簡易檢索 / 詳目顯示

研究生: 周庭帆
Ting-Fan Chou
論文名稱: Cu2ZnSn(Sx,Se1-x)4奈米晶體之成長與能帶結構分析
Synthesis and Band Structure Analysis of Quinary Cu2ZnSn(Sx,Se1-x)4 Nanocrystals
指導教授: 陳良益
Liang-Yih Chen
口試委員: 吳季珍
Jih-Jen Wu
陳景翔
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 141
中文關鍵詞: 硫硒化銅鋅錫奈米晶體注入法伏安循環法太陽能材料
外文關鍵詞: copper zinc tin sulfide selenide, nanocrystals, injection method, cyclic voltammetry, solar cell material.
相關次數: 點閱:194下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硒硫化銅鋅錫奈米晶體為 p 型直接能隙半導體,具有低成本、毒性較低、吸收係數高(>104 cm-1)等特性。由於其能隙值約為1.0~1.7 eV,因此適合應用於薄膜太陽能電池吸收層。在本研究以醋酸銅、四氯化錫、碘化鋅為陽離子反應物,與硫粉、二氧化硒做為陰離子反應物,在油胺做為反應溶劑之下,於低溫下注入再升溫至高溫進行硒硫化銅鋅錫奈米晶體之成長。在研究初期,因穩定的硒源不易取得,因此主要著重於硒化銅鋅錫奈米晶的研製。
    在本研究第一部份中,主要使用二氧化硒作為硒源。經研究過程可發現其溶解過程可區分為兩階段。此兩階段所獲得的硒源所製備的硒化銅鋅錫奈米晶體在化學組成、粒徑大小與成長機制上具有相當大的差異。當二氧化硒在低溫下溶解於油胺即注入陽離子溶液隨後升溫進行成長時,所獲得的晶體尺寸接近次微米等級,且呈現六角形平板狀。此外,在本研究中亦針對不同反應溫度、反應時間、陰陽離子比例、陽離子反應物比例等做為實驗條件進行探討。經實驗分析的結果可得知:當陰陽離子比例為1.2,反應溫度為280 oC下反應90分鐘可獲得較接近化學計量比的硒化銅鋅錫奈米晶體。
    在本研究的第二部份,則是讓二氧化硒在油胺中持續以高溫進行溶解時,此時可發現在油胺開始有黑色固體析出,而再經過長時間的高溫處理,此黑色固體將再一次溶解於油胺中。若以此時的硒源注入陽離子溶液中進行高溫成長時,由穿透式電子顯微鏡進行分析時,可獲得奈米等級的晶體,但在組成上較偏離化學計量比。
    在研究的第三部份則進行不同比例調變的硫硒化銅鋅錫奈米晶體的研製。在此部份研究中,以紫外光-可見光-近紅外光光譜儀分析其能隙值,其能隙值隨著硒硫元素比例調變呈現一拋物線變化,範圍介於1.18 ~ 1.48 eV。而由拉曼光譜儀、X光繞射儀確認隨著硫元素增加產物由硒化銅鋅錫逐漸轉成硫化銅鋅錫。但由穿透式電子顯微鏡觀察得到隨著硒元素比例的增加,奈米晶體粒徑大小分佈漸次不均。最後,藉由循環伏安法進行導帶與價帶位置的量測與分析確認導帶位置範圍為-3.42 ~ -4.14 eV,價帶位置範圍為-4.82 ~ -5.29 eV,並隨著硫含量的增加呈現一拋物線變化趨勢。


    Copper zinc tin sulfide selenide nanocrytals [Cu2ZnSn(SxSe1-x)4, CZT(S,Se) NCs] is a kind of p-type semiconductor, which own low cost, low toxicity and high absorption coefficient (>104 cm-1). CZT(S,Se) NCs have been extensively studied due to its suitable band gap (1.0~1.7 eV) for solar cell absorbent. In this study, CZT(S,Se) NCs are synthesized by injection method using copper (II) acetate (Cu(OAc)2), zinc iodide (ZnI2), tin(IV) chloride hydrate (SnCl4xH2O) as cations and elemental sulfur (S) and selenium(IV) dioxide (SeO2) as anions, which dissolved in oleylamine (OLA) under low injection temperature. After injection, NCs were grown at high growth temperature. In the early period, the main research was focused on the synthesis of cites NCs due to the undesired Se source. In the first part, SeO2 was used as Se source to synthesize CZTSe NCs. During dissolution, we could find the dissolution of SeO2 divided into two stages. The composition, size and its distribution and growth mechanism of CZTSe NCs synthesized by using these two stages have big different. When SeO2 was dissolved at low temperature to inject into cations solution for the growth of CZTSe NCs, the sizes of CZTSe NCs approached sub-micron hexagonal plates. In addition, the growth temperature, reaction time, the ratio of anion-to-cation ion and the ratio of cations were employed as experimental parameters to find the optimal condition for the synthesis of CZTSe NCs. Based on the results, we found the optimal growth conditions for CZTSe NCs could be obtained when the ratio of anion-to-cation is 1.2, reaction temperature is 280 oC and the reaction time is 90 min. In the second part, SeO2 was kept on the high temperature before injection. After a long time at high temperature, we could observe black powders were precipitated from OLA and were dissolved again. The orange clear high temperature anion solution was injected into cation solution to synthesize CZTSe NCs. From transmission electron microscopy analysis, we could find the sizes of CZTSe NCs were smaller than that formed in the first part. However, the chemical position and size distribution were worse than that of the first part. In the third part, we modulated the ratio of S and Se in the anion solution to synthesize CZT(S,Se) NCs. In this study, UV-Visible-Infrared spectroscopy was employed to obtain the optical band gap by Tauc plot method. According to the analyses, we could find a parabolic relation between optical band gap of CZT(S,Se) NCs and the ratio of S and Se, ranging 1.18~1.48 eV. In addition, the phase change from CZTSe to CZTS NCs could be observed by Raman spectroscopy, X-ray diffraction patterns when the ratio of S increased. However, the size distribution of CZT(S,Se) NCs becomes non-uniform when the ratio of Se increased. Finally, posi-tions of the conduction band and valence band of CZT(S,Se) NCs were analyzed by cyclic voltammetry method. The positions of conduction band between -3.42 eV and -4.14 eV. The positions of valence band between -4.82 eV and -5.29 eV. The trend of change of band position was also a parabolic relation with increasing the ratio of S during synthesis.

    中文摘要 I Abstract II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章、緒論 1 1-1 奈米晶體簡介 1 1-2 奈米晶體的特性 3 1-3 奈米晶體之應用 7 1-4 研究動機與目的 12 第二章、理論基礎與文獻回顧 14 2-1 半導體奈米晶體簡介 14 2-2 I2-II-IV-VI4族奈米晶體 18 2-2-1 I2-II-IV-VI4族奈米晶體之結構與特性 18 2-2-2 Cu2ZnSnSe4與Cu2ZnSnS4奈米晶體製備方法 27 2-3 奈米晶體組成與能帶結構分析 37 2-4 Cu2ZnSnSe4與Cu2ZnSnS4薄膜太陽能電池 40 第三章、實驗方法與步驟 45 3-1 實驗流程 45 3-2 實驗藥品 46 3-3 實驗分析儀器 50 3-3-1 紫外-可見-近紅外光吸收光譜儀 50 3-3-2 拉曼光譜儀 52 3-3-3 X光繞射分析儀 56 3-3-4 場發射穿透式電子顯微鏡 59 3-3-5 電化學分析儀 60 3-4 實驗步驟 69 3-4-1 注入法合成硒化銅鋅錫奈米晶體 69 3-4-2 注入法合成硫化銅鋅錫奈米晶體 70 3-4-3 注入法合成硒硫化銅鋅錫奈米晶體 71 第四章、結果與討論 72 4-1 調變硒源合成硒化銅鋅錫奈米晶體之性質分析 72 4-2-1 第一階段:以低溫溶解SeO2,形成SeO32-合成硒化銅鋅錫奈米晶體之性質分析 73 4-2-2 第二階段:以高溫溶解SeO2,形成Se2-合成硒化銅鋅錫奈米晶體之性質分析 88 4-2-3 以SeO32-與Se2-合成硒化銅鋅錫奈米晶體之比較 94 4-2-4 以Se2-為硒源,探討調變陰陽離子比例合成硒化銅鋅錫奈米晶體性質分析 98 4-2-5 以Se2-為硒源,探討調變陽離子反應物比例合成硒化銅鋅錫奈米晶體性質分析 99 4-2 硫化銅鋅錫奈米晶體性質分析 100 4-3 合成硒硫化銅鋅錫奈米晶體性質分析 103 4-3-1 硒硫化銅鋅錫奈米晶體之光學分析 103 4-3-2 硒硫化銅鋅錫奈米晶體之晶體結構分析 104 4-3-3 硒硫化銅鋅錫奈米晶體之成分組成分析 105 4-3-4 硒硫化銅鋅錫奈米晶體之能帶結構分析 106 第五章、結論 119 第六章、參考文獻 120

    1. 張立德, 奈米材料. (五南圖書出版股份有限公司, 2002).
    2. KK Nanda, SN Sahu, and SN Behera, Phys. Rev. A, 66, 013208 (2002)
    3. W Klopper Leutwyler, S Leutwyler Burgi, and HB Burgl, Science, 271, 933 (1996)
    4. Ryogo Kubo, Arisato Kawabata, and Shun-ichi Kobayashi, Ann. Rev. Mater. Sci., 14, 49 (1984)
    5. Ph Buffat and Jean Pierre Borel, Phys. Rev. A, 13, 2287 (1976)
    6. Mukta V Limaye, Shashi B Singh, Sadgopal K Date, Deepti Kothari, V Raghavendra Reddy, Ajay Gupta, Vasant Sathe, Ram Jane Choudhary, and Sulabha K Kulkarni, J. Phys. Chem. B, 113, 9070 (2009)
    7. 陳凱民, 國立成功大學, 2007.
    8. 賴炤銘, 國立中正大學, 2004.
    9. Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, and Ewan D. Dunlop, Prog. in Photovolta. : Research and Applications, 21, 1 (2013)
    10. NREL, http://www.nrel.gov/
    11. D.A. Neamen, 半導體物理及元件. (麥格羅希爾出版, 2003).
    12. 趙莉敏, 國立臺南大學, 2011.
    13. NREL, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (2012)
    14. Ingrid Repins, Carolyn Beall, Nirav Vora, Clay DeHart, Darius Kuciauskas, Pat Dippo, Bobby To, Jonathan Mann, Wan-Ching Hsu, and Alan Goodrich, Sol. Eng. Mater. Sol. Cel., 101, 154 (2012)
    15. Byungha Shin, Oki Gunawan, Yu Zhu, Nestor A Bojarczuk, S Jay Chey, and Supratik Guha, Prog. in Photovolta. : Research and Applications, 21, 72 (2013)
    16. Karthik Ramasamy, Mohammad A. Malik, and Paul O'Brien, Chem. Sci., 2, 1170 (2011)
    17. Yan-Li Zhou, Wen-Hui Zhou, Yan-Fang Du, Mei Li, and Si-Xin Wu, Mater. Lett., 65, 1535 (2011)
    18. Thomas Rath, Wernfried Haas, Andreas Pein, Robert Saf, Eugen Maier, Birgit Kunert, Ferdinand Hofer, Roland Resel, and Gregor Trimmel, Sol. Eng. Mater. Sol. Cel., 101, 87 (2012)
    19. Anthony Mark Fox, Optical properties of solids. (Oxford university press, 2001).
    20. S Schorr, Thin Solid Films, 515, 5985 (2007)
    21. Shiyou Chen, X. G. Gong, Aron Walsh, and Su-Huai Wei, Phys. Rev. B, 79, 165211 (2009)
    22. Shiyou Chen, Aron Walsh, Ye Luo, Ji-Hui Yang, XG Gong, and Su-Huai Wei, Phys. Rev. B, 82, 195203 (2010)
    23. Clas Persson, J. Appl. Phys., 107, 053710 (2010)
    24. Xiaotang Lu, Zhongbin Zhuang, Qing Peng, and Yadong Li, Chem. Comm., 47, 3141 (2011)
    25. Michelle D Regulacio, Chen Ye, Suo Hon Lim, Michel Bosman, Enyi Ye, Shiyou Chen, Qing‐Hua Xu, and Ming‐Yong Han, Chem. A-Eur J., 18, 3127 (2012)
    26. Xianzhong Lin, Jaison Kavalakkatt, Kai Kornhuber, Daniel Abou-Ras, Susan Schorr, Martha Ch Lux-Steiner, and Ahmed Ennaoui, RSC Adv., 2, 9894 (2012)
    27. Feng-Jia Fan, Liang Wu, Ming Gong, Guangyao Liu, Yi-Xiu Wang, Shu-Hong Yu, Shiyou Chen, Lin-Wang Wang, and Xin-Gao Gong, ACS Nano, 7, 1454 (2013)
    28. Fangyang Liu, Yi Li, Kun Zhang, Bo Wang, Chang Yan, Yanqing Lai, Zhian Zhang, Jie Li, and Yexiang Liu, Sol. Eng. Mater. Sol. Cel., 94, 2431 (2010)
    29. Rachmat Adhi Wibowo, Woo Seok Kim, Eun Soo Lee, Badrul Munir, and Kyoo Ho Kim, J. Phys. Chem. Solids, 68, 1908 (2007)
    30. M Altosaar, J Raudoja, K Timmo, M Danilson, M Grossberg, J Krustok, and E Mellikov, Phys. Statet Solidi A, 205, 167 (2008)
    31. Chet Steinhagen, Matthew G Panthani, Vahid Akhavan, Brian Goodfellow, Bonil Koo, and Brian A Korgel, J. Am. Chem. Soc., 131, 12554 (2009)
    32. Chao Zou, Lijie Zhang, Deshang Lin, Yun Yang, Qiang Li, Xiangju Xu, Xi'an Chen, and Shaoming Huang, CrystEngComm, 13, 3310 (2011)
    33. Ankur Khare, Andrew W Wills, Lauren M Ammerman, David J Norris, and Eray S Aydil, Chem. Comm., 47, 11721 (2011)
    34. Feng‐Jia Fan, Yi‐Xiu Wang, Xiao‐Jing Liu, Liang Wu, and Shu‐Hong Yu, Adv. Mater., 24, 6158 (2012)
    35. Hao Wei, Zichao Ye, Meng Li, Yanjie Su, Zhi Yang, and Yafei Zhang, CrystEngComm, 13, 2222 (2011)
    36. Hao Wei, Wei Guo, Yijing Sun, Zhi Yang, and Yafei Zhang, Mater. Lett., 64, 1424 (2010)
    37. Alexey Shavel, Jordi Arbiol, and Andreu Cabot, J. Am. Chem. Soc., 132, 4514 (2010)
    38. Sachin S Kulkarni, University of Central Florida Orlando, Florida, 2008.
    39. Periodic Table of Elements, http://environmentalchemistry.com/yogi/periodic/
    40. Guillaume Zoppi, Ian Forbes, RW Miles, Phillip J Dale, Jonathan J Scragg, and Laurence M Peter, Prog. in Photovolta. : Research and Applications, 17, 315 (2009)
    41. Hironori Katagiri, Kazuo Jimbo, Satoru Yamada, Tsuyoshi Kamimura, Win Shwe Maw, Tatsuo Fukano, Tadashi Ito, and Tomoyoshi Motohiro, Appl. Phys. Express, 1 (2008)
    42. Rachmat Adhi Wibowo, Eun Soo Lee, Badrul Munir, and Kyoo Ho Kim, Phys. Statet Solidi A, 204, 3373 (2007)
    43. AV Moholkar, SS Shinde, AR Babar, Kyu-Ung Sim, Hyun Kee Lee, KY Rajpure, PS Patil, CH Bhosale, and JH Kim, J. Alloy. Comp., 509, 7439 (2011)
    44. Jun He, Lin Sun, Nuofan Ding, Hui Kong, Shaohua Zuo, Shiyou Chen, Ye Chen, Pingxiong Yang, and Junhao Chu, J. Alloy Comp., 529, 34 (2012)
    45. Takeshi Kobayashi, Kazuo Jimbo, Kazuyuki Tsuchida, Shunsuke Shinoda, Taisuke Oyanagi, and Hironori Katagiri, Jap. J. Appl. Phys., 44, 783 (2005)
    46. Myo Than Htay, Yoshio Hashimoto, Noritaka Momose, Kouichi Sasaki, Hiroshi Ishiguchi, Shigeo Igarashi, Kazuki Sakurai, and Kentaro Ito, Jap. J. Appl. Phys., 50, 2301 (2011)
    47. Katsuhiko Moriya, Jyunichi Watabe, Kunihiko Tanaka, and Hisao Uchiki, Phys. Statet Solidi C, 3, 2848 (2006)
    48. S. Ikeda, W. Septina, Lin Yixin, A. Kyoraiseki, T. Harada, and M. Matsumura, presented at the Renewable and Sustainable Energy Conference (IRSEC), 2013 International, 2013 (unpublished).
    49. A Ennaoui, M Lux-Steiner, A Weber, D Abou-Ras, I Kotschau, H-W Schock, R Schurr, A Holzing, S Jost, and R Hock, Thin Solid Films, 517, 2511 (2009)
    50. Remigijus Juškėnas, Stasė Kanapeckaitė, Violeta Karpavičienė, Zenius Mockus, Vidas Pakštas, Aušra Selskienė, Raimondas Giraitis, and Gediminas Niaura, Sol. Eng. Mater. Sol. Cel., 101, 277 (2012)
    51. Kunihiko Tanaka, Yuki Fukui, Noriko Moritake, and Hisao Uchiki, Sol. Eng. Mater. Sol. Cel., 95, 838 (2011)
    52. SolarServer Global Solar Industry Website, http://www.solarserver.com/solar-magazine/solar-news/current/2012/kw34/ibm-research-develops-11-efficient-czts-pv-cell.html
    53. D Aaron R Barkhouse, Oki Gunawan, Tayfun Gokmen, Teodor K Todorov, and David B Mitzi, Prog. in Photovolta. : Research and Applications, 20, 6 (2012)
    54. Qijie Guo, Grayson M Ford, Wei-Chang Yang, Bryce C Walker, Eric A Stach, Hugh W Hillhouse, and Rakesh Agrawal, J. Am. Chem. Soc., 132, 17384 (2010)
    55. Brendan Flynn, Wei Wang, Chih‐hung Chang, and Gregory S Herman, Phys. Statet Solidi A, 209, 2186 (2012)
    56. YC Li, HZ Zhong, Rui Li, Yi Zhou, CH Yang, and YF Li, Adv. Funct. Mater., 16, 1705 (2006)
    57. R. Caballero, C. A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. W. Schock, Thin Solid Films, 517, 2187 (2009)
    58. YF Nicolau, M Dupuy, and M Brunel, J. Electrochem. Soc., 137, 2915 (1990)
    59. Karthik Ramasamy, Mohammad A Malik, and Paul O'Brien, Chem. Comm., 48, 5703 (2012)
    60. AS Maan, ISRN Optics, 2012 (2012)
    61. Grayson M Ford, Qijie Guo, Rakesh Agrawal, and Hugh W Hillhouse, Chem. Mater., 23, 2626 (2011)
    62. 蔡宗翰, 逢甲大學, 2009.
    63. 曾茂源, 國立成功大學, 2003.
    64. 楊明桓, 國立成功大學, 2002.
    65. CHI Instruments, Model 600C Series Electrochemical Analyzer/Workstation User's Manual(CV)
    66. H Eckhardt, LW Shacklette, KY Jen, and RL Elsenbaumer, J. Phys. Chem., 91, 1303 (1989)
    67. Shaukatali N Inamdar, Pravin P Ingole, and Santosh K Haram, ChemPhysChem, 9, 2574 (2008)
    68. Feng Jiang, Yunchao Li, Mingfu Ye, Louzhen Fan, Yuqin Ding, and Yongfang Li, Chem. Mater., 22, 4632 (2010)
    69. M Ganchev, L Kaupmees, J Iliyna, J Raudoja, O Volobujeva, H Dikov, M Altosaar, E Mellikov, and T Varema, Energy Procedia, 2, 65 (2010)
    70. Egon Wiberg Nils Holleman A. F. Wiberg, Inorganic chemistry. (Academic Press ; De Gruyter, San Diego; Berlin; New York, 2001).
    71. Qijie Guo, Hugh W Hillhouse, and Rakesh Agrawal, J. Am. Chem. Soc., 131, 11672 (2009)
    72. Michael Gratzel, Nature, 414, 338 (2001)

    無法下載圖示 全文公開日期 2018/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE