimer formations in micelles of nonionic detergents and of water-soluble polymers. Langmuir 1986;2:438-42.
    [82] Aguiar J, Carpena P, Molina-Bolıvar J, Ruiz CC. On the determination of the critical micelle concentration by the pyrene 1: 3 ratio method. Journal of Colloid and Interface Science 2003;258:116-22.
    [83] Lee RS, Huang YT. Tuning the hydrophilic–hydrophobic balance of block-graft copolymers by click strategy: synthesis and characterization of amphiphilic PCL-b-(PαN 3 CL-g-PBA) copolymers. Polymer journal 2010;42:304-12.
    [84] Hwang E, Kim K, Lee CG, Kwon TH, Lee S-H, Min SK, Kim BS. Tailorable Degradation of pH-Responsive All-Polyether Micelles: Unveiling the Role of Monomer Structure and Hydrophilic–Hydrophobic Balance. Macromolecules 2019;52:5884-93.
    [85] Stopková L, Gališinová J, Šuchtová Z, Čižmárik J, Andriamainty F. Determination of critical micellar concentration of homologous 2-alkoxyphenylcarbamoyloxyethyl-morpholinium chlorides. Molecules 2018;23:1064.
    [86] Adams ML, Kwon GS. Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly (ethylene oxide)-block–poly (N-hexyl-l-aspartamide)-acyl conjugate micelles: effects of acyl chain length. Journal of controlled release 2003;87:23-32.
    [87] Kaur G, Chang SL, Bell TD, Hearn MT, Saito K. Bioinspired core‐crosslinked micelles from thymine‐functionalized amphiphilic block copolymers: Hydrogen bonding and photo‐crosslinking study. Journal of Polymer Science Part A: Polymer Chemistry 2011;49:4121-8.
    [88] Kuang H, Wu S, Meng F, Xie Z, Jing X, Huang Y. Core-crosslinked amphiphilic biodegradable copolymer based on the complementary multiple hydrogen bonds of nucleobases: synthesis, self-assembly and in vitro drug delivery. Journal of Materials Chemistry 2012;22:24832-40.
    [89] San Miguel V, Catalina F, Peinado C. Self-assembly of physically crosslinked micelles of poly (2-acrylamido-2-methyl-1-propane sulphonic acid-co-isodecyl methacrylate)-copper (II) complexes. European polymer journal 2008;44:1368-77.
    [90] Herschlag D, Pinney MM. Hydrogen bonds: Simple after all? Biochemistry 2018;57:3338-52.
    [91] Müller A, Talbot F, Leutwyler S. Hydrogen Bond Vibrations of 2-Aminopyridine⊙ 2-Pyridone, a Watson− Crick Analogue of Adenine⊙ Uracil. Journal of the American Chemical Society 2002;124:14486-94.
    [92] Frankamp BL, Uzun O, Ilhan F, Boal AK, Rotello VM. Recognition-mediated assembly of nanoparticles into micellar structures with diblock copolymers. Journal of the American Chemical Society 2002;124:892-3.
    [93] Cheng DB, Li YM, Cheng YJ, Wu Y, Chang XP, He F, Zhou RX. Thymine-functionalized amphiphilic biodegradable copolymers for high-efficiency loading and controlled release of methotrexate. Colloids and Surfaces B: Biointerfaces 2015;136:618-24.
    [94] Prins LJ, Reinhoudt DN, Timmerman P. Noncovalent synthesis using hydrogen bonding. Angewandte Chemie International Edition 2001;40:2382-426.
    [95] Brunsveld L, Folmer B, Meijer EW, Sijbesma R. Supramolecular polymers. Chemical reviews 2001;101:4071-98.
    [96] Mishra SK, Suryaprakash N. Intramolecular hydrogen bonding involving organic fluorine: NMR investigations corroborated by DFT-based theoretical calculations. Molecules 2017;22:423.
    [97] Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano research 2018;11:4985-98.
    [98] Huang Y, Dong R, Zhu X, Yan D. Photo-responsive polymeric micelles. Soft Matter 2014;10:6121-38.
    [99] Guo A, Liu G, Tao J. Star polymers and nanospheres from cross-linkable diblock copolymers. Macromolecules 1996;29:2487-93.
    [100] Gohy JF, Zhao Y. Photo-responsive block copolymer micelles: design and behavior. Chemical Society Reviews 2013;42:7117-29.
    [101] Pattabiraman M, Kaanumalle LS, Natarajan A, Ramamurthy V. Regioselective photodimerization of cinnamic acids in water: Templation with cucurbiturils. Langmuir 2006;22:7605-9.
    [102] Karthikeyan S, Ramamurthy V. Templating photodimerization of trans-cinnamic acid esters with a water-soluble Pd nanocage. The Journal of Organic Chemistry 2007;72:452-8.
    [103] Bolt J, Quina FH, Whitten DG. Solid state photodimerization of surfactant esters of cinnamic acid. Tetrahedron Letters 1976;17:2595-8.
    [104] Lewis FD, Quillen SL, Hale PD, Oxman JD. Lewis acid catalysis of photochemical reactions. 7. Photodimerization and cross-cycloaddition of cinnamic esters. Journal of the American Chemical Society 1988;110:1261-7.
    [105] Karthikeyan S, Ramamurthy V. Templating photodimerization of coumarins within a water-soluble nano reaction vessel. The Journal of organic chemistry 2006;71:6409-13.
    [106] Pemberton BC, Barooah N, Srivatsava D, Sivaguru J. Supramolecular photocatalysis by confinement—photodimerization of coumarins within cucurbit [8] urils. Chemical communications 2010;46:225-7.
    [107] Lewis FD, Barancyk SV. Lewis acid catalysis of photochemical reactions. 8. Photodimerization and cross-cycloaddition of coumarin. Journal of the American Chemical Society 1989;111:8653-61.
    [108] Li C, Huang J, Liang Y. Structure Control on Photodimerization of Uracil and Thymine Moieties in Nucleolipid Langmuir− Blodgett Films by the Molecular Recognition Effect at the Air/Water Interface. Langmuir 2001;17:2228-34.
    [109] Tohnai N, Miyata M, Yasui N, Mochizuki E, Kai Y, Inaki Y. Photodimerization of thymine derivatives in single crystal. Journal of Photopolymer Science and Technology 1998;11:59-64.
    [110] Sonoda Y. Solid-state [2+ 2] photodimerization and photopolymerization of α, ω-diarylpolyene monomers: Effective utilization of noncovalent intermolecular interactions in crystals. Molecules 2011;16:119-48.
    [111] Nishioka Y, Yamaguchi T, Yoshizawa M, Fujita M. Unusual [2+ 4] and [2+ 2] cycloadditions of arenes in the confined cavity of self-assembled cages. Journal of the American Chemical Society 2007;129:7000-1.
    [112] Yoshizawa M, Takeyama Y, Okano T, Fujita M. Cavity-directed synthesis within a self-assembled coordination cage: Highly selective [2+ 2] cross-photodimerization of olefins. Journal of the American Chemical Society 2003;125:3243-7.
    [113] Campillo-Alvarado G, Brannan AD, Swenson DC, MacGillivray LR. Exploiting the hydrogen-bonding capacity of organoboronic acids to direct covalent bond formation in the solid state: Templation and catalysis of the [2+ 2] photodimerization. Organic letters 2018;20:5490-2.
    [114] Matsumoto H, Nishimura Y, Arai T. Control of the intermolecular photodimerization of anthracene derivatives by hydrogen bonding of urea groups in dilute solution. Photochemical & Photobiological Sciences 2016;15:1071-9.
    [115] Alejo T, Uson L, Arruebo M. Reversible stimuli-responsive nanomaterials with on-off switching ability for biomedical applications. Journal of Controlled Release 2019;314:162-76.
    [116] Hatakeyama H. Recent advances in endogenous and exogenous stimuli-responsive nanocarriers for drug delivery and therapeutics. Chemical and Pharmaceutical Bulletin 2017;65:612-7.
    [117] Hossen S, Hossain MK, Basher M, Mia M, Rahman M, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of advanced research 2019;15:1-18.
    [118] Tian Y, Mao S. Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs. Expert opinion on drug delivery 2012;9:687-700.
    [119] Mao J, Li Y, Wu T, Yuan C, Zeng B, Xu Y, Dai L. A simple dual-pH responsive prodrug-based polymeric micelles for drug delivery. ACS applied materials & interfaces 2016;8:17109-17.
