簡易檢索 / 詳目顯示

研究生: 陳漢
Han - Chen
論文名稱: 體感應用的視覺化引導設計-以太極拳為例
Visual Guiding of Motion Sensing Applications for Practicing Tai-Chi Chuan
指導教授: 陳玲鈴
Lin-Lin Chen
口試委員: 梁容輝
Rung-Huei Liang
余能豪
Neng-Hao Yu
學位類別: 碩士
Master
系所名稱: 設計學院 - 設計系
Department of Design
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 131
中文關鍵詞: 視覺回饋動作引導太極拳深度攝影機穿戴式裝置
外文關鍵詞: visual feedback, action guidance, Taijiquan, depth camera, wearable device
相關次數: 點閱:305下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

每週固定時間的運動,是許多人保持健康的方法,特別是上了年紀的銀髮族,為了預防老化,更需增進身體的活動量。除了抽出時間參與運動課程外,有些人也會運用遊戲機、電視節目、或網路示範影片來進行學習或運動,但基於視覺影像的回饋有限,且無法辨識個別需求,很少能提供如現場親授般的指導教學。有鑑於此,本研究以太極拳為例,運用Kinect體感辨識技術,探討動作引導的視覺化設計。
本實驗分為兩部分,一是透過上課場域的觀察,瞭解教練指導及學員學習的方法;並邀請10位學員拍攝自我練習的影像,再從教練對於學員的動作評比及指導中,歸納出教學系統應該要提供給學員的引導協助。同時,我們更進一步設計出視覺化的元素與互動模式,作為動作學習的導引介面,並設立研究變因在第二部分進行驗證與討論;本研究邀請20位受測者,透過七個不同的練習單元(無引導、手部引導_「軌跡手」、手部引導_「箭頭手」、重心引導_「底重心」、重心引導_「腰重心」、綜合引導_「軌跡手+底重心」、綜合引導_「軌跡手+腰重心」)利用Kinect太極評分系統進行個人動作評分,並在任務操作後進行訪談,了解受測者對於此視覺引導設計的感受與直覺理解,最後整合結果及分析,期能定義出操作績效高且良好的太極拳互動介面,讓練習者皆可獲得滿意的成就感。
本研究發現如下:(1)太極拳動作熟練度大致可分為初階、中階、高階,為了配合各不同經驗值的使用者,應該需讓使用者自己選擇目前需要的引導元素,而非固定式的引導訓練。(2)具有方向性的動作,出現有箭頭元素的引導時,會讓使用者更有信心以及動作更加的穩定。(3)使用者面對螢幕時,會有左右鏡像的問題,系統需要有可調整與示範同方向的設計。(4)重心引導元素的位置如果置於畫面中間時,會有礙手部的引導練習,但如果是單純重心練習則無顯著的差別。(5)視覺引導元素在畫面中的比例越大,越會吸引使用者的注意力,在設計綜合引導元素時,須考量與其他引導元素的比例控制。


Exercising on a weekly basis, has become a way to maintain heathy body for many people. In order to prevent aging of physical body, for the elders, it is important to increase the amount of physical activity. In addition to taking time participating in sports classes in person, some people learn or exercise through the use of gaming console, TV shows, or web-based demonstrations. Because the feedbacks from visual images are limited, and not able to identify individual needs, such methods usually provide less quality compare to lessons taught in person. In view of this, this study takes Taijiquan as an example, using Kinect somatosensory technology, to explore the design space of motion guiding visualization.
This study consist of two parts, one is through in-field observation to understand current coaching and student learning methods, then invited 10 students to shoot self-practicing images in order for coach to provide evaluations and guidance. We then decide with these evaluations what the teaching system should provide, while designing the visual elements and interaction patterns as the learning interface, and set up research variables for the second part of the study for validation and discussion.We invite 20 subjects in the second part of the study. Through seven practicing units(no guidance, hand guidance – “trajectory”, hand guidance – “arrow”, center-of-gravity guidance – “bottom”, center-of-gravity guidance – “waist”, integrated guidance – “trajectory” hand + ”bottom” center-of-gravity guidance, integrated guidance – “trajectory” hand + “waist” center-of-gravity guidance), the Kinect Taijiquan Scoring System designed for the study was used to perform the personal action scoring, then the interview was conducted after the task operation to understand the feelings and intuitive understanding of the visual guidance design. The results were integrated and analyzed to help define elements to create effective interactive system for learning Taijiquan.
The results of this study are as follows: (1) The skill proficiency of Taijiquan can be divided into primary, middle and high, in order to meet the different experience users, the system should provide choices of the guiding elements, rather than fixed guided training. (2) When arrow elements of the guide appear during directional action, it allows users to perform the actions with more confidence and more stable. (3) When facing the screen, there will be a mirror problem, the system needs to be adjustable and demonstrate the same direction in the design. (4) If the position of the center of gravity guiding element is placed in the middle of the screen, it will hinder the hand-guided exercise, but there is no significant difference if it is a simple center-of-gravity exercise. (5) The greater proportion of the visual guiding elements in the screen is, the more it attracts the user’s attention. When designing the system with integrated guiding elements, it is important to consider the ratio among all the elements.

