簡易檢索 / 詳目顯示

研究生: Le Trong Nghia
Trong-Nghia Le
論文名稱: 具應答性高分子奈米載體於腫瘤標的藥物傳遞及硫化氫治療之應用
RESPONSIVE POLYMERIC NANOCARRIERS FOR TUMOR-TARGETED DRUG DELIVERY AND HYDROGEN SULFIDE THERAPY
指導教授: 李振綱
Cheng-Kang Lee
Neralla Vijayakameswara Rao
Neralla Vijayakameswara Rao
口試委員: 李振綱
Cheng-Kang Lee
Neralla Vijayakameswara Rao
Neralla Vijayakameswara Rao
蕭偉文
Wei-Wen Hsiao
張家耀
Jia-Yaw Chang
黃志清
Chih-Ching Huang
邱信程
Hsin-Cheng Chiu
Raja Shunmugam
Raja Shunmugam
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 138
外文關鍵詞: anticancer, responsive polymer, stimuli-release, ROS-responsive, hypoxia-responsive, cancer-targeted, doxorubicin, hyaluronic acid, hydrogen sulfide
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症是由異常細胞生長與分化而引發之疾病,為導致死亡的主要原因之一。癌症治療的方法中,化學治療藥物必須在有效性與安全性之間取得平衡才能使用成功。然而,傳統的化療方法可因其非鏢靶定位治療、藥物代謝快速、副作用等原因而損害正常細胞。刺激應答型奈米載體因可以響應外部刺激(特別是腫瘤微環境,例如弱酸環境、特定酶的過度表達、高濃度的活性氧化物質等),而達成控制藥物釋放的目的,目前此方法已經獲得相當大的注意。於此論文中,我們將探討多種高分子奈米粒子為載體,並結合缺氧應答、酸鹼性應答與活性氧化物質應答之特性做為抗癌藥物遞送系統。
    首先,利用固態腫瘤共同缺氧性(hypoxia)的特徵,研究以抗癌治療之缺氧應答型透明質酸結合黑洞猝滅劑3(HA-BHQ3)為奈米粒子載體。HA-BHQ3是由易放大單步反應製備而成,其可透過獨特之缺氧條件以達到藥物釋放。由於阿黴素(doxorubicin, DOX)與BHQ3間之π-π交互作用,可使得抗癌藥物阿黴素以高藥物包覆效率加載至HA-BHQ3奈米粒子中。阿黴素在正常生理環境下釋放緩慢;相形之下,在缺氧環境中,因BHQ3中之偶氮鍵裂解而顯著地提高阿黴素之釋放效率。例如,在正常條件下24小時後,DOX釋放了25%;然而在缺氧條件下則可達74%。新型之HA-BHQ3具低生物毒性、有效之細胞內化、體外之抗癌活性、並體內針對乳腺癌之腫瘤標靶性。
    其次,一種多重刺激響應之PEG-b-PCL高分子微胞也被研究用以有效地釋放阿黴素,其具酸鹼控制電荷可逆性,與硫縮酮為基底之活性氧化物質(ROS)應答(BA-P(CL-co-DCL)-ATK-mPEG, or ATK-ROS-pH)之特性。在嵌段共聚高分子中,對酸不穩定之b-羧酸酰胺可使奈米微胞粒子表面電性依酸鹼值而反轉。同時,在奈米粒子中的ROS敏感性連接子,會因癌細胞中的ROS異質性而降解,而導致在細胞內能有效地釋放藥物。此外,另一種π共軛硫縮酮連接鍛(9FTK)也被用來製備9FTK-ROS-pH,因其與抗癌藥物DOX間之π-π重疊作用與疏水作用,因此具有高藥物裝載率與藥物傳輸率之潛力。嵌段共聚高分子可以自組裝成穩定且具有高載藥量之奈米粒子。在不同pH與ROS環境下,此種具多重刺激響應之奈米粒子在ROS環境下會被觸發釋放,其中ATK-ROS-pH奈米粒子是屬於突發控制釋放;而9FTK-ROS-pH奈米粒子可有望作為長放緩釋之藥物載體。
    論文最後設計並合成一具S-芳酰硫基肟S-aroylthiooxime (SATO)之硫化氫(H2S)提供者,用以產生硫化氫氣體之高分子聚合物,並研究提升硫化氫之治療效果。此種可將硫化氫釋放之高分子微胞是由聚乙二醇(PEG)與S-芳酰硫基肟S-aroylthiooxime (SATO)之硫化氫(H2S)提供者所組成,其在聚降冰片烯骨架上(PNEG-b-PNSATO)經開環易位聚合反應,與第二代Grubbs催化劑輔助下製備而成。此種高分子微胞大小分佈於41~57奈米之間,與小分子SATO相比,可在延長對半胱氨酸應答釋放硫化氫氣體之速率(尖峰時間為60~70分鐘)。體外細胞毒性結果顯示PNEG-b-PNSATO高分子微胞,具有極佳的生物相容性。透過螢光顯微影像可觀察細胞內硫化氫氣體釋放的情況。此外,PNEG-b-PNSATO高分子微胞對由過氧化氫(H2O2) 之致死劑量所誘導出的氧化損害具有保護之功效,這顯示可將PNEG-b-PNSATO高分子微胞用在生物系統中,而實現此有潛力之硫化氫治療方法。


    Cancer, one of the leading causes of death, is a group of diseases that results from abnormal cell growth and division. For cancer treatment, chemotherapeutic drugs must be administered successfully by striking a balance between their effectiveness and safety. However, conventional chemotherapy may harm normal cells due to its non-targeted site curing, rapid drug metabolism, and side effects. Stimuli-responsive nanocarriers have garnered considerable interest due to their ability to respond to external stimuli, most notably the tumor microenvironment (weakly acidic environment, overexpression of specific enzymes, and high level of reactive oxygen species), in order to achieve controlled drug release. In this thesis, several polymeric nanoparticles systems were developed for anticancer drug delivery with the features of hypoxia-responsive pH-responsive and ROS-responsive.
    Firstly, hypoxia, a common feature of the solid tumor, was utilized to develop a hypoxia-responsive hyaluronic acid conjugated black hole quencher 3 (HA-BHQ3) for anticancer therapy. The HA-BHQ3 was prepared as a single-step reaction with easy scale-up for drug delivery by using the unique hypoxic conditions. The anticancer drug doxorubicin (DOX) is loaded into the HA-BHQ3 nanoparticles (NPs) with high drug loading efficiency due to the π-π interaction between DOX and BHQ3. In the physiological environment, DOX is released slowly. In contrast, under hypoxic conditions, the azo bond in BHQ3 is cleaved, thus significantly enhancing the DOX release rate. For instance, after 24 h, 25% of DOX is released under normal conditions, while 74% of DOX is released under hypoxic conditions. The designed HA-BHQ3 showed low toxicity, effective cellular internalization, in vitro anticancer activity as well as in vivo tumor targetability against breast cancer.
    Secondly, a multi-stimuli poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) polymeric micelle with pH charge-reversible and thioketal-based ROS-responsive (BA-P(CL-co-DCL)-ATK-mPEG, or ATK-ROS-pH) was developed for efficient DOX release. The acid-labile b-carboxylic amides in the block copolymers provided the pH-dependent charge-conversional feature to the NPs, which resulted in the transform surface charge of the NPs depending on the environment acidity. Meantime ROS sensitive linkers of those NPs preferentially degraded at ROS heterogeneity of cancer cells leading to efficient intracellular drug release. Additionally, a π-conjugated thioketal linker (9FTK) was also used to prepare 9FTK-ROS-pH for its potential to enhance drug loading and delivery efficiency owing to its π-π stacking and hydrophobic interactions with the anti-cancer drug DOX. The block copolymer can self-assemble into stable NPs with higher drug loading capacity. The multi-stimuli responsive NPs against various pH and ROS condition was obtained to be able to trigger release under ROS condition, in which ATK-ROS-pH NPs provided burst controlled-release while 9FTK-ROS-pH NPs is promising as a sustained release nanocarrier.