    [120] Gao W, Chan JM, Farokhzad OC. pH-responsive nanoparticles for drug delivery. Molecular pharmaceutics 2010;7:1913-20.
    [121] Xu M, Zhang CY, Wu J, Zhou H, Bai R, Shen Z, Deng F, Liu Y, Liu J. PEG-detachable polymeric micelles self-assembled from amphiphilic copolymers for tumor-acidity-triggered drug delivery and controlled release. ACS applied materials & interfaces 2019;11:5701-13.
    [122] Jones MC, Ranger M, Leroux JC. pH-sensitive unimolecular polymeric micelles: synthesis of a novel drug carrier. Bioconjugate chemistry 2003;14:774-81.
    [123] Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of controlled release 2008;126:187-204.
    [124] Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Progress in polymer science 2004;29:1173-222.
    [125] Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. Journal of Controlled Release 2008;132:164-70.
    [126] Chang G, Yu L, Yang Z, Ding J. A delicate ionizable-group effect on self-assembly and thermogelling of amphiphilic block copolymers in water. Polymer 2009;50:6111-20.
    [127] Watson P, Jones AT, Stephens DJ. Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Advanced drug delivery reviews 2005;57:43-61.
    [128] Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, Durkan C, Wand N, Wang GX. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018;8:3038.
    [129] Ju KY, Kang J, Pyo J, Lim J, Chang JH, Lee JK. pH-Induced aggregated melanin nanoparticles for photoacoustic signal amplification. Nanoscale 2016;8:14448-56.
    [130] Zhou T, Zhou X, Xing D. Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials 2014;35:4185-94.
    [131] Li Z, Dong K, Huang S, Ju E, Liu Z, Yin M, Ren J, Qu X. A smart nanoassembly for multistage targeted drug delivery and magnetic resonance imaging. Advanced Functional Materials 2014;24:3612-20.
    [132] Dong Y, Yang J, Liu H, Wang T, Tang S, Zhang J, Zhang X. Site-specific drug-releasing polypeptide nanocarriers based on dual-pH response for enhanced therapeutic efficacy against drug-resistant tumors. Theranostics 2015;5:890.
    [133] Xiao Y, Hong H, Matson VZ, Javadi A, Xu W, Yang Y, Zhang Y, Engle JW, Nickles RJ, Cai W, Steeber DA, Gong S. Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics 2012;2:757.
    [134] Lee CH, Cheng SH, Huang IP, Souris JS, Yang CS, Mou CY, Lo LW. Intracellular pH‐responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angewandte chemie international edition 2010;49:8214-9.
    [135] Cai X, Dong C, Dong H, Wang G, Pauletti GM, Pan X, Wen H, Mehl I, Li Y, Shi. Effective gene delivery using stimulus-responsive catiomer designed with redox-sensitive disulfide and acid-labile imine linkers. Biomacromolecules 2012;13:1024-34.
    [136] Jain NK, Tare MS, Mishra V, Tripathi PK. The development, characterization and in vivo anti-ovarian cancer activity of poly (propylene imine)(PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:207-18.
    [137] Zou J, Zhang F, Zhang S, Pollack SF, Elsabahy M, Fan J, Wooley KL. Poly (ethylene oxide)‐block‐polyphosphoester‐graft‐paclitaxel conjugates with acid‐labile linkages as a pH‐sensitive and functional nanoscopic platform for paclitaxel delivery. Advanced healthcare materials 2014;3:441-8.
    [138] Chen Y, Huang J, Zhang S, Gu Z. Superamphiphile based cross-linked small-molecule micelles for pH-triggered release of anticancer drugs. Chemistry of Materials 2017;29:3083-91.
    [139] Zhu A, Miao K, Deng Y, Ke H, He H, Yang T, Guo M, Li Y, Wang Y, Yang X, Zhao Y, Chen H. Dually pH/reduction-responsive vesicles for ultrahigh-contrast fluorescence imaging and thermo-chemotherapy-synergized tumor ablation. ACS nano 2015;9:7874-85.
    [140] Du L, Zhou J, Meng L, Wang X, Wang C, Huang Y, Zheng S, Deng L, Cao H, Liang Z, Dong A, Cheng Q. The pH-triggered triblock nanocarrier enabled highly efficient siRNA delivery for cancer therapy. Theranostics 2017;7:3432.
    [141] Lv Y, Hao L, Hu W, Ran Y, Bai Y, Zhang L. Novel multifunctional pH-sensitive nanoparticles loaded into microbubbles as drug delivery vehicles for enhanced tumor targeting. Scientific reports 2016;6:29321.
    [142] Gillies ER, Jonsson TB, Fréchet JM. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. Journal of the American Chemical Society 2004;126:11936-43.
    [143] Song C-C, Ji R, Du F-S, Liang D-H, Li Z-C. Oxidation-accelerated hydrolysis of the ortho ester-containing acid-labile polymers. ACS Macro Letters 2013;2:273-7.
    [144] Hwang GH, Min KH, Lee HJ, Nam HY, Choi GH, Kim BJ, Jeong SY, Lee SC. pH-Responsive robust polymer micelles with metal–ligand coordinated core cross-links. Chemical Communications 2014;50:4351-3.
    [145] Ueki T, Watanabe M, Lodge TP. Doubly thermosensitive self-assembly of diblock copolymers in ionic liquids. Macromolecules 2009;42:1315-20.
    [146] Higgins JS, Lipson JE, White RP. A simple approach to polymer mixture miscibility. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010;368:1009-25.
    [147] De las Heras Alarcón C, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications. Chemical Society Reviews 2005;34:276-85.
    [148] Hoffmann J, Groll J, Heuts J, Rong H, Klee D, Ziemer G, Moeller M, Wendel HP. Blood cell and plasma protein repellent properties of star-PEG-modified surfaces. Journal of Biomaterials Science, Polymer Edition 2006;17:985-96.
    [149] Fristrup CJ, Jankova K, Eskimergen R, Bukrinsky JT, Hvilsted S. Protein repellent hydrophilic grafts prepared by surface-initiated atom transfer radical polymerization from polypropylene. Polymer Chemistry 2012;3:198-203.
    [150] Saeki S, Kuwahara N, Nakata M, Kaneko M. Upper and lower critical solution temperatures in poly (ethylene glycol) solutions. Polymer 1976;17:685-9.
    [151] Brackman JC, Van Os NM, Engberts JB. Polymer-nonionic micelle complexation. Formation of poly (propylene oxide)-complexed n-octyl thioglucoside micelles. Langmuir 1988;4:1266-9.
    [152] Horne R, Almeida J, Day A, Yu N. Macromolecule hydration and the effect of solutes on the cloud point of aqueous solutions of polyvinyl methyl ether: a possible model for protein denaturation and temperature control in homeothermic animals. Journal of Colloid and Interface Science 1971;35:77-84.
    [153] Schild HG, Tirrell DA. Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. Journal of Physical Chemistry 1990;94:4352-6.
    [154] Alexandridis P. Poly (ethylene oxide)/poly (propylene oxide) block copolymer surfactants. Current opinion in colloid & interface science 1997;2:478-89.
    [155] Laukkanen A, Valtola L, Winnik FM, Tenhu H. Formation of colloidally stable phase separated poly (N-vinylcaprolactam) in water: a study by dynamic light scattering, microcalorimetry, and pressure perturbation calorimetry. Macromolecules 2004;37:2268-74.
    [156] Sakellariou P. Theta temperature of poly (N-vinyl pyrrolidone) in water. Polymer 1992;33:1339-42.
    [157] Collins KD, Washabaugh MW. The Hofmeister effect and the behaviour of water at interfaces. Quarterly reviews of biophysics 1985;18:323-422.
    [158] Schmaljohann D. Thermo-and pH-responsive polymers in drug delivery. Advanced drug delivery reviews 2006;58:1655-70.
    [159] Guan S, Chen A. One-Pot Synthesis of Cross-linked Block Copolymer Nanowires via Polymerization-Induced Hierarchical Self-Assembly and Photodimerization. ACS Macro Letters 2019;9:14-9.
    [160] Benoit C, Talitha S, David F, Michel S, Anna SJ, Rachel AV, Patrice w. Dual thermo-and light-responsive coumarin-based copolymers with programmable cloud points. Polymer Chemistry 2017;8:4512-9.
    [161] Keerl M, Pedersen JS, Richtering W. Temperature sensitive copolymer microgels with nanophase separated structure. Journal of the American Chemical Society 2009;131:3093-7.
    [162] Plamper FA, Steinschulte AA, Hofmann CH, Drude N, Mergel O, Herbert C, Erberich M, Schulte B, Winter R, Richtering W. Toward copolymers with ideal thermosensitivity: solution properties of linear, well-defined polymers of N-isopropyl acrylamide and N, N-diethyl acrylamide. Macromolecules 2012;45:8021-6.
    [163] Sánchez-Moreno P, De Vicente J, Nardecchia S, Marchal JA, Boulaiz H. Thermo-sensitive nanomaterials: recent advance in synthesis and biomedical applications. Nanomaterials 2018;8:935.
    [164] del Prado A, González‐Rodríguez D, Wu YL. Functional Systems Derived from Nucleobase Self‐assembly. ChemistryOpen 2020;9:409.
    [165] Van Der Lubbe SC, Zaccaria F, Sun X, Fonseca Guerra C. Secondary electrostatic interaction model revised: Prediction comes mainly from measuring charge accumulation in hydrogen-bonded monomers. Journal of the American Chemical Society 2019;141:4878-85.
    [166] Rehahn M. Organic/inorganic hybrid polymers. Acta polymerica 1998;49:201-24.
    [167] Han FS, Higuchi M, Kurth DG. Metallo‐supramolecular polymers based on functionalized bis‐terpyridines as novel electrochromic materials. Advanced Materials 2007;19:3928-31.
    [168] Knapton D, Burnworth M, Rowan SJ, Weder C. Fluorescent Organometallic Sensors for the Detection of Chemical‐Warfare‐Agent Mimics. Angewandte Chemie 2006;118:5957-61.
    [169] Alderden RA, Hall MD, Hambley TW. The discovery and development of cisplatin. Journal of chemical education 2006;83:728.
    [170] Sheta SM, El-Sheikh SM, Abd-Elzaher MM. Simple synthesis of novel copper metal–organic framework nanoparticles: biosensing and biological applications. Dalton Transactions 2018;47:4847-55.
    [171] Shang L, Dong S, Nienhaus GU. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano today 2011;6:401-18.
    [172] Mondal S, Dastidar P. Zn (II)-Coordination Polymers with a Right-and Left-Handed Twist: Multifunctional Metal–Organic Hybrid for Dye Adsorption and Drug Delivery. Crystal Growth & Design 2020;20:7411-20.
    [173] Kuriyama M, Haruta K, Dairaku T, Kawamura T, Kikkawa S, Inamoto K, et al. Hg2+-Trapping Beads: Hg2+-Specific Recognition through Thymine–Hg (II)–Thymine Base Pairing. Chemical and Pharmaceutical Bulletin 2014;62:709-12.
    [174] Wang Y, Grayson SM. Approaches for the preparation of non-linear amphiphilic polymers and their applications to drug delivery. Advanced drug delivery reviews 2012;64:852-65.
    [175] Long Z, Liu M, Wang K, Deng F, Xu D, Liu L, Wan Y, Zhang X, Wie Y. Facile synthesis of AIE-active amphiphilic polymers: self-assembly and biological imaging applications. Materials Science and Engineering: C 2016;66:215-20.
    [176] Gu L, Faig A, Abdelhamid D, Uhrich K. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics. Accounts of chemical research 2014;47:2867-77.
    [177] Uchegbu IF. Pharmaceutical nanotechnology: polymeric vesicles for drug and gene delivery. Expert opinion on drug delivery 2006;3:629-40.
    [178] Hollis CP, Weiss HL, Leggas M, Evers BM, Gemeinhart RA, Li T. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. Journal of Controlled Release 2013;172:12-21.
    [179] Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwork HS, Zhan X, Liu Y, Zhu D, Tang BZ. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chemical communications 2001:1740-1.
    [180] Hou Y, Li S, Zhang Z, Chen L, Zhang M. A fluorescent platinum (II) metallacycle-cored supramolecular network formed by dynamic covalent bonds and its application in halogen ions and picric acid detection. Polymer Chemistry 2020;11:254-8.
    [181] Zhang M, Li S, Yan X, Zhou Z, Saha ML, Wang YC, Stang PJ. Fluorescent metallacycle-cored polymers via covalent linkage and their use as contrast agents for cell imaging. Proceedings of the National Academy of Sciences 2016;113:11100-5.
    [182] Gebeyehu BT, Huang SY, Lee AW, Chen JK, Lai JY, Lee DJ, Cheng CC. Dual stimuli-responsive nucleobase-functionalized polymeric systems as efficient tools for manipulating micellar self-assembly behavior. Macromolecules 2018;51:1189-97.
    [183] Liu KH, Chen BR, Chen SY, Liu DM. Self-assembly behavior and doxorubicin-loading capacity of acylated carboxymethyl chitosans. The Journal of Physical Chemistry B 2009;113:11800-7.
    [184] Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? European journal of pharmaceutical sciences 2012;47:139-51.
    [185] Chung J, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly (N-isopropylacrylamide) and poly (butylmethacrylate). Journal of Controlled Release 1999;62:115-27.
    [186] Liu S, Tong Y, Yang YY. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly (N-isopropylacrylamide-co-N, N-dimethylacrylamide)-b-poly (D, L-lactide-co-glycolide) with varying compositions. Biomaterials 2005;26:5064-74.
    [187] Zhang Z, Lv Q, Gao X, Chen L, Cao Y, Yu S, He C, Chen X. pH-responsive poly (ethylene glycol)/poly (l-lactide) supramolecular micelles based on host–guest interaction. ACS Applied Materials & Interfaces 2015;7:8404-11.
    [188] Gebeyehu BT, Lee AW, Huang SY, Muhabie AA, Lai JY, Lee DJ, Cheng CC. Highly stable photosensitive supramolecular micelles for tunable, efficient controlled drug release. European Polymer Journal 2019;110:403-12.
    [189] Cheng CC, Gebeyehu BT, Huang SY, Alemayehu YA, Sun YT, Lai YC, Chang YH, Lai JY, Lee DJ. Entrapment of an adenine derivative by a photo-irradiated uracil-functionalized micelle confers controlled self-assembly behavior. Journal of colloid and interface science 2019;552:166-78.
    [190] Cheng CC, Huang JJ, Muhable AA, Liao ZS, Huang SY, Lee SC, Chiu CW, Lee DJ. Supramolecular fluorescent nanoparticles functionalized with controllable physical properties and temperature-responsive release behavior. Polymer Chemistry 2017;8:2292-8.
    [191] Lin IH, Cheng CC, Yen YC, Chang FC. Synthesis and assembly behavior of heteronucleobase-functionalized poly (ε-caprolactone). Macromolecules 2010;43:1245-52.
    [192] Cheng CC, Yen YC, Ye YS, Chang FC. Biocomplementary interaction behavior in DNA‐like and RNA‐like polymers. Journal of Polymer Science Part A: Polymer Chemistry 2009;47:6388-95.
    [193] Gustavsson T, Bányász Á, Lazzarotto E, Markovitsi D, Scalmani G, Frisch MJ, Barone V, Improta R. Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives. Journal of the American Chemical Society 2006;128:607-19.
    [194] Kaur G, Johnston P, Saito K. Photo-reversible dimerisation reactions and their applications in polymeric systems. Polymer Chemistry 2014;5:2171-86.
    [195] Kuang H, Wu Y, Zhang Z, Li J, Chen X, Xie Z, Jing X, Huang Y. Double pH-responsive supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases and acetalated dextran for drug delivery. Polymer Chemistry 2015;6:3625-33.
    [196] Suljovrujic E, Micic M. Smart poly (oligo (propylene glycol) methacrylate) hydrogel prepared by gamma radiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2015;342:206-14.
    [197] Hoogenboom R, Thijs HM, Jochems MJ, van Lankvelt BM, Fijten MW, Schubert US. Tuning the LCST of poly (2-oxazoline) s by varying composition and molecular weight: alternatives to poly (N-isopropylacrylamide)? Chemical communications 2008:5758-60.
    [198] Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, Zhang X, Jin S, Gan Y, Wang PC, He S, Zhang X, Liang XJ. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS nano 2012;6:4483-93.
    [199] Domínguez A, Fernández A, González N, Iglesias E, Montenegro L. Determination of critical micelle concentration of some surfactants by three techniques. Journal of chemical education 1997;74:1227.
    [200] Gao Z, Lukyanov AN, Singhal A, Torchilin VP. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano letters 2002;2:979-82.
    [201] Wang Y, Ke X, Voo ZX, Yap SSL, Yang C, Gao S, Liu S, Venkataram S, Obuobi O, Khara S, Yang Y, Ee R. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Acta biomaterialia 2016;46:211-20.
    [202] Ding D, Zhu Z, Liu Q, Wang J, Hu Y, Jiang X, Liu B. Cisplatin-loaded gelatin-poly (acrylic acid) nanoparticles: synthesis, antitumor efficiency in vivo and penetration in tumors. European Journal of Pharmaceutics and Biopharmaceutics 2011;79:142-9.
    [203] Abebe Alemayehu Y, Tewabe Gebeyehu B, Cheng CC. Photosensitive Supramolecular Micelles with Complementary Hydrogen Bonding Motifs To Improve the Efficacy of Cancer Chemotherapy. Biomacromolecules 2019;20:4535-45.
    [204] Tanaka Y, Oda S, Yamaguchi H, Kondo Y, Kojima C, Ono A. 15N− 15N J-coupling across HgII: direct observation of HgII-mediated T−T base pairs in a DNA duplex. Journal of the American Chemical Society 2007;129:244-5.
    [205] Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimato T, Ono A. Machinami T. MercuryII-mediated formation of thymine−HgII−thymine base pairs in DNA duplexes. Journal of the American Chemical Society 2006;128:2172-3.
    [206] Che Y, Yang X, Zang L. Ultraselective fluorescent sensing of Hg2+ through metal coordination-induced molecular aggregation. Chemical communications 2008:1413-5.
    [207] Hossain KFB, Rahman MM, Sikder MT, Hosokawa T, Saito T, Kurasaki M. Regulatory effects of dihydrolipoic acid against inorganic mercury-mediated cytotoxicity and intrinsic apoptosis in PC12 cells. Ecotoxicology and Environmental Safety 2020;192:110238.
    [208] Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003;24:4283-300.
    [209] Wang S, Yu G, Wang Z, Jacobson O, Tian R, Lin LS, Zhang F, Wang J, Chen X. Hierarchical tumor microenvironment‐responsive nanomedicine for programmed delivery of chemotherapeutics. Advanced Materials 2018;30:1803926.
    [210] Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Materials Science and Engineering: C 2019;98:1252-76.
    [211] Xie A, Hanif S, Ouyang J, Tang Z, Kong N, Kim NY, Qi B, Patel D, Shi B, Tao W. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine 2020;56:1-12.
    [212] Wang J, Qian X. Two regioisomeric and exclusively selective Hg (II) sensor molecules composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor. Chemical communications 2006;1:109-11.
    [213] Tiiman A, Luo J, Wallin C, Olsson L, Lindgren J, Jarvet J, Per R, Sholts SB, Rahimipour S, Abrahams JP, Karlstron AE, Graslund A, Warmlander S. Specific binding of Cu (II) ions to amyloid-beta peptides bound to aggregation-inhibiting molecules or SDS micelles creates complexes that generate radical oxygen species. Journal of Alzheimer's Disease 2016;54:971-82.
    [214] Nowag S, Haag R. pH‐responsive micro‐and nanocarrier systems. Angewandte Chemie International Edition 2014;53:49-51.
    [215] Zheng H, Wang Y, Che S. Coordination bonding-based mesoporous silica for pH-responsive anticancer drug doxorubicin delivery. The Journal of Physical Chemistry C 2011;115:16803-13.
    [216] Bondar OV, Saifullina D, Shakhmaeva I, Mavlyutova I, Abdullin T. Monitoring of the zeta potential of human cells upon reduction in their viability and interaction with polymers. Acta Naturae (англоязычная версия) 2012;4:1-287.

    無法下載圖示 全文公開日期 2023/01/21 (校內網路)
    全文公開日期 2031/01/21 (校外網路)
    全文公開日期 2031/01/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE