簡易檢索 / 詳目顯示

研究生: 段奇廷
Chi-Ting Tuan
論文名稱: 運用低同調光通訊波長頻譜干涉儀之表面電漿共振
Spectral Low-coherence Interferometry-based SPR using Telecommunication Wavelength
指導教授: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-Hung Lin
口試委員: 張勝良
Sheng-Lyang Jang
莊敏宏
Miin-Horng Juang 
張哲菖
Che-Chang Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 70
中文關鍵詞: 表面電漿共振頻譜干涉儀低同調光
外文關鍵詞: surface plasmon resonance, spectral interferometry, low coherence
相關次數: 點閱:366下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面電漿共振(Surface Plasmon Resonance, SPR) 是一種存在於金屬薄膜(如:金或銀)與非導電介質(如:水或半導體)界面的物理現象,可藉由外加電子或光子來激發薄金屬層及介電層介面間之表面電漿波。當光波在介質內傳導時,從密介質(如:玻璃)傳導至疏介質(如:金或銀),同時入射角度大於全反射角時,依照介面的兩個介質特性不同,會在一特定角度使得入射光波激發金屬表面自由電子,使其沿縱向(Longitudinal)共振運動。而為了激發非輻射性(Non-radiative)的表面電漿波,多採用衰逝全反射(Attenuated Total Reflection)方法,即當入射光於全反射時,其光會進入第二介質,其穿透深度約半個波長左右,即為衰逝波(Evanescent Wave),當表面電漿波與衰逝波的傳播常數相同時,將產生表面電漿共振現象,反射光強度會急遽下降。
    將此特性應用於表面電漿共振生物感測器,具有即時檢測、高靈敏度之表面現象、不須標記(Label-free)等特性,因此廣泛應用於生物檢測與免疫組織化學上,可有效的分析檢測物質之微小濃度折射率變化。實驗室以光通訊波長(1500 nm~1600 nm)的寬頻譜光源作為入射光源,由於通訊波長比可見光波長有較高的穿透性,對於系統的靈敏度而言也提高了約23倍。
    本論文將相同大小的TE、TM極化光一同射入SPR感測器中,在SPR感測器上金屬薄膜與介電層間發生SPR效應時,TE、TM極化光即產生了相位差,兩極化再一同進入一個線偏器產生干涉,並藉由OSA(頻譜分析儀)作分析,此干涉利用SPR效應所產生的相位差來進行干涉,省去了藉由空間增加相位差的行式做干涉所帶來的雜訊。也因為寬頻譜光源與OSA可一次進行多點量測,比使用雷射作單點量測省去了非常多的時間,更增加了量測的即時性。再利用固定化提升miRNA實驗靈敏度,且與MTB DNA做比較。


    Surface plasmon resonance (SPR) is a physical phenomenon that happens between the interface of metal and non-conductive materials and can be induced by external electrons or photons injection. When the light wave is propagating from the high to low refractive index in the material and the incident angle is larger than the total internal reflection, the free electrons in the metal will be excited and resonate in the longitudinal direction at the specific angle. The attenuated total reflection is typically utilized to generate the non-radiative surface plasmon wave. We can say that the incident light angle is large than the total internal reflection, the evanescent wave in the transmitted medium will penetrate into half of the wavelength. When the propagation constants between the evanescent and surface plasmon waves are the same, the surface plasmon resonance is happening and the reflective light will rapidly drop to the minimum.
    By applying this feature onto the biosensing applications, the real-time, high sensitivity and label-free detection are possessed. Therefore, it has been extensively utilized in bio-detection and immunochemistry for its efficiency in analyzing the small refraction index variation of detected materials. Typically there are two modulations, angle and wavelength, for surface plasma resonance, which were sensing the analytes using the smallest reflection at the resonance angle and wavelength. In this thesis, the 1550-nm wavelength for fiber optic communications, used as the light source, was injected on the prism interface to generate the surface plasmon between the metal and non-metal materials. The SPR wavelength modulation was implemented by the fiber-optic communication wavelengths due to its deep penetration depth and high sensitivity compared with the visible light.
    In this thesis, the TE and TM polarized light was well controlled for the equal magnitude for SPR sensor injection, where only TM polarization will interact with the metal and dielectric layers to form the plasmon polariton. Then the linear polarizer was utilized to interfere the TE and TM polarizations to get the fringes on the optical spectrum analyzer (OSA). The use of TM based SPR effect would effectively generate the optical path difference from the TE polarization and demonstrate the spectral interferometry-based SPR. Compared with the spatial interferometry, the noise from the space increases for optical path will be eliminated by the wide-spectrum light source and OSA. Moreover, the real time and high dynamic fringes from the spectral interferometry-based SPR will be superior than the SPR wavelength interrogation by the laser scanning.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 V 第一章 緒論 1 1-1 簡介 1 1-2 研究動機 1 1-3 論文架構 2 第二章 表面電漿子理論與模擬 3 2-1表面電漿波原理 3 2-2 表面電漿波之激發 10 2-2-1 稜鏡耦合 11 2-2-2 光柵耦合 13 2-2-3 光波導耦合 13 2-3 電磁波於介質介質斜向入射之特性 14 2-4 表面電漿共振 17 2-5 表面電漿共振與反射率探討 21 2-5-1 膜厚與反射率關係 21 2-5-2 波長與反射率關係 22 2-5-3 待測物折射率與光強度關係 23 2-6 靈敏度 24 2-7 干涉量測式表面電漿共振分類 25 2-7-1 Optical Heterodyne 25 2-7-2 Spectral Interferometry 26 2-7-3 Spatial Interferometry 27 第三章 稜鏡耦合型SPR感測器製成 28 3-1 元件設計 28 3-2 實驗設備 28 3-3 微流道簡介與其製作流程 30 3-3-1 聚二甲基矽氧烷 31 3-3-2 微流道製程 31 3-4 SPR金屬薄膜製成 33 第四章 波長調製式表面電漿感測器 35 4-1 實驗架構 35 4-2 miRNA-21量測 37 4-2-1 固定化前miRNA-21量測 37 4-2-2 固定化後miRNA-21量測 43 4-3 MTB DNA量測 54 第五章 結論與未來展望 60 5-1 結論 60 5-2 未來展望 61 參考文獻 62

    [01]J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B, vol. 54, pp. 3-15, 1999.
    [02]P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opt. Express, vol. 14, pp.7063-7072, 2006.
    [03]R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Proc. Physical Soc., vol.18, pp. 269-275, 1902.
    [04]R. H. Ritchie, "Plasma losses by fast electrons in thin films," Physical Review, vol. 106, pp. 874-881, 1957.
    [05]W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 2003.
    [06]S. A. Kim, S. J. Kim, S. H. Lee, T. H. Park, K. M. Byun, S. G. Kim, and M. L. Shuler, "Detection of avian influenza-DNA hybridization using wavelength-scanning surface plasmon resonance biosensor," J. Opt. Soc. Korea, vol. 13, pp. 392-397, 2009.
    [07]C. Y. Lin, "Automated color-based segmentation for detection and evaluation of Mycobacterium tuberculosis," Master dissertation, National Cheng Kung University, Tainan, Taiwan, 2009.
    [08] 林 萱,利用相位式表面電漿共振系統檢測免疫球蛋白鍵結之應用分析,國立中央大學光電科學與工程學系,桃園,2012。
    [09] 邱國斌,蔡定平,"金屬表面電漿簡介",物理雙月刊,廿八卷二期,pp. 472-485, 2006。
    [10]C. Pan, “Determination of small biomolecule by fiber-optic surface plasma resonance sensor,” Taipei, 2007.
    [11]G.Y. Lee, “Immobilization of DNA on Non-porous Polymer Particles of Microsize and Their Application,” 2001.
    [12]J.C.T.Eijkel and Albert van den Berg, “Young 4ever-the use of capillarity for passive flow handling in lab on a chip devices”, Lab Chip, vol.6, pp.1405-1408, 2006.
    [13]P. Hlubina, M. Duliakova, M. KadulovaD. Ciprian,“ Spectral interferometry- based surface plasmon resonance sensor”, Optics Communications, vol 354 , pp.240–245 , 2015.
    [14]Zheng Zheng, Yuhang Wan,Xin Zhao, and Jinsong Zhu, “Spectral interferometric measurement of wavelength-dependent phase response for surface plasmon resonance sensors”, Applied Optics , Vol. 48, No. 13 , pp.2491-2495.
    [15]林承賢,"應用於生理檢測之電驅動微流道製作",國立台灣科技大學電子工程所,2014。
    [16]SCHOTT: http://www.us.schott.com/english/index.html
    [17]P. B. Johnson and R. W. Christy “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Physical Review B, vol. 9, no. 12, pp. 5056-5070, 1974
    [18]P. B. Johnson and R. W. Christy “Optical Constants of the Noble Metals,” Physical Review B, vol. 6, pp. 4370-4379, 1972
    [19]Nirmal Prabhakar, Kavita Arora, Sunil K. Arya, Pratima R. Solanki, M. Iwamoto, Harpal Singh andB. D. Malhotra “Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance, ” The Royal Society of Chemistry, vol 133, pp.1587-1592, 2008.
    [20] Yuanhao Huang, Ho Pui Ho, Siu Kai Kong, and Andrei V. Kabashin,
    “Phase-sensitive surface plasmon resonance biosensors: Methodology instrumentation and applications”, Annalender physic, No. 11, pp,637–662, 2012
    [21] S. Y. Wu, H. P. Ho, W. C. Law, Chinlon Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration” OSA, vol. 29, issue 20, pp. 2378-2380, 2004.
    [22]H.P. Hoa, W. Yuana, C.L. Wonga, S.Y. Wua, Y.K. Suenb, S.K. Kongb, Chinlon Lina, “Sensitivity enhancement based on application of multi-pass interferometry in phase-sensitive surface plasmon resonance biosensor”, Optics Communications, vol 275, issue 2 , pp. 491–496.

    QR CODE