簡易檢索 / 詳目顯示

研究生: 鄭楊民
Yang-Min Chang
論文名稱: 表面電漿共振生醫感測之相位靈敏度探討
Phase Sensitivity Study in Interferometer-based Surface Plasmon Resonance Biosensing
指導教授: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-Hung Lin
口試委員: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-hung Lin
張哲菖
Che-Chang Chang
許益誠
Yi-Cheng Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 50
中文關鍵詞: 表面電漿共振相位調製掃頻雷射
外文關鍵詞: Surface Plasmon Resonance, SPR, phase modulation, swept laser
相關次數: 點閱:318下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於近年來光電工業的進步,加上糖尿病患者逐漸年輕化,使得許多人對於葡萄糖的檢測再度產生了興趣,光學生醫感測器在這方面具有相當大的淺力,使得患者能藉由每天很便利的進行葡萄糖檢測來改善糖尿病患著的生活,而 SPR 干涉系統在生物醫學的檢測上面逐漸取代傳統的方法,更是被廣泛的應用在各種疾病的感測,因為它有著對不同折射率的待測物有高靈敏度的檢測特性。
    表面電漿共振(Surface Plasmon Resonance, SPR)是由橫向磁場 TM 模態漸逝波與表面電漿波共振吸收變化進行感測,SPR 通常具有三種不同的結構以獲得表面電漿耦合,分別是棱鏡耦合、光柵耦合以及波導耦合。本篇論文則是使用棱鏡耦合搭配相位調製的方法來做為量測主軸,由於在固定角度或共振波長時,利用相位去觀察變化是最為明顯的。
    由於我們實驗室的 1310nm 掃頻雷射的解析度高達 3pm,比起我們的 OSA 解析度 10pm 來的更好。所以我們嘗試利用掃頻雷射來做為實驗主題,嘗試是否能對生醫感測提高靈敏度,因為寬頻譜光源干涉長度較短,而掃頻雷射干涉長度來的較長,所以相對容易發生干涉,但在實驗過程中,我們發現有嚴重的 fabay perot 現象,而跟寬頻譜光源量測系統做比較雖然有高靈敏度,但穩定性上卻來的較不穩定。相信只要解決穩定性的問題,雷射在生醫感測上絕對會是一大優勢。


    Due to the progress of the optoelectronic industry in recent years and the people with diabetes are getting younger, many people have become interested in glucose detection again. Optical biomedical sensors have considerable potential in improving people's lives with diabetes by conveniently performing glucose detection every day. The surface plasmon resonance (SPR) interference system has gradually replaced the traditional method in biomedical detection. It is widely used in sensing various diseases because it has high sensitivity detection characteristics for objects to be tested with different refractive indexes.
    SPR is executed through the resonance absorption of surface plasma wave by the
    evanescent wave of transverse magnetic (TM) polarized mode. SPR usually has three
    different structures to obtain surface plasma coupling, prism coupling, grating coupling,and waveguide coupling. In this paper, prism coupling and phase modulation are used for characterization. Due to its higher sensitivity, it is the most effective approach to use the phase for biosensing at a fixed angle or resonant wavelength.
    The resolution of our 1310-nm tunable laser is 3-pm, better than 10-pm OSA resolution, and then utilized to improve the biomedical sensing sensitivity. Because the coherence length of the broad spectrum source is shorter, while the interference length of the swept laser with a narrow linewidth is longer, it is relatively easy for the laser to interfere with other resources and cause unstable interferograms, such as the Fabry-Perot effect. Once the stability problem is resolved, the laser will be a significant advantage in interferometer-based SPR biosensing.

    目錄 摘要 1-I Abstract 1-II 致謝 1-III 目錄 1-III 圖目錄 1-VII 表目錄 1-VIIII 第1章 緒論 1 1.1 研究背景 1 1.2研究動機與目的 2 1.3論文架構 2 第2章 表面電漿波原理 3 2.1 表面電漿波 3 2.2 激發表面電漿波之條件 10 2.3 表面電漿耦合方式 11 2.3.1光柵耦合 11 2.3.2波導耦合 11 2.3.3稜鏡耦合 12 2.4 表面電漿生物感測器 13 2.4.1相位調製 14 2.5 窗口傅立葉轉換 18 2.6國內外SPR干涉之生物感測器比較 20 2.6.1利用干涉之SPR生物感測器之研究 20 2.6.2 利用空間干涉之SPR生物感測器之研究 21 2.6.3利用頻譜干涉之SPR生物感測器之研究 23 第3章 研究方法與模擬 25 3.1 金屬厚度設計 25 3.1.1 Krestchmann結構下系統反射率 25 3.1.2金薄膜厚度設計與討論 27 3.2 金薄膜之製程 29 3.2.1使用設備 29 3.2.2蒸鍍原理 30 3.2.3製程步驟 30 3.3波長調製模擬 31 第4章 系統架構與實驗方法 35 4.1 掃頻雷射SPR量測架構 36 4.2 實驗步驟 38 4.2.1 入射角度之控制 38 4.2.2 掃頻雷射SPR實驗流程 39 4.3寬頻雷射SPR量測架構 40 4.3.1寬頻雷射SPR實驗流程 40 4.4實驗結果與分析 43 4.4.1掃頻系統實驗分析 43 4.4.2寬頻系統實驗分析 45 第5章 結論與未來展望 47 5.1 結論 47 5.2未來展望 47 第6章 參考文獻 48