    Finally, a hydrogen sulfide (H2S) gas generation copolymer with S-aroylthiooxime (SATO) H2S-donor was designed and synthesized, which have great opportunity for further studies to enhance the therapeutic effect of H2S. The H2S releasing polymeric micelles consisting of PEG and S-aroylthiooxime (SATO) H2S donor was prepared on the polynorbornene backbone (PNEG-b-PNSATO) via ring-opening metathesis polymerization (ROMP) assisted by second-generation Grubbs’ catalyst. The polymeric micelles were observed with the size various from 41 – 57 nm and can release H2S in response to cysteine at a prolonged release rate (peak time of 60 – 70 min) compared to the small molecule SATO. The in vitro cytotoxicity indicated that the PNEG-b-PNSATO polymeric micelles exhibited excellent biocompatibility. The H2S release in cells was observed by fluorescent imaging. Moreover, the protective effect of the PNEG-b-PNSATO polymeric micelles against oxidative damage induced by a lethal dose of H2O2 was demonstrated, indicating the potential use of the PNEG-b-PNSATO polymeric micelles to achieve H2S therapeutic effect in biological systems.

    Abstract i 摘要 iii Acknowledgment v Abbreviations xi Index of Figures xiii Index of Schemes xvi Index of Tables xvii Chapter 1 INTRODUCTION 1 1.1 Preface 1 1.2 Nanocarriers for tumor therapy 1 1.2.1 pH-responsive 2 1.2.2 Hypoxia-responsive 3 1.2.3 ROS-responsive 4 1.3 Hydrogen sulfide (H2S) generation 4 1.4 Motivation and research objectives 5 1.4.1 Hyaluronic acid derived hypoxia-sensitive nanocarrier for tumor-targeted drug delivery 5 1.4.2 Multi-stimuli PEG-PCL polymeric nanoparticles with charge conversion and thioketal-based ROS-responsive for doxorubicin drug delivery 6 1.4.3 Norbornene block copolymer micelles with capacity of hydrogen sulfide generation 8 Chapter 2 LITERATURE REVIEW 9 2.1 Steglich esterification 9 2.2 Ring-opening polymerization (ROP) 11 2.3 Ring-opening metathesis polymerization (ROMP) 14 Chapter 3 GENERAL MATERIALS AND METHODS 17 3.1 Cell lines 17 3.2 Cell subculture medium 17 3.3 Reagents 18 3.4 Apparatus 19 3.5 Characterization Methods 20 3.5.1 1H-NMR spectroscopy 20 3.5.2 Fourier transform infrared spectra (FTIR) 20 3.5.3 Gel permeation chromatograpy (GPC) 20 3.5.4 Dynamic light scattering (DLS) 20 3.5.5 Field Emission Scanning Electron Microscopy (FE-SEM) 20 3.5.6 Transmission Electron Microscope (TEM) 20 3.5.7 UV/Vis spectroscopy 20 3.5.8 Fluorescence spectroscopy 20 3.5.9 Fluorescence imaging 20 3.5.10 In vivo imaging 21 3.5.11 Determination of drug loading efficiency and drug loading content 21 3.5.12 Determine H2S concentration via methylene blue method 21 Chapter 4 Hyaluronic Acid Derived Hypoxia-Sensitive Nanocarrier for Tumor Targeted Drug Delivery 23 4.1 Introduction 23 4.2 Experimental Section 26 4.2.1 Materials 26 4.2.2 Preparation of HA-BHQ3 26 4.2.3 Preparation of DOX@HA-BHQ3 NPs 27 4.2.4 Drug release profiles of DOX@HA-BHQ3 NPs 27 4.2.5 In vitro cell viability assay 27 4.2.6 In vitro cellular uptake 27 4.2.7 In vivo biodistribution of HA-BHQ3 28 4.2.8 Statistical Analysis 28 4.3 Results and Discussion 28 4.3.1 Synthesis of HA-BHQ3 28 4.3.2 Characterization of HA-BHQ3 NPs 29 4.3.3 In vitro drug release profiles of DOX@HA-BHQ3 NPs 32 4.3.4 Cell viability 33 4.3.5 Cellular uptake 34 4.3.6 In vivo biodistribution of HA-BHQ3 NPs 35 4.4 Conclusions 36 Chapter 5 Multi-Stimuli PEG-PCL Polymeric Nanoparticles with Charge Conversion and Thioketal-Based ROS-Responsive for Doxorubicin Drug Delivery 37 5.1 Introduction 37 5.2 Experimental Section 40 5.2.1 Materials 40 5.2.2 Synthesis of mPEG-ATK 41 5.2.3 Synthesis of BA-P(CL-co-CATCL) 41 5.2.4 Synthesis of BA-P(CL-co-CATCL)-ATK-mPEG 41 5.2.5 Deprotection of BA-P(CL-co-ACL)-ATK-mPEG 41 5.2.6 Synthesis of BA-P(CL-co-DCL)-ATK-mPEG 42 5.2.7 Preparation of blank and drug loaded nanoparticles 42 5.2.8 Release profiles of drug loaded NPs 42 5.2.9 Cell viability 42 5.2.10 Cellular uptake 43 5.3 Results and discussion 44 5.3.1 Synthesis of BA-P(CL-co-DCL)-ATK-mPEG 44 5.3.2 Preparation and characterization of BA-P(CL-co-DCL)-ATK-mPEG nanoparticles 46 5.3.3 Charge-conversional properties of BA-P(CL-co-DCL)-ATK-mPEG NPs 48 5.3.4 pH and ROS sensitivity of BA-P(CL-co-DCL)-ATK-mPEG NPs 49 5.3.5 DOX loading and releasing 50 5.3.6 Cell viability 52 5.3.7 Cellular uptake 53 5.3.8 π-Conjugated thioketal ROS-responsive linker for enhancing DOX loading efficiency 54 5.4 Conclusion 58 Chapter 6 Polynorbornene-Derived Block Copolymer Micelles with Capacity of Hydrogen Sulfide Generation 59 6.1 Introduction 59 6.2 Materials and methods 62 6.2.1 Materials 62 6.2.2 Synthesis of Nor-HBA 63 6.2.3 Synthesis of Nor-SATO 63 6.2.4 Synthesis of norbornene grafted methoxypoly(ethyleneglycol) (Nor-mPEG) 64 6.2.5 Synthesis of block copolymer (PNEG-b-PNSATO) 64 6.2.6 Preparation of PNEG-b-PNSATO micelles 65 6.2.7 Determination of critical micelle concentrations 65 6.2.8 H2S release profile via the methylene blue method 65 6.2.9 In vitro cytotoxicity 65 6.2.10 Fluorescence imaging of H2S release in L929 cells 66 6.2.11 Effect on H2O2-induced damage 66 6.2.12 Statistical Analysis 66 6.3 Results and discussion 66 6.3.1 Synthesis and characterization of PNEG-b-PNSATO 66 6.3.2 PNEG-b-PNSATO micelles preparation and characterization 69 6.3.3 H2S release profile 70 6.3.4 Cell viability 71 6.3.5 Fluorescence imaging of H2S release in L929 cells 72 6.3.6 Effect on H2O2-induced damage 73 6.4 Conclusion 75 Chapter 7 CONCLUSION AND PERSPECTIVES 76 References 79 Appendix A 96 Appendix B 99 Appendix C 105 CURRICULUM VITAE 113

    1. Crespy, D.; Bozonnet, M.; Meier, M. 100 Years of Bakelite, the Material of a 1000 Uses. Angewandte Chemie International Edition 2008, 47, 3322-3328.
    2. Caldorera-Moore, M.; Guimard, N.; Shi, L.; Roy, K. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert opinion on drug delivery 2010, 7, 479-495.
    3. Nicolas-Boluda, A.; Silva, A.K.; Fournel, S.; Gazeau, F. Physical oncology: new targets for nanomedicine. Biomaterials 2018, 150, 87-99.
    4. Chauhan, V.P.; Jain, R.K. Strategies for advancing cancer nanomedicine. Nature materials 2013, 12, 958-962.
    5. Schmaljohann, D. Thermo-and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews 2006, 58, 1655-1670.
    6. Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer research 1989, 49, 6449-6465.
    7. Muntimadugu, E.; Jain, A.; Khan, W. Stimuli Responsive Carriers: Magnetically, Thermally and pH Assisted Drug Delivery. In Targeted Drug Delivery: Concepts and Design; Springer: 2015; pp. 341-365.
    8. Harris, A.L. Hypoxia—a key regulatory factor in tumour growth. Nature Reviews Cancer 2002, 2, 38-47, doi:10.1038/nrc704.
    9. Wendling, P.; Manz, R.; Thews, G.; Vaupel, P. Heterogeneous oxygenation of rectal carcinomas in humans: A critical parameter for preoperative irradiation? In Oxygen Transport to Tissue—VI; Springer: 1984; pp. 293-300.
    10. Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R.K. Interstitial pH and pO 2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature medicine 1997, 3, 177-182.
    11. Brown, J.M.; Wilson, W.R. Exploiting tumour hypoxia in cancer treatment. Nature Reviews Cancer 2004, 4, 437-447, doi:10.1038/nrc1367.
    12. Kumari, R.; Sunil, D.; Ningthoujam, R.S. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. Journal of Controlled Release 2019.
    13. Patel, A.; Sant, S. Hypoxic tumor microenvironment: Opportunities to develop targeted therapies. Biotechnology advances 2016, 34, 803-812.
    14. Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nature Reviews Cancer 2011, 11, 393-410.
    15. Yotnda, P.; Wu, D.; Swanson, A.M. Hypoxic tumors and their effect on immune cells and cancer therapy. In Immunotherapy of Cancer; Springer: 2010; pp. 1-29.
    16. Liu, J.-n.; Bu, W.; Shi, J. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chemical reviews 2017, 117, 6160-6224.
    17. Khatoon, S.; Han, H.S.; Jeon, J.; Rao, N.V.; Jeong, D.-W.; Ikram, M.; Yasin, T.; Yi, G.-R.; Park, J.H. Hypoxia-responsive mesoporous nanoparticles for doxorubicin delivery. Polymers 2018, 10, 390, doi:10.3390/polym10040390.
    18. Thambi, T.; Deepagan, V.; Yoon, H.Y.; Han, H.S.; Kim, S.-H.; Son, S.; Jo, D.-G.; Ahn, C.-H.; Suh, Y.D.; Kim, K. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials 2014, 35, 1735-1743, doi:10.1016/j.biomaterials.2013.11.022.
    19. Hodgkiss, R.J.; Middleton, R.W.; Parrick, J.; Rami, H.K.; Wardman, P.; Wilson, G.D. Bioreductive fluorescent markers for hypoxic cells: a study of 2-nitroimidazoles with 1-substituents containing fluorescent, bridgehead-nitrogen, bicyclic systems. Journal of medicinal chemistry 1992, 35, 1920-1926.
    20. Jang, E.H.; Shim, M.K.; Kim, G.L.; Kim, S.; Kang, H.; Kim, J.-H. Hypoxia-responsive folic acid conjugated glycol chitosan nanoparticle for enhanced tumor targeting treatment. International Journal of Pharmaceutics 2020, 119237.
    21. Thambi, T.; Son, S.; Lee, D.S.; Park, J.H. Poly (ethylene glycol)-b-poly (lysine) copolymer bearing nitroaromatics for hypoxia-sensitive drug delivery. Acta Biomaterialia 2016, 29, 261-270, doi:10.1016/j.actbio.2015.10.011.
    22. Zhou, Y.; Bobba, K.N.; Lv, X.W.; Yang, D.; Velusamy, N.; Zhang, J.F.; Bhuniya, S. A biotinylated piperazine-rhodol derivative: a ‘turn-on’probe for nitroreductase triggered hypoxia imaging. Analyst 2017, 142, 345-350.
    23. Son, S.; Rao, N.V.; Ko, H.; Shin, S.; Jeon, J.; Han, H.S.; Thambi, T.; Suh, Y.D.; Park, J.H. Carboxymethyl dextran-based hypoxia-responsive nanoparticles for doxorubicin delivery. International journal of biological macromolecules 2018, 110, 399-405, doi:10.1016/j.ijbiomac.2017.11.048.
    24. Kulkarni, P.; Haldar, M.K.; You, S.; Choi, Y.; Mallik, S. Hypoxia-responsive polymersomes for drug delivery to hypoxic pancreatic cancer cells. Biomacromolecules 2016, 17, 2507-2513.
    25. Yang, Z.; Cao, J.; He, Y.; Yang, J.H.; Kim, T.; Peng, X.; Kim, J.S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chemical Society Reviews 2014, 43, 4563-4601.
    26. Cho, H.; Bae, J.; Garripelli, V.K.; Anderson, J.M.; Jun, H.-W.; Jo, S. Redox-sensitive polymeric nanoparticles for drug delivery. Chemical communications 2012, 48, 6043-6045.
    27. Thambi, T.; Park, J.H.; Lee, D.S. Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives. Chemical Communications 2016, 52, 8492-8500.
    28. Tao, W.; He, Z. ROS-responsive drug delivery systems for biomedical applications. Asian Journal of Pharmaceutical Sciences 2018, 13, 101-112.
    29. Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Current biology 2014, 24, R453-R462.
    30. Kay, N.E. ROS: double-edged sword for leukemic cells. Blood 2006, 107, 2212-2213.
    31. Joshi-Barr, S.; de Gracia Lux, C.; Mahmoud, E.; Almutairi, A. Exploiting oxidative microenvironments in the body as triggers for drug delivery systems. Antioxidants & redox signaling 2014, 21, 730-754.
    32. Xu, Q.; He, C.; Xiao, C.; Chen, X. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromolecular bioscience 2016, 16, 635-646.
    33. Liu, J.; Pang, Y.; Zhu, Z.; Wang, D.; Li, C.; Huang, W.; Zhu, X.; Yan, D. Therapeutic nanocarriers with hydrogen peroxide-triggered drug release for cancer treatment. Biomacromolecules 2013, 14, 1627-1636.
    34. Saravanakumar, G.; Kim, J.; Kim, W.J. Reactive-Oxygen-Species-Responsive Drug Delivery Systems: Promises and Challenges. Advanced Science (Weinh) 2017, 4, 1600124, doi:10.1002/advs.201600124.
    35. Zhao, Y.; Biggs, T.D.; Xian, M. Hydrogen sulfide (H 2 S) releasing agents: chemistry and biological applications. Chemical communications 2014, 50, 11788-11805.
    36. Lin, L.; Qin, H.; Huang, J.; Liang, H.; Quan, D.; Lu, J. Design and synthesis of an AIE-active polymeric H 2 S-donor with capacity for self-tracking. Polymer Chemistry 2018, 9, 2942-2950.
    37. Grace, J.P.; Bowden, N.B. Synthesis and Hydrogen Sulfide Releasing Properties of Diaminodisulfides and Dialkoxydisulfides. ACS Omega 2021, 6, 17741-17747, doi:10.1021/acsomega.1c02585.
    38. Yao, H.; Luo, S.; Liu, J.; Xie, S.; Liu, Y.; Xu, J.; Zhu, Z.; Xu, S. Controllable thioester-based hydrogen sulfide slow-releasing donors as cardioprotective agents. Chemical Communications 2019, 55, 6193-6196, doi:10.1039/C9CC02829C.
    39. Feng, W.; Teo, X.-Y.; Novera, W.; Ramanujulu, P.M.; Liang, D.; Huang, D.; Moore, P.K.; Deng, L.-W.; Dymock, B.W. Discovery of New H2S Releasing Phosphordithioates and 2,3-Dihydro-2-phenyl-2-sulfanylenebenzo[d][1,3,2]oxazaphospholes with Improved Antiproliferative Activity. Journal of Medicinal Chemistry 2015, 58, 6456-6480, doi:10.1021/acs.jmedchem.5b00848.
    40. Alexander, B.E.; Coles, S.J.; Fox, B.C.; Khan, T.F.; Maliszewski, J.; Perry, A.; Pitak, M.B.; Whiteman, M.; Wood, M.E. Investigating the generation of hydrogen sulfide from the phosphonamidodithioate slow-release donor GYY4137. MedChemComm 2015, 6, 1649-1655, doi:10.1039/C5MD00170F.
    41. Foster, J.C.; Powell, C.R.; Radzinski, S.C.; Matson, J.B. S-aroylthiooximes: a facile route to hydrogen sulfide releasing compounds with structure-dependent release kinetics. Organic letters 2014, 16, 1558-1561.
    42. Caliendo, G.; Cirino, G.; Santagada, V.; Wallace, J.L. Synthesis and Biological Effects of Hydrogen Sulfide (H2S): Development of H2S-Releasing Drugs as Pharmaceuticals. Journal of Medicinal Chemistry 2010, 53, 6275-6286, doi:10.1021/jm901638j.
    43. Sparatore, A.; Santus, G.; Giustarini, D.; Rossi, R.; Del Soldato, P. Therapeutic potential of new hydrogen sulfide-releasing hybrids. Expert Review of Clinical Pharmacology 2011, 4, 109-121, doi:10.1586/ecp.10.122.
    44. Li, L.; Whiteman, M.; Guan, Y.Y.; Neo, K.L.; Cheng, Y.; Lee, S.W.; Zhao, Y.; Baskar, R.; Tan, C.-H.; Moore, P.K. Characterization of a Novel, Water-Soluble Hydrogen Sulfide–Releasing Molecule (GYY4137). Circulation 2008, 117, 2351-2360, doi:doi:10.1161/CIRCULATIONAHA.107.753467.
    45. Li, L.; Fox, B.; Keeble, J.; Salto-Tellez, M.; Winyard, P.G.; Wood, M.E.; Moore, P.K.; Whiteman, M. The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. Journal of cellular and molecular medicine 2013, 17, 365-376, doi:10.1111/jcmm.12016.
    46. Li, L.; Salto-Tellez, M.; Tan, C.H.; Whiteman, M.; Moore, P.K. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med 2009, 47, 103-113, doi:10.1016/j.freeradbiomed.2009.04.014.
    47. Hasegawa, U.; van der Vlies, A.J. Design and Synthesis of Polymeric Hydrogen Sulfide Donors. Bioconjugate Chemistry 2014, 25, 1290-1300, doi:10.1021/bc500150s.
    48. Le, T.-N.; Lin, C.-J.; Shen, Y.C.; Lin, K.-Y.; Lee, C.-K.; Huang, C.-C.; Rao, N.V. Hyaluronic Acid Derived Hypoxia-Sensitive Nanocarrier for Tumor Targeted Drug Delivery. ACS Applied Bio Materials 2021, 4, 8325-8332, doi:10.1021/acsabm.1c00847.
    49. Choi, E.J.; Lee, J.M.; Youn, Y.S.; Na, K.; Lee, E.S. Hyaluronate dots for highly efficient photodynamic therapy. Carbohydrate polymers 2018, 181, 10-18.
    50. Noh, G.J.; Oh, K.T.; Youn, Y.S.; Lee, E.S. Cyclic RGD-Conjugated Hyaluronate Dot Bearing Cleavable Doxorubicin for Multivalent Tumor Targeting. Biomacromolecules 2020.
    51. Gilles, V.; Vieira, M.A.; Lacerda Jr, V.; Castro, E.V.R.; Santos, R.B.; Orestes, E.; Carneiro, J.W.M.; Greco, S.J. A New, Simple and Efficient Method of Steglich Esterification of Juglone with Long-Chain Fatty Acids: Synthesis of a New Class of Non-Polymeric Wax Deposition Inhibitors for Crude Oil. Journal of the Brazilian Chemical Society 2014, doi:10.5935/0103-5053.20140216.
    52. Tang, S.; Yuan, J.; Liu, C.; Lei, A. Direct oxidative esterification of alcohols. Dalton Transactions 2014, 43, 13460-13470, doi:10.1039/c4dt01133c.
    53. Matsumoto, K.; Yanagi, R.; Oe, Y. Recent Advances in the Synthesis of Carboxylic Acid Esters. In Carboxylic Acid - Key Role in Life Sciences; 2018.
    54. Tsakos, M.; Schaffert, E.S.; Clement, L.L.; Villadsen, N.L.; Poulsen, T.B. Ester coupling reactions--an enduring challenge in the chemical synthesis of bioactive natural products. Natural Product Reports 2015, 32, 605-632, doi:10.1039/c4np00106k.
    55. Steglich, B.N.a.W. Simple Method for the Esterification of Carboxylic Acids. Angewandte Chemie International Edition 1978.
    56. L, M.B.a.B.S. Synthesis of Azo-Bridged Benzothiazole-Phenyl Ester Derivatives via Steglich Esterification. International Journal of Current Engineering and Technology 2014.
    57. Tain, Y.L.; Jheng, L.C.; Chang, S.K.C.; Chen, Y.W.; Huang, L.T.; Liao, J.X.; Hou, C.Y. Synthesis and Characterization of Novel Resveratrol Butyrate Esters That Have the Ability to Prevent Fat Accumulation in a Liver Cell Culture Model. Molecules 2020, 25, doi:10.3390/molecules25184199.
    58. Lutjen, A.B.; Quirk, M.A.; Barbera, A.M.; Kolonko, E.M. Synthesis of (E)-cinnamyl ester derivatives via a greener Steglich esterification. Bioorganic & Medicinal Chemistry 2018, 26, 5291-5298, doi:10.1016/j.bmc.2018.04.007.
    59. Staros, J.V.; Wright, R.W.; Swingle, D.M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Analytical biochemistry 1986, 156, 220-222.
    60. Sur, A.; Pradhan, B.; Banerjee, A.; Aich, P. Immune activation efficacy of indolicidin is enhanced upon conjugation with carbon nanotubes and gold nanoparticles. PloS one 2015, 10, e0123905.
    61. Kirk, J.F.; Ritter, G.; Finger, I.; Sankar, D.; Reddy, J.D.; Talton, J.D.; Nataraj, C.; Narisawa, S.; Millán, J.L.; Cobb, R.R. Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing. Biomatter 2013, 3, e25633.
    62. Rich, D.H.; Singh, J. Chapter 5 - The Carbodiimide Method. In Major Methods of Peptide Bond Formation, Gross, E., Meienhofer, J., Eds.; Academic Press: 1979; Volume 1, pp. 241-261.
    63. Shrivastava, A. Polymerization. In Introduction to Plastics Engineering; 2018; pp. 17-48.
    64. Penczek, S.; Pretula, J.; Slomkowski, S. Ring-opening polymerization. Chemistry Teacher International 2021, 0, doi:10.1515/cti-2020-0028.
    65. Leuchs, H. Glycine-carbonic acid". Berichte der deutschen chemischen Gesellschaft. 1906, 39: 857.
    66. Wibowo, S.H.; Sulistio, A.; Wong, E.H.; Blencowe, A.; Qiao, G.G. Polypeptide films via N-carboxyanhydride ring-opening polymerization (NCA-ROP): past, present and future. Chemical Communications 2014, 50, 4971-4988, doi:10.1039/c4cc00293h.
    67. Saleh, T.A.; Gupta, V.K. Synthesis of Nanomaterial–Polymer Membranes by Polymerization Methods. In Nanomaterial and Polymer Membranes; 2016; pp. 135-160.
    68. Deb, P.K.; Kokaz, S.F.; Abed, S.N.; Paradkar, A.; Tekade, R.K. Pharmaceutical and Biomedical Applications of Polymers. In Basic Fundamentals of Drug Delivery; 2019; pp. 203-267.
    69. Dhote, V.K.; Dhote, K.; Pandey, S.P.; Shukla, T.; Maheshwari, R.; Mishra, D.K.; Tekade, R.K. Fundamentals of Polymers Science Applied in Pharmaceutical Product Development. In Basic Fundamentals of Drug Delivery; 2019; pp. 85-112.
    70. PENCZEK, S. Cationic Ring-Opening Polymerization (CROP) Major Mechanistic Phenomena. Journal ofPolymer Science: 2000, 38, 1919–1933 (2000).
    71. Nuyken, O.; Pask, S. Ring-Opening Polymerization—An Introductory Review. Polymers 2013, 5, 361-403, doi:10.3390/polym5020361.
    72. al, M.M.e. Modeling of Living Cationic Ring-Opening Polymerization of Cyclic Ethers:
    Active Chain End versus Activated Monomer Mechanism. Iranian Journal of Chemistry and Chemical Engineering 2020, 39,.
    73. KUBISA, P. Hyperbranched Polyethers by Ring-Opening Polymerization: Contribution of Activated Monomer Mechanism. Journal of Polymer Science: Part A: Polymer Chemistry, 2002, 41, 457– 468.
    74. Quirk, R.P. Anionic Polymerization In Encyclopedia of Polymer Science and Technology, . 2002.
    75. Trimmel, G.; Riegler, S.; Fuchs, G.; Slugovc, C.; Stelzer, F. Liquid crystalline polymers by metathesis polymerization. Metathesis Polymerization 2005, 176, 43-87, doi:10.1007/b101317.
    76. Sutthasupa, S.; Shiotsuki, M.; Sanda, F. Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials. Polymer Journal 2010, 42, 905-915, doi:10.1038/pj.2010.94.
    77. Lyapkov, A.; Kiselev, S.; Bozhenkova, G.; Kukurina, O.; Yusubov, M.; Verpoort, F. Ring Opening Metathesis Polymerization. In Recent Research in Polymerization; 2018.
    78. Hilf, S.; Kilbinger, A.F.M. Functional end groups for polymers prepared using ring-opening metathesis polymerization. Nature Chemistry 2009, 1, 537-546, doi:10.1038/nchem.347.
    79. Bielawski, C.W.; Grubbs, R.H. Living ring-opening metathesis polymerization. Progress in Polymer Science 2007, 32, 1-29, doi:10.1016/j.progpolymsci.2006.08.006.
    80. Trnka, T.M.; Grubbs, R.H. The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. Accounts of chemical research 2001, 34, 18-29, doi:10.1021/ar000114f.
    81. Sutthasupa, S.; Shiotsuki, M.; Matsuoka, H.; Masuda, T.; Sanda, F. Ring-Opening Metathesis Block Copolymerization of Amino Acid Functionalized Norbornene Monomers. Effects of Solvent and pH on Micelle Formation. Macromolecules 2010, 43, 1815-1822, doi:10.1021/ma902405g.
    82. Le, T.-N.; Lin, K.-Y.; Valaboju, A.; Lee, C.-K.; Jiang, J.-C.; Rao, N.V. The fluorescence turn-off mechanism of a norbornene-derived homopolymer – an Al3+ colorimetric and fluorescent chemosensor. Materials Advances 2021, 2, 4685-4693, doi:10.1039/D1MA00254F.
    83. Rao N, V.; Mane, S.; Kishore, A.; Das Sarma, J.; Shunmugam, R. Norbornene Derived Doxorubicin Copolymers as Drug Carriers with pH Responsive Hydrazone Linker. Biomacromolecules 2012, 13, 221-230, doi:10.1021/bm201478k.
    84. Mane, S.R.; Rao N, V.; Chaterjee, K.; Dinda, H.; Nag, S.; Kishore, A.; Das Sarma, J.; Shunmugam, R. Amphiphilic Homopolymer Vesicles as Unique Nano-Carriers for Cancer Therapy. Macromolecules 2012, 45, 8037-8042, doi:10.1021/ma301644m.
    85. Rao N, V.; Kishore, A.; Sarkar, S.; Das Sarma, J.; Shunmugam, R. Norbornene-Derived Poly-d-lysine Copolymers as Quantum Dot Carriers for Neuron Growth. Biomacromolecules 2012, 13, 2933-2944, doi:10.1021/bm300968y.
    86. Le, T.-N.; Neralla, V.R. Evaluation of the best pH-sensitive linker using norbornene-derived polymers. Journal of Macromolecular Science, Part A 2021, 58, 353-359, doi:10.1080/10601325.2020.1858717.
    87. N, V.R.; Dinda, H.; Ganivada, M.N.; Das Sarma, J.; Shunmugam, R. Efficient approach to prepare multiple chemotherapeutic agent conjugated nanocarrier. Chemical Communications 2014, 50, 13540-13543, doi:10.1039/C4CC04445B.
    88. Chen, Y.; Hu, L. Design of anticancer prodrugs for reductive activation. Medicinal Research Reviews 2009, 29, 29-64, doi:10.1002/med.20137.
    89. Choi, K.Y.; Saravanakumar, G.; Park, J.H.; Park, K. Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloids and Surfaces B: Biointerfaces 2012, 99, 82-94, doi:10.1016/j.colsurfb.2011.10.029.
    90. Choi, K.Y.; Min, K.H.; Na, J.H.; Choi, K.; Kim, K.; Park, J.H.; Kwon, I.C.; Jeong, S.Y. Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. Journal of Materials Chemistry 2009, 19, 4102-4107, doi:10.1039/B900456D.
    91. Vaupel, P.; Schlenger, K.; Knoop, C.; Höckel, M. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer research 1991, 51, 3316-3322.
    92. Bertout, J.A.; Patel, S.A.; Simon, M.C. The impact of O 2 availability on human cancer. Nature Reviews Cancer 2008, 8, 967-975, doi:10.1038/nrc2540.
    93. Shen, X.; Gates, K.S. Enzyme-activated generation of reactive oxygen species from heterocyclic N-oxides under aerobic and anaerobic conditions and its relevance to hypoxia-selective prodrugs. Chemical research in toxicology 2019, 32, 348-361, doi:10.1021/acs.chemrestox.9b00036.
    94. Li, Y.; Jeon, J.; Park, J.H. Hypoxia-responsive nanoparticles for tumor-targeted drug delivery. Cancer Letters 2020, 490, 31-43, doi:10.1016/j.canlet.2020.05.032.
    95. Sharma, A.; Arambula, J.F.; Koo, S.; Kumar, R.; Singh, H.; Sessler, J.L.; Kim, J.S. Hypoxia-targeted drug delivery. Chemical Society Reviews 2019, 48, 771-813, doi:10.1039/c8cs00304a.
    96. Rao, N.V.; Yoon, H.Y.; Han, H.S.; Ko, H.; Son, S.; Lee, M.; Lee, H.; Jo, D.-G.; Kang, Y.M.; Park, J.H. Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment. Expert opinion on drug delivery 2016, 13, 239-252, doi:10.1517/17425247.2016.1112374.
    97. Li, Y.; Lu, A.; Long, M.; Cui, L.; Chen, Z.; Zhu, L. Nitroimidazole derivative incorporated liposomes for hypoxia-triggered drug delivery and enhanced therapeutic efficacy in patient-derived tumor xenografts. Acta Biomaterialia 2019, 83, 334-348, doi:10.1016/j.actbio.2018.10.029.
    98. Yin, T.; Wang, J.; Yin, L.; Shen, L.; Zhou, J.; Huo, M. Redox-sensitive hyaluronic acid–paclitaxel conjugate micelles with high physical drug loading for efficient tumor therapy. Polymer Chemistry 2015, 6, 8047-8059, doi:10.1039/C5PY01355K.
    99. Zhou, Y.; Maiti, M.; Sharma, A.; Won, M.; Yu, L.; Miao, L.X.; Shin, J.; Podder, A.; Bobba, K.N.; Han, J. Azo-based small molecular hypoxia responsive theranostic for tumor-specific imaging and therapy. Journal of Controlled Release 2018, 288, 14-22, doi:10.1016/j.jconrel.2018.08.036.
    100. Liu, W.; Liu, H.; Peng, X.; Zhou, G.; Liu, D.; Li, S.; Zhang, J.; Wang, S. Hypoxia-activated anticancer prodrug for bioimaging, tracking drug release, and anticancer application. Bioconjugate chemistry 2018, 29, 3332-3343, doi:10.1021/acs.bioconjchem.8b00511.
    101. Wang, Y.; Shang, W.; Niu, M.; Tian, J.; Xu, K. Hypoxia-active nanoparticles used in tumor theranostic. International journal of nanomedicine 2019, 14, 3705, doi:10.2147/IJN.S196959.
    102. Kizaka‐Kondoh, S.; Inoue, M.; Harada, H.; Hiraoka, M. Tumor hypoxia: a target for selective cancer therapy. Cancer science 2003, 94, 1021-1028, doi:10.1111/j.1349-7006.2003.tb01395.x.
    103. Mikami, K.; Naito, M.; Tomida, A.; Yamada, M.; Sirakusa, T.; Tsuruo, T. DT-diaphorase as a critical determinant of sensitivity to mitomycin C in human colon and gastric carcinoma cell lines. Cancer research 1996, 56, 2823-2826.
    104. Mamnoon, B.; Feng, L.; Froberg, J.; Choi, Y.; Sathish, V.; Mallik, S. Hypoxia-responsive, polymeric nanocarriers for targeted drug delivery to estrogen receptor-positive breast cancer cell spheroids. Molecular Pharmaceutics 2020, 17, 4312-4322, doi:10.1021/acs.molpharmaceut.0c00754.
    105. Zeng, Y.; Ma, J.; Zhan, Y.; Xu, X.; Zeng, Q.; Liang, J.; Chen, X. Hypoxia-activated prodrugs and redox-responsive nanocarriers. International journal of nanomedicine 2018, 13, 6551, doi:10.2147/IJN.S173431.
    106. Deng, Y.; Yuan, H.; Yuan, W. Hypoxia-responsive micelles self-assembled from amphiphilic block copolymers for the controlled release of anticancer drugs. Journal of Materials Chemistry B 2019, 7, 286-295, doi:10.1039/C8TB02505C.
    107. Zhang, R.; Li, Y.; Zhang, M.; Tang, Q.; Zhang, X. Hypoxia-responsive drug–drug conjugated nanoparticles for breast cancer synergistic therapy. RSC advances 2016, 6, 30268-30276, doi:10.1039/C6RA01560C.
    108. Rao, J.; Khan, A. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. Journal of the American Chemical Society 2013, 135, 14056-14059, doi:10.1021/ja407514z.
    109. Perche, F.; Biswas, S.; Wang, T.; Zhu, L.; Torchilin, V. Hypoxia‐Targeted siRNA Delivery. Angewandte Chemie 2014, 126, 3430-3434, doi:10.1002/anie.201308368.
    110. Necas, J.; Bartosikova, L.; Brauner, P.; Kolar, J. Hyaluronic acid (hyaluronan): a review. Veterinarni medicina 2008, 53, 397-411, doi:10.17221/1930-VETMED.
    111. Rao, N.V.; Rho, J.G.; Um, W.; Ek, P.K.; Nguyen, V.Q.; Oh, B.H.; Kim, W.; Park, J.H. Hyaluronic acid nanoparticles as nanomedicine for treatment of inflammatory diseases. Pharmaceutics 2020, 12, 931, doi:10.3390/pharmaceutics12100931.
    112. Slevin, M.; Krupinski, J.; Gaffney, J.; Matou, S.; West, D.; Delisser, H.; Savani, R.C.; Kumar, S. Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biology 2007, 26, 58-68, doi:10.1016/j.matbio.2006.08.261.
    113. Choi, K.Y.; Han, H.S.; Lee, E.S.; Shin, J.M.; Almquist, B.D.; Lee, D.S.; Park, J.H. Hyaluronic Acid–Based Activatable Nanomaterials for Stimuli-Responsive Imaging and Therapeutics: Beyond CD44-Mediated Drug Delivery. Advanced Materials 2019, 31, 1803549, doi:10.1002/adma.201803549.
    114. Ret, D.; Steiner, G.; Gentilini, S.; Knaus, S. Exact determination of the degree of substitution of high molar mass hyaluronan by controlling the conformation in solution. Carbohydrate polymers 2019, 204, 124-130, doi:10.1016/j.carbpol.2018.10.003.
    115. Choi, K.Y.; Chung, H.; Min, K.H.; Yoon, H.Y.; Kim, K.; Park, J.H.; Kwon, I.C.; Jeong, S.Y. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 2010, 31, 106-114, doi:10.1016/j.biomaterials.2009.09.030.
    116. Yang, Y.; Zhao, Y.; Lan, J.; Kang, Y.; Zhang, T.; Ding, Y.; Zhang, X.; Lu, L. Reduction-sensitive CD44 receptor-targeted hyaluronic acid derivative micelles for doxorubicin delivery. International Journal of Nanomedicine 2018, 13, 4361-4378, doi:10.2147/ijn.S165359.
    117. Han, H.S.; Lee, J.; Kim, H.R.; Chae, S.Y.; Kim, M.; Saravanakumar, G.; Yoon, H.Y.; You, D.G.; Ko, H.; Kim, K.; et al. Robust PEGylated hyaluronic acid nanoparticles as the carrier of doxorubicin: Mineralization and its effect on tumor targetability in vivo. Journal of Controlled Release 2013, 168, 105-114, doi:10.1016/j.jconrel.2013.02.022.
    118. Goswami, K.G.; Mete, S.; Chaudhury, S.S.; Sar, P.; Ksendzov, E.; Mukhopadhyay, C.D.; Kostjuk, S.V.; De, P. Self-Assembly of Amphiphilic Copolymers with Sequence-Controlled Alternating Hydrophilic–Hydrophobic Pendant Side Chains. ACS Applied Polymer Materials 2020, 2, 2035-2045, doi:10.1021/acsapm.0c00204.
    119. M. J. Frisch, G.W.T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox Gaussian 09, Gaussian, Inc.: Wallingford CT, 2016.
    120. Yang, K.; Leslie, K.G.; Kim, S.Y.; Kalionis, B.; Chrzanowski, W.; Jolliffe, K.A.; New, E.J. Tailoring the properties of a hypoxia-responsive 1, 8-naphthalimide for imaging applications. Organic & biomolecular chemistry 2018, 16, 619-624, doi:10.1039/C7OB03164E.
    121. Yan, Q.; Guo, X.; Huang, X.; Meng, X.; Liu, F.; Dai, P.; Wang, Z.; Zhao, Y. Gated mesoporous silica nanocarriers for hypoxia-responsive cargo release. ACS Applied Materials & Interfaces 2019, 11, 24377-24385, doi:10.1021/acsami.9b04142.
    122. Zhang, T.X.; Zhang, Z.Z.; Yue, Y.X.; Hu, X.Y.; Huang, F.; Shi, L.; Liu, Y.; Guo, D.S. A general hypoxia‐responsive molecular container for tumor‐targeted therapy. Advanced Materials 2020, 1908435, doi:10.1002/adma.201908435.
    123. Hong, Y.-G.; Gu, J.-D. Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain. Applied microbiology and biotechnology 2010, 88, 637-643, doi:10.1007/s00253-010-2820-z.
    124. Ganesh, S.; Iyer, A.K.; Gattacceca, F.; Morrissey, D.V.; Amiji, M.M. In vivo biodistribution of siRNA and cisplatin administered using CD44-targeted hyaluronic acid nanoparticles. Journal of Controlled Release 2013, 172, 699-706, doi:10.1016/j.jconrel.2013.10.016.
    125. Lv, Y.; Zhao, X.; Zhu, L.; Li, S.; Xiao, Q.; He, W.; Yin, L. Targeting intracellular MMPs efficiently inhibits tumor metastasis and angiogenesis. Theranostics 2018, 8, 2830-2845, doi:10.7150/thno.23209.
    126. Gaucher, G.; Dufresne, M.-H.; Sant, V.P.; Kang, N.; Maysinger, D.; Leroux, J.-C. Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of controlled release 2005, 109, 169-188.
    127. Sun, C.; Liang, Y.; Zhao, M.; Hao, N.; Xu, L.; Cheng, F.; Li, S.; Cao, J.; He, B. Multi-activated polymeric micelles with charge-conversion and ROS-controlled drug release for efficient cancer therapy. Journal of Biomedical Nanotechnology 2017, 13, 946-959, doi:10.1166/jbn.2017.2411.
    128. Rao, N.V.; Ko, H.; Lee, J.; Park, J.H. Recent progress and advances in stimuli-responsive polymers for cancer therapy. Frontiers in bioengineering and biotechnology 2018, 6, 110, doi:10.3389/fbioe.2018.00110.
    129. Yuan, Y.; Zhao, L.; Shen, C.; He, Y.; Yang, F.; Zhang, G.; Jia, M.; Zeng, R.; Li, C.; Qiao, R. Reactive oxygen species-responsive amino acid-based polymeric nanovehicles for tumor-selective anticancer drug delivery. Materials Science and Engineering: C 2020, 106, 110159.
    130. Chen, R.; Ma, Z.; Xiang, Z.; Xia, Y.; Shi, Q.; Wong, S.C.; Yin, J. Hydrogen Peroxide and Glutathione Dual Redox‐Responsive Nanoparticles for Controlled DOX Release. Macromolecular Bioscience 2020, 20, 1900331.
    131. Luo, C.; Sun, B.; Wang, C.; Zhang, X.; Chen, Y.; Chen, Q.; Yu, H.; Zhao, H.; Sun, M.; Li, Z. Self-facilitated ROS-responsive nanoassembly of heterotypic dimer for synergistic chemo-photodynamic therapy. Journal of Controlled Release 2019, 302, 79-89.
    132. Napoli, A.; Valentini, M.; Tirelli, N.; Müller, M.; Hubbell, J.A. Oxidation-responsive polymeric vesicles. Nature materials 2004, 3, 183-189.
    133. Kim, J.S.; Jo, S.D.; Seah, G.L.; Kim, I.; Nam, Y.S. ROS-induced biodegradable polythioketal nanoparticles for intracellular delivery of anti-cancer therapeutics. Journal of Industrial and Engineering Chemistry 2015, 21, 1137-1142.
    134. Li, Q.; Wen, Y.; Wen, J.; Zhang, Y.-P.; Xu, X.-D.; Victorious, A.; Zavitz, R.; Xu, X. A new biosafe reactive oxygen species (ROS)-responsive nanoplatform for drug delivery. RSC advances 2016, 6, 38984-38989.
    135. Deepagan, V.; Kwon, S.; You, D.G.; Um, W.; Ko, H.; Lee, H.; Jo, D.-G.; Kang, Y.M.; Park, J.H. In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials 2016, 103, 56-66.
    136. Sun, C.; Wang, L.; Xianyu, B.; Li, T.; Gao, S.; Xu, H. Selenoxide elimination manipulate the oxidative stress to improve the antitumor efficacy. Biomaterials 2019, 225, 119514.
    137. Fang, R.; Xu, H.; Cao, W.; Yang, L.; Zhang, X. Reactive oxygen species (ROS)-responsive tellurium-containing hyperbranched polymer. Polymer Chemistry 2015, 6, 2817-2821.
    138. Gupta, M.K.; Lee, S.H.; Crowder, S.W.; Wang, X.; Hofmeister, L.H.; Nelson, C.E.; Bellan, L.M.; Duvall, C.L.; Sung, H.-J. Oligoproline-derived nanocarrier for dual stimuli-responsive gene delivery. Journal of Materials Chemistry B 2015, 3, 7271-7280.
    139. Yuan, Y.; Zhang, C.J.; Liu, B. A photoactivatable AIE polymer for light‐controlled gene delivery: concurrent endo/lysosomal escape and DNA unpacking. Angewandte Chemie International Edition 2015, 54, 11419-11423.
    140. Rao, V.; Han, H.S.; Lee, H.; Jeon, S.; Jung, D.-W.; Lee, J.; Yi, G.-R.; Park, J.H. ROS-responsive mesoporous silica nanoparticles for MR imaging-guided photodynamically maneuvered chemotherapy. Nanoscale 2018, 10, 9616-9627.
    141. Li, J.; Ke, W.; Wang, L.; Huang, M.; Yin, W.; Zhang, P.; Chen, Q.; Ge, Z. Self-sufficing H2O2-responsive nanocarriers through tumor-specific H2O2 production for synergistic oxidation-chemotherapy. Journal of Controlled Release 2016, 225, 64-74.
    142. Li, L.; Wang, Y.; Guo, R.; Li, S.; Ni, J.; Gao, S.; Gao, X.; Mao, J.; Zhu, Y.; Wu, P. Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury. Journal of Controlled Release 2020, 317, 259-272.
    143. Zhou, Z.; Shen, Y.; Tang, J.; Fan, M.; Van Kirk, E.A.; Murdoch, W.J.; Radosz, M. Charge‐reversal drug conjugate for targeted cancer cell nuclear drug delivery. Advanced Functional Materials 2009, 19, 3580-3589.
    144. Cao, J.; Xie, X.; Lu, A.; He, B.; Chen, Y.; Gu, Z.; Luo, X. Cellular internalization of doxorubicin loaded star-shaped micelles with hydrophilic zwitterionic sulfobetaine segments. Biomaterials 2014, 35, 4517-4524.
    145. Nuhn, L.; Gietzen, S.; Mohr, K.; Fischer, K.; Toh, K.; Miyata, K.; Matsumoto, Y.; Kataoka, K.; Schmidt, M.; Zentel, R. Aggregation behavior of cationic nanohydrogel particles in human blood serum. Biomacromolecules 2014, 15, 1526-1533.
    146. Itaka, K.; Yamauchi, K.; Harada, A.; Nakamura, K.; Kawaguchi, H.; Kataoka, K. Polyion complex micelles from plasmid DNA and poly (ethylene glycol)–poly (l-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency. Biomaterials 2003, 24, 4495-4506.
    147. Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of environment‐sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie 2003, 115, 4788-4791.
    148. Deng, H.; Zhao, X.; Liu, J.; Deng, L.; Zhang, J.; Liu, J.; Dong, A. Reactive oxygen species (ROS) responsive PEG–PCL nanoparticles with pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin. Journal of Materials Chemistry B 2015, 3, 9397-9408.
    149. Wang, S.; Yu, G.; Wang, Z.; Jacobson, O.; Lin, L.S.; Yang, W.; Deng, H.; He, Z.; Liu, Y.; Chen, Z.Y. Enhanced antitumor efficacy by a cascade of reactive oxygen species generation and drug release. Angewandte Chemie 2019, 131, 14900-14905.
    150. Shim, M.S.; Xia, Y. A reactive oxygen species (ROS)‐responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angewandte Chemie 2013, 125, 7064-7067.
    151. Wilson, D.S.; Dalmasso, G.; Wang, L.; Sitaraman, S.V.; Merlin, D.; Murthy, N. Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nature materials 2010, 9, 923-928.
    152. Wang, Q.Y.; Xu, Y.S.; Zhang, N.X.; Dong, Z.P.; Zhao, B.N.; Liu, L.C.; Lu, T.; Wang, Y. Phenylboronic ester-modified anionic micelles for ROS-stimuli response in HeLa cell. Drug delivery 2020, 27, 681-690.
    153. Li, S.; Xie, A.; Li, H.; Zou, X.; Zhang, Q. A self-assembled, ROS-responsive Janus-prodrug for targeted therapy of inflammatory bowel disease. J Control Release 2019, 316, 66-78, doi:10.1016/j.jconrel.2019.10.054.
    154. Feng, T.; Ai, X.; An, G.; Yang, P.; Zhao, Y. Charge-Convertible Carbon Dots for Imaging-Guided Drug Delivery with Enhanced in Vivo Cancer Therapeutic Efficiency. ACS Nano 2016, 10, 4410-4420, doi:10.1021/acsnano.6b00043.
    155. Vandiver, M.; Snyder, S.H. Hydrogen sulfide: a gasotransmitter of clinical relevance. J Mol Med (Berl) 2012, 90, 255-263, doi:10.1007/s00109-012-0873-4.
    156. Szabó, C. Hydrogen sulphide and its therapeutic potential. Nature Reviews Drug Discovery 2007, 6, 917-935, doi:10.1038/nrd2425.
    157. Mackenzie, I.S.; Rutherford, D.; MacDonald, T.M. Nitric oxide and cardiovascular effects: new insights in the role of nitric oxide for the management of osteoarthritis. Arthritis research & therapy 2008, 10 Suppl 2, S3-S3, doi:10.1186/ar2464.
    158. Ignarro, L.J.; Napoli, C.; Loscalzo, J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: an overview. Circ Res 2002, 90, 21-28, doi:10.1161/hh0102.102330.
    159. Ishihara, S.; Iyi, N. Controlled release of H2S and NO gases through CO2-stimulated anion exchange. Nature Communications 2020, 11, 453, doi:10.1038/s41467-019-14270-3.
    160. Wu, D.; Gu, Y.; Zhu, D. Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review). Mol Med Rep 2021, 24, 875, doi:10.3892/mmr.2021.12515.
    161. Zhao, Y.; Yang, C.; Organ, C.; Li, Z.; Bhushan, S.; Otsuka, H.; Pacheco, A.; Kang, J.; Aguilar, H.C.; Lefer, D.J.; et al. Design, Synthesis, and Cardioprotective Effects of N-Mercapto-Based Hydrogen Sulfide Donors. Journal of Medicinal Chemistry 2015, 58, 7501-7511, doi:10.1021/acs.jmedchem.5b01033.
    162. Filipovic, M.R.; Miljkovic, J.; Allgäuer, A.; Chaurio, R.; Shubina, T.; Herrmann, M.; Ivanovic-Burmazovic, I. Biochemical insight into physiological effects of H₂S: reaction with peroxynitrite and formation of a new nitric oxide donor, sulfinyl nitrite. Biochem J 2012, 441, 609-621, doi:10.1042/bj20111389.
    163. Jones, C.M.; Lawrence, A.; Wardman, P.; Burkitt, M.J. Electron paramagnetic resonance spin trapping investigation into the kinetics of glutathione oxidation by the superoxide radical: re-evaluation of the rate constant. Free Radic Biol Med 2002, 32, 982-990, doi:10.1016/s0891-5849(02)00791-8.
    164. Shackelford, R.E.; Mohammad, I.Z.; Meram, A.T.; Kim, D.; Alotaibi, F.; Patel, S.; Ghali, G.E.; Kevil, C.G. Molecular Functions of Hydrogen Sulfide in Cancer. Pathophysiology 2021, 28, 437-456.
    165. Foster, J.C.; Radzinski, S.C.; Zou, X.; Finkielstein, C.V.; Matson, J.B. H2S-Releasing Polymer Micelles for Studying Selective Cell Toxicity. Molecular Pharmaceutics 2017, 14, 1300-1306, doi:10.1021/acs.molpharmaceut.6b01117.
    166. Sunzini, F.; De Stefano, S.; Chimenti, M.S.; Melino, S. Hydrogen Sulfide as Potential Regulatory Gasotransmitter in Arthritic Diseases. Int J Mol Sci 2020, 21, doi:10.3390/ijms21041180.
    167. Zheng, Y.; Yu, B.; De La Cruz, L.K.; Roy Choudhury, M.; Anifowose, A.; Wang, B. Toward Hydrogen Sulfide Based Therapeutics: Critical Drug Delivery and Developability Issues. Med Res Rev 2018, 38, 57-100, doi:10.1002/med.21433.
    168. Christoforidis, T.; Driver, T.G.; Rehman, J.; Eddington, D.T. Generation of controllable gaseous H2S concentrations using microfluidics. RSC Advances 2018, 8, 4078-4083, doi:10.1039/C7RA12220A.
    169. Yoo, D.; Jupiter, R.C.; Pankey, E.A.; Reddy, V.G.; Edward, J.A.; Swan, K.W.; Peak, T.C.; Mostany, R.; Kadowitz, P.J. Analysis of cardiovascular responses to the H2S donors Na2S and NaHS in the rat. American Journal of Physiology-Heart and Circulatory Physiology 2015, 309, H605-H614, doi:10.1152/ajpheart.00171.2015.
    170. DeLeon, E.R.; Stoy, G.F.; Olson, K.R. Passive loss of hydrogen sulfide in biological experiments. Analytical Biochemistry 2012, 421, 203-207, doi:10.1016/j.ab.2011.10.016.
    171. Foster, J.C.; Matson, J.B. Functionalization of Methacrylate Polymers with Thiooximes: A Robust Postpolymerization Modification Reaction and a Method for the Preparation of H2S-Releasing Polymers. Macromolecules 2014, 47, 5089-5095, doi:10.1021/ma501044b.
    172. Long, T.R.; Wongrakpanich, A.; Do, A.-V.; Salem, A.K.; Bowden, N.B. Long-term release of a thiobenzamide from a backbone functionalized poly(lactic acid). Polymer Chemistry 2015, 6, 7188-7195, doi:10.1039/C5PY01059D.
    173. Montoya, L.A.; Pluth, M.D. Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells. Chemical Communications 2012, 48, 4767-4769, doi:10.1039/C2CC30730H.
    174. Raasch, M.S. S-aroyl-, S-thioaroyl-, and S-imidoylhydrosulfamines. The Journal of Organic Chemistry 1972, 37, 3820-3823.
    175. Yoo, H.S.; Lee, E.A.; Park, T.G. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. Journal of Controlled Release 2002, 82, 17-27, doi:10.1016/S0168-3659(02)00088-3.
    176. Venu, P.; Le, T.N.; Kumar, P.; Patra, D.; Kumar, R.; Lee, C.K.; Rao, N.V.; Shunmugam, R. Efficient Design to Monitor the Site‐specific Sustained Release of a Non‐Emissive Anticancer Drug. Chemistry–An Asian Journal 2021, 16, 2552-2558.

    QR CODE