第一章 緒 論 1 1.1 背景與動機 1 1.2 研究目的 4 1.3 流程與架構 5 1.4 範圍與限制 7 第二章 文獻探討 9 2.1 太極拳與健康 9 2.1.1 拳說十要與要領 10 2.1.2 動作與套路 13 2.2 智慧型電視與技術 14 2.2.1 動作捕捉系統 15 2.2.2 體感遊戲趨勢 16 2.3 引導與學習 17 2.3.1 動作引導系統 17 2.3.2 互動學習系統設計 20 2.3.3 多視角畫面引導 22 2.4 視覺回饋與設計原則 22 2.4.1 使用者經驗 23 2.4.2 圖像化介面設計 25 2.4.3 互動學習設計原則 25 2.4.4 運動引導表現方式 26 第三章 研究方法 28 3.1 研究架構 28 3.2 研究方法 29 3.2.1 學習與訪談 29 3.2.2 個人評量與動作分析 29 3.2.3 驗證視覺引導設計 30 3.3 實驗流程 30 第四章 經驗訪談與調查 32 4.1 套路樣本與受訪者 32 4.1.1 套路招式樣本 32 4.1.2 受訪對象 34 4.2 訪談內容設計與流程 35 4.3 訪談結果與分析 37 4.3.1 套路之感受難易度 37 4.3.2 課堂受指導之頻率 40 4.3.3 課外自我練習頻率 42 4.3.4 個人健康之幫助性 44 4.4 調查歸納與整理 47 第五章 動作分析與評量 49 5.1 動作分析實驗設計 49 5.1.1 實驗流程 50 5.1.2 動作評量對象 52 5.2 教練評分與評價 52 5.2.1 受測者影片彙整 53 5.2.2 動作評分與排序 54 5.2.3 招式動作評語 55 5.3 結果分析與建議 57 5.4 視覺概念設計 59 5.4.1 初步概念設計 59 5.4.2 前導(Feed-forward) 61 5.4.3 回饋(Feedback) 62 第六章 視覺引導實測 63 6.1 視覺引導設計 63 6.1.1 手部動作設計 64 6.1.2 重心位移設計 65 6.1.3 綜合引導設計 66 6.2 實驗設計與任務流程 67 6.2.1 研究設備 67 6.2.2 實驗流程 68 6.2.3 介面與任務 69 6.2.4 訪談與問卷 71 6.3 實驗對象 72 6.3.1 受測者基本資料 72 6.3.2 運動習慣調查 73 6.4 研究結果分析 73 6.4.1 任務績效 73 6.4.1.1 三次操作比較 74 6.4.1.2 解說前操作績效 78 6.4.1.3 說明後操作績效 80 6.4.1.4 引導分析比較 81 6.4.1.5 樣式分析比較 82 6.5 訪談與問卷結果 84 第七章 結論與建議 92 7.1 研究結論 92 7.2 未來建議 93 參考文獻 95 附錄一:太極經驗調查問卷 99 附錄二:視覺引導實驗訪談問卷 107

英文文獻
1 Alexiadis, D. S., Kelly, P., Daras, P., O'Connor, N. E., Boubekeur, T., & Moussa, M. B. (2011). Evaluating a dancer's performance using kinect-based skeleton tracking. In Proceedings of the 19th ACM international conference on Multimedia (pp. 659-662).New York: ACM.
2 Anderson, F., Grossman, T., Matejka, J., & Fitzmaurice, G. (2013). YouMove: Enhancing movement training with an augmented reality mirror. In Proceedings of the 26th annual ACM symposium on User interface software and technology (pp. 311-320). New York: ACM.
3 Beyer, H., & Holtzblatt, K. (1997). Contextual Design: Defining Customer-Centered Systems. Elsevier.
4 Brefeld, U. (2015). Multi-view learning with dependent views. In Proceedings of the 30th Annual ACM Symposium on Applied Computing (pp. 865-870). New York. ACM.
5 Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38(1), 53-61.
6 Chen, K. H., Yi-Ping Hung, Ming-Sui Lee(2015). Multimedia learning system for Tai Chi Chuan movement guidance and evaluation. Master Thesis in NTU.
7 Fisk, A. D., Rogers, W. A., Charness, N., Czaja, S. J., & Sharit, J. (2009). Designing for Older Adults: Principles and Creative Human Factors Approaches. CRC press.
8 Garrett, J. J. (2010). Elements of User Experience, The: User-centered Design For The Web and Beyond. Pearson Education.
9 Lan, C., Lai, J. S., Chen, S. Y., & Wong, M. K. (1998). 12-month Tai Chi training in the elderly: its effect on health fitness. Medicine and Science in Sports and Exercise, 30(3), 345-351.

10 Lu, K. Y. (2016). Developing a Depth-camera-based training system with Weight- Transfer feedback for practicing Tai-Chi Chuan. Master Thesis in NTU.
11 Mazzeo, R. S., Cavanagh, P., Evans, W. J., Fiatarone, M., Hagberg, J., McAuley, E., & Startzell, J. (1998). Exercise and physical activity for older adults. Medicine and science in sports and exercise, 30(6), 992-1008.
12 Norman, D. A. (1988). The Psychology of Everyday Things. Basic Books.
13 Rowe, J. W., & Kahn, R. L. (1998). Successful Aging: The MacArthur Foundation Study. New York: Pantheon.
14 Sodhi, R., Benko, H., & Wilson, A. (2012). LightGuide: projected visualizations for hand movement guidance. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 179-188). New York: ACM.
15 Tang, R., Yang, X. D., Bateman, S., Jorge, J., & Tang, A. (2015, April). Physio@ Home: Exploring visual guidance and feedback techniques for physiotherapy exercises. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 4123-4132). New York: ACM.
16 Velloso, E., Bulling, A., & Gellersen, H. (2013, April). MotionMA: motion modelling and analysis by demonstration. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1309-1318). New York: ACM.
17 Welch, G. F. (1985). A schema theory of how children learn to sing in tune. Psychology of music, 13(1), 3-18.
18 Wiener, N. (1961). Cybernetics or Control and Communication in the Animal and the Machine (Vol. 25). MIT press.


中文文獻
19 小峰靜代(民 103)。太極拳研究技術報告(碩士論文)。取自臺灣博碩士論文系統。(系統編號 102PCCU0419014)
20 杨澄甫、陈微明(民 98)。太极拳术十要.  少林与太极,3,016。
21 林世昌(民 90)。太極拳運動對中老年人健康促進的功效. 中華體育季刊,14(4),89-96。
22 林俊達(民 100)。太極拳運動參與者涉入程度對休閒利益及活躍老化之影響研究-以嘉義縣市為例(碩士論文)。取自臺灣博碩士論文系統。(系統編號 099NTCP5571016)
23 劉沅錦(民 97)。練習太極拳對老年人體適能與健康之研析(碩士論文)。取自臺灣博碩士論文系統。(系統編號 097NKUT7836005)
24 劉家銘(民 89)。圖像式功能界面開發模式之研究—以護理記錄系統為例(未發表的碩士論文)。國立成功大學工業設計研究所,台南。
25 藍青、陳思遠、賴金鑫、黃美涓(民 98)。太極拳的健身效果及臨床應用。臺灣醫學,13(6),599-605。

網路資源
26 Britxbox(2011年1月9日).「DanceEvolution」,ХшみЬэヤю楽曲3曲ゎ楽ウバペ無料体験版ソ配信ゎЗУみЬ【部落格圖片資料】。
Retrieved from:http://www.4gamer.net/games/119/G011989/20110119017/
27 Microsoft Xbox(2014).Xbox One 遊戲.
Retrieved from:http://www.xbox.com/zh-TW/games/xbox-one
28 Microsoft Xbox(2016).Your-Shape-Fitness-Evolved.
Retrieved from:http://marketplace.xbox.com/zh-TW/Product/Your-Shape-Fitness-Evolved/66acd000-77fe-1000-9115-d8025553084f
29 Peloton(2016).Retrieved from:https://www.pelotoncycle.com/
30 Xuite(2013年9月22日)。吳氏太極拳競賽套路(第三段分招演練影片&分動圖解)【部落格圖片資料】。
Retrieved from:http://blog.xuite.net/mstrantsai/yahoo/117220153
31 日本武術太極拳聯盟(2011).初段∼3段技能検定 実施日程
Retrieved from:http://www.jwtf.or.jp/qual/qual_menu04.html

QR CODE