    [1] Homola, Jiří. "Present and future of surface plasmon resonance biosensors."
    Analytical and bioanalytical chemistry 377.3 (2003): 528-539.
    [2] Wood, Robert Williams. "XLII. On a remarkable case of uneven distribution of
    light in a diffraction grating spectrum." The London, Edinburgh, and Dublin
    Philosophical Magazine and Journal of Science 4.21 (1902): 396-402..
    [3] Rayleigh, Lord. "On the dynamical theory of gratings." Proceedings of the
    Royal Society of London. Series A, Containing Papers of a Mathematical and
    Physical Character 79.532 (1907): 399-416.
    [4] Fano, Ugo. "The theory of anomalous diffraction gratings and of quasi-
    stationary waves on metallic surfaces (Sommerfeld’s waves)." JOSA 31.3
    (1941): 213-222.
    [5] Ritchie, Rufus H. "Plasma losses by fast electrons in thin films." Physical
    review 106.5 (1957): 874.
    [6] Otto, Andreas. "Excitation of nonradiative surface plasma waves in silver by
    the method of frustrated total reflection." Zeitschrift für Physik A Hadrons
    and nuclei 216.4 (1968): 398-410.
    [7] Kretschmann, Erwin, and Heinz Raether. "Radiative decay of non radiative
    surface plasmons excited by light." Zeitschrift für Naturforschung A 23.12
    (1968): 2135-2136.
    [8]吳民耀與劉威志, “表面電漿子理論與模擬” 物理雙月刊,廿八卷二期,pp. 486-
    496,2006
    [9]邱國斌與蔡定平, “金屬表面電漿簡介” 物理雙月刊,廿八卷二期,pp.== 472-485,
    2006。
    [10] Gérard, I. "Photodissolution of n-GaAs electrodes under laser illumination:
    control of the etching profile." Semiconductor science and technology 16.4
    (2001): 222. [11] V. Scognamiglio, F. Arduini, G. Palleschi, and G. Rea,
    "Biosensing
    technology for sustainable food safety", TrAC Trends in Analytical
    Chemistry, 62, pp. 1-10, 2014.
    [12] Nelson, S. G., Kyle S. Johnston, and Sinclair S. Yee. "High sensitivity
    surface plasmon resonace sensor based on phase detection." Sensors and
    actuators B: Chemical 35.1-3 (1996): 187-191.
    [13] Kabashin, A. V., and Nikitin, P. I., "Surface plasmon resonance
    interferometer for bio- and chemical-sensors." Optics communications 150.1-6
    (1998): 5-8.
    [14] C. L.Wong, "Two-dimensional biosensor arrays based on surface plasmon
    resonance phase imaging." Applied optics 46.12 (2007): 2325-2332.
    [15] C. L.Wong, "Real-time protein biosensor arrays based on surface plasmon
    resonance differential phase imaging." Biosensors and Bioelectronics 24.4
    (2008): 606-612.
    [16]蘇園登, " 表面電漿共振相位影像系統" 國立中央大學機械工程研究所碩士論
    文,2004.
    [17] Kabashin, A. V., and Nikitin P. I. "Phase and amplitude sensitivities in
    surface plasmon resonance bio and chemical sensing." Optics Express 17.23
    (2009): 21191-21204.
    [18]H.P. Ho and W.W. Lam, "Application of differential phase measurement
    technique to surface plasmon resonance sensors", Sensors and Actuators B:
    Chemical, vol.
    96, pp. 554–559, 2003.
    [19] Takeda, Mitsuo, Hideki Ina, and Seiji Kobayashi. , "Fourier-transform method
    of fringe- pattern analysis for computer-based topography and
    interferometry", Journal of the Optical Society of America 72, pp. 56-160, 1982.
    [20] SLAVÍK, Radan; HOMOLA, Jiří. , “Ultrahigh resolution long range surface
    plasmon-based sensor,” Sensors and Actuators B, vol. 123, pp. 10-12, 2007.
    [21] Nelson, S. G., Kyle S. Johnston, and Sinclair S. Yee, “High sensitivity
    surface plasmon resonance sensor based on phase detection,” Sensors and
    Actuators B, vol. 35–36, pp. 187–191, 1996.
    [22]Kabashin, A. V., and Nikitin P. I., “Interferometer based on a surface-
    plasmon resonance for sensor applications,” Quantum Electron, pp. 653–654,
    1997.
    [23] Hlubina, Petr, et al, “Spectral interferometry-based surface plasmon
    resonance sensor,” Optics Communications, vol. 354, pp. 240-245, 2015.
    [24] Y. Zeng, X. Wang, J. Zhou, R. Miyan, J. Qu, H. Ho, K. Zhou, B. Gao, and Y.
    Shao, 2020. Phase interrogation SPR sensing based on white light polarized
    interference for wide dynamic detection range. Optics Express, 28(3), p3442.
    [25] Homola, Jiří, "Springer series on chemical sensors and biosensors",
    Springer, vol. 4, pp. 3-44, 2006.
    [26] Rakić, Aleksandar D., "Optical properties of metallic films for vertical-
    cavity optoelectronic devices." Applied optics 37.22 (1998): 5271-5283.
    [27] Johnson, Peter B., and Christy, R-WJPr B. "Optical Constants of the Noble
    Metals", Physical Review B, vol. 6, pp. 4370-4379, 1972.
    [28] SCHOTT Taiwan Ltd., "optical glass data sheets", 2015.’

    無法下載圖示 全文公開日期 2026/08/23 (校內網路)
    全文公開日期 2031/08/23 (校外網路)
    全文公開日期 2036/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE