簡易檢索 / 詳目顯示

研究生: 黎金春
Chintya - Effendi
論文名稱: Preparation of TiO2 fibers by combining sol-gel and electrospinning methods for potential biomaterial applications
Preparation of TiO2 fibers by combining sol-gel and electrospinning methods for potential biomaterial applications
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 林析右
Shi-Yow Lin
王勝仕
Steven S.-S. Wang
黃駿
Huang Chun
王孟菊
Meng-Jiy Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 97
中文關鍵詞: 靜電紡絲纖維二氧化鈦生物相容性溶膠膠體法PEOXA
外文關鍵詞: Electrospinning, Fibers, TiO2, Biocompatibility, Sol-gel, PEOXA.
相關次數: 點閱:248下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

奈米纖維由於其高比表面積與表面官能基之修飾等優點,因此有利於進行廣泛的實驗研究與探討。而於本論文中,主要利用溶膠凝膠法與靜電紡絲技術以製備二氧化鈦(TiO2)奈米纖維,並利用L-929老鼠成纖細胞進行細胞貼附實驗以對於TiO2纖維進行生物相容性之研究。
由於前驅物叔丁醇鈦(Titanium butoxide; TBT)之物理性質不利於以靜電紡絲技術製備奈米纖維,因此實驗中以聚(2-乙基-2-唑) (Poly(2-ethyl-2-oxazoline); PEOXA)做為高分子載體與TBT均勻混合後以靜電紡絲製備Ti(OR)n-PEOXA複合纖維,分別以改變混合比例 (15:1、10:1、7.5:1、6:1)、工作電壓 (10、15、20、27 kV)、以及工作距離 (5、10、15 cm)等實驗參數下,分析纖維之結構特性與直徑分布,並以鍛燒技術於300至700度之條件下製備TiO2纖維。其纖維直徑分布為112至173 nm之間,實驗結果中顯示,纖維結構、直徑大小以及結晶狀態均受到鍛燒溫度的影響而有所改變。
由於TiO2纖維之結構脆弱,因此於本實驗以聚己內酯(polycarpolactone; PCL)以旋轉塗佈技術增加該纖維之機械強度,分別以傅立葉紅外線光譜儀(FT-IR)、電子顯微鏡(SEM)、熱重分析儀(TGA)、拉曼光譜儀、X-射線繞射分析(XRD)、表面積(BET)以及細胞貼附對於(15:1)-Ti(OR)n-PEOXA、TiO2以及PCL-c-TiO2 纖維進行分析實驗。


Nano-architecture materials such as nanofibers are extensively studied due to their unique characteristics such as large surface area to volume ratio and flexibility in surface functionalization. In this study, a facile and versatile technique for the fabrication of TiO2 nanofibers by the combination of sol-gel and electrospinning techniques was proposed. The biocompatibility study of TiO2 fibers were also evaluated by culturing L-929 fibroblast cells.
Due to the physical properties of the used precursor, titanium (IV) butoxide (TBT), that was not able to be electrospun directly to generate TiO2 fibers. Poly(2-ethyl-2-oxazoline) was used as a template, followed by mixing with TBT, to proceed the sol-gel process through electrospinning for the preparation of Ti(OR)n-PEOXA fibers. The electrospinning parameters included the ratio between TBT and polymer (15:1, 10:1, 7.5:1 and 6:1), applied voltages (10, 15, 20 and 27 kV), and tip-to-collector distances (5, 10, and 15 cm) were investigated in relation with morphological characteristics and the mean diameter of the fibers. Subsequently, the remitted fibers were calcinated at 300 to 700 C in order to obtain pure TiO2 fibers (TiO2).
The as-prepared TiO2 fibers revealed average diameter ranging from 112 to 173 nm with random orientation. The results indicated that the calcination temperature significantly affected the fibers morphology, diameter size and crystalline phases. However, calcinated TiO2 fibers were fragile therefore PCL (polycarpolactone) was spin-coated on one side of TiO2 fibers in order to improve the mechanical strength. The (15:1)-Ti(OR)n-PEOXA, TiO2, and PCL-c-TiO2 fibers were characterized by fourier transformed infrared (FTIR), field emission scanning electron micrsocopy (FE-SEM), thermo-gravimetric analysis (TGA), Raman spectroscopy, and X-ray diffraction (XRD), BET surface area and interactions with mammalian cells.

Abstract i 摘要 ii Acknowledgement iii Content ii List of figures iv List of tables vii Equation list viii Chapter 1. Introduction 1 1.1. Overview 1 1.2. Motivation 3 Chapter 2. Literature Review 4 2.1 Nanofibers 4 2.2 Electrospinning 8 2.2.1. Solution parameter 9 2.2.2. Process parameter 12 2.2.3. Ambient parameter 14 2.3 Polymeric fibers 14 2.4 Inorganic fibers 16 2.4.1 Titanium dioxide fibers (TiO2 fibers) 18 2.4.2 Physical and chemical properties of TiO2 25 2.4.3 Potential TiO2 as biomaterials 28 Chapter 3. Experimental 31 3.1. Chemicals 31 3.1.1. Electrospinning solution 31 3.1.2. Cell culture solution 32 3.2. Instruments 34 3.3. Preparation of Ti(OR)n-PEOXA and TiO2 fibers 34 3.4. Preparation of TiO2 fibers coated polymer 35 3.5. Cell experiment 36 3.5.1. Cell line 36 3.5.2. Preparation of -MEM medium 36 3.5.3. Preparation of phosphate buffered saline (PBS) 36 3.5.4. Harvesting of L-929 fibroblast cells 36 3.5.5. In vitro cell culture 37 3.5.6. Cell counting 37 3.5.7. Cell viability assays 38 3.5.8. Cell morphology 39 3.6. Characterization techniques 39 3.6.1. Electrospinning unit 39 3.6.2. Fourier Transform Infrared Spectrometer – Attenuated Total Reflectance (FTIR-ATR) 39 3.6.3. Field Emission Scanning Electron Microscopy (FE-SEM) 40 3.6.4. Thermogravimetric Analysis (TG-DTA) 40 3.6.5. X-ray Diffraction (XRD) 40 3.6.6. Raman Spectrometry 40 3.6.7. ELISA reader 41 3.6.8. Determination of average diameter of fibers by Image J software 42 3.6.9. Statistical analysis 42 Chapter 4. Results and Discussion 43 4.1. Preparation of Ti(OR)n-PEOXA and TiO2 fibers 43 4.2. Electrospinning Ti(OR)n-PEOXA fibers 44 4.2.1. Effects of solution concentration 44 4.2.2. Effects of applied voltages 46 4.2.3. Effects of tip to collector distance 48 4.2.4. Optimized parameters for electrospinning Ti(OR)n-PEOXA fibers 48 4.3. Characterizations of Ti(OR)n-PEOXA fibers 49 4.4. Characterizations of TiO2 fibers 51 4.4.1. Surface morphology of TiO2 fibers by FESEM 51 4.4.2. Surface functionality of TiO2 by FTIR-ATR 54 4.4.3. Crystals orientation of Ti(OR)n-PEOXA and TiO2 by Raman Spectroscopy 55 4.4.4. Crystallinity of TiO2 by XRD 56 4.4.5. Determination of specific surface area by BET 59 4.5. Modification of TiO2 fibers with polymer 60 4.5.1. Optimization of polymer film/TiO2 (polymer-c-TiO2) 60 4.6. Cell responses on TiO2 and PCL-c-TiO2 62 4.7. Cell morphology 66 Chapter 5. Conclusions 69 Appendix 71 References 74 Questions and answer (Q&A) 81

[1] Chronakis IS. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review. Journal of Materials Processing Technology. 2005;167:283-93.
[2] Zhang X, Xu S, Han G. Fabrication and photocatalytic activity of TiO2 nanofiber membrane. Materials Letters. 2009;63:1761-3.
[3] Li Y, Gong J, He G, Deng Y. Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application. Materials Chemistry and Physics. 2011;129:477-82.
[4] Thavasi V, Singh G, Ramakrishna S. Electrospun nanofibers in energy and environmental applications. Energy & Environmental Science. 2008;1:205-21.
[5] Martina R, Subramanian S, Damian P, Seeram R, Michele M. Multifunctional membranes based on spinning technologies: the synergy of nanofibers and nanoparticles. Nanotechnology. 2008;19:285707.
[6] Venkatachalam S, Hayashi H, Ebina T, Nanjo H. Preparation and Characterization of Nanostructured TiO2 Thin Films by Hydrothermal and Anodization Methods. 2013.
[7] Sangkhaprom N, Supaphol P, Pavarajarn V. Fibrous zinc oxide prepared by combined electrospinning and solvothermal techniques. Ceramics International. 2010;36:357-63.
[8] Wei Q, Li Q, Hou D, Yang Z, Gao W. Surface characterization of functional nanostructures sputtered on fiber substrates. Surface and Coatings Technology. 2006;201:1821-6.
[9] Li D, Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials. 2004;16:1151-70.
[10] Chacko DK, Madhavan AA, Arun TA, Thomas S, Anjusree GS, Deepak TG, et al. Ultrafine TiO2 nanofibers for photocatalysis. RSC Advances. 2013;3:24858-62.
[11] Zhang J, Zhou P, Liu J, Yu J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics. 2014;16:20382-6.
[12] Wetchakun N, Incessungvorn B, Wetchakun K, Phanichphant S. Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method. Materials Letters. 2012;82:195-8.
[13] Jin C-Y, Zhu B-S, Wang X-F, Lu Q-H. Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells. Chemical Research in Toxicology. 2008;21:1871-7.
[14] Yang W-E, Hsu M-L, Lin M-C, Chen Z-H, Chen L-K, Huang H-H. Nano/submicron-scale TiO2 network on titanium surface for dental implant application. Journal of Alloys and Compounds. 2009;479:642-7.
[15] Haddow DB, Kelly JM, James PF, Short RD, Scutt AM, Rawsterne R, et al. Cell response to sol-gel derived titania coatings. Journal of Materials Chemistry. 2000;10:2795-801.
[16] Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. Journal of Biomedical Materials Research Part A. 2010;92A:1218-24.
[17] Black J, Hastings G. Handbook of Biomaterial Properties: Chapman & Hall, London; 1998
[18] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667-81.
[19] Wu S, Weng Z, Liu X, Yeung KWK, Chu PK. Functionalized TiO2 Based Nanomaterials for Biomedical Applications. Advanced Functional Materials. 2014;24:5464-81.
[20] Sridhar R, Sundarrajan S, Venugopal JR, Ravichandran R, Ramakrishna S. Electrospun inorganic and polymer composite nanofibers for biomedical applications. Journal of Biomaterials Science, Polymer Edition. 2012;24:365-85.
[21] Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42:261-72.
[22] Burger C, Hsiao BS, Chu B. Nanofibrous Materials and Their Applications. Annual Review of Materials Science. 2006;36:333-68.
[23] Wu Y, Jia W, An Q, Liu Y, Chen J, Li G. Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications. Nanotechnology. 2009;20.
[24] Yoon K, Hsiao BS, Chu B. Functional nanofibers for environmental applications. Journal of Materials Chemistry. 2008;18:5326-34.
[25] Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer. 2007;48:3306-16.
[26] Guner PT, Miko A, Schweinberger FF, Demirel AL. Self-assembled poly(2-ethyl-2-oxazoline) fibers in aqueous solutions. Polymer Chemistry. 2012;3:322-4.
[27] Huang W, Wang M-J, Liu C-L, You J, Chen S-C, Wang Y-Z, et al. Phase separation in electrospun nanofibers controlled by crystallization induced self-assembly. Journal of Materials Chemistry A. 2014;2:8416-24.
[28] Tao SL, Desai TA. Aligned Arrays of Biodegradable Poly(ε-caprolactone) Nanowires and Nanofibers by Template Synthesis. Nano Letters. 2007;7:1463-8.
[29] Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology. 2003;63:2223-53.
[30] Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. Journal of Applied Polymer Science. 2005;96:557-69.
[31] Perkgoz NK, Toru RS, Unal E, Sefunc MA, Tek S, Mutlugun E, et al. Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range. Applied Catalysis B: Environmental. 2011;105:77-85.
[32] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216.
[33] Sell SA, Bowlin GL. Creating small diameter bioresorbable vascular grafts through electrospinning. Journal of Materials Chemistry. 2008;18:260-3.
[34] Lotus AF, Tacastacas SN, Pinti MJ, Britton LA, Stojilovic N, Ramsier RD, et al. Fabrication and characterization of TiO2–ZnO composite nanofibers. Physica E. 2011;43:857-61.
[35] Li Z, Wang C. Effects of Working Parameters on Electrospinning. One-Dimensional nanostructures: Springer Berlin Heidelberg; 2013. p. 15-28.
[36] Thompson CJ, Chase GG, Yarin AL, Reneker DH. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer. 2007;48:6913-22.
[37] Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances. 2010;28:325-47.
[38] Wu H, Pan W, Lin D, Li H. Electrospinning of ceramic nanofibers: Fabrication, assembly and applications. J Adv Ceram. 2012;1:2-23.
[39] Ramakrishna S, Fujihara K, Teo W-E, Lim T-C. An Introduction to Electrospinning and Nanofibers. Singapore: World Scientific; 2005.
[40] Wang T, Kumar S. Electrospinning of polyacrylonitrile nanofibers. Journal of Applied Polymer Science. 2006;102:1023-9.
[41] Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters. 2004;58:493-7.
[42] Yang Q, Li Z, Hong Y, Zhao Y, Qiu S, Wang C, et al. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. Journal of Polymer Science Part B: Polymer Physics. 2004;42:3721-6.
[43] Li D, McCann JT, Xia Y, Marquez M. Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes. Journal of the American Ceramic Society. 2006;89:1861-9.
[44] Yuan X, Zhang Y, Dong C, Sheng J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International. 2004;53:1704-10.
[45] Haridas AK, Sharma CS, Sritharan V, Rao TN. Fabrication and surface functionalization of electrospun polystyrene submicron fibers with controllable surface roughness. RSC Advances. 2014;4:12188-97.
[46] Li Z, Wang C. Effects of Working Parameters on Electrospinning. One-Dimensional Nanostructures: SpringerBriefs in Materials; 2013. p. 15-28.
[47] Son WK, Youk JH, Lee TS, Park WH. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer. 2004;45:2959-66.
[48] Lee MW, An S, Latthe SS, Lee C, Hong S, Yoon SS. Electrospun Polystyrene Nanofiber Membrane with Superhydrophobicity and Superoleophilicity for Selective Separation of Water and Low Viscous Oil. ACS Applied Materials & Interfaces. 2013;5:10597-604.
[49] Lee KH, Kim HY, La YM, Lee DR, Sung NH. Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats. Journal of Polymer Science Part B: Polymer Physics. 2002;40:2259-68.
[50] Kamal K. Gupta, Akshay Kundan, Pradeep K. Mishra, Pradeep Srivastava, Sujata Mohanty, Narendra K. Singh, et al. Polycaprolactone composites with TiO2 for potential nanobiomaterials: tunable properties using different phases. Physical Chemistry Chemical Physics. 2012;14:12844-53.
[51] Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials. 2006;27:596-606.
[52] Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials. 2005;26:2527-36.
[53] Li L, Jiang Z, Li M, Li R, Fang T. Hierarchically structured PMMA fibers fabricated by electrospinning. RSC Advances. 2014;4:52973-85.
[54] Choi S-S, Lee S, Im S, Kim S, Joo Y. Silica nanofibers from electrospinning/sol-gel process. Journal of Materials Science Letters. 2003;22:891-3.
[55] Azad AM, Noibi M, Ramachandran M. Fabrication and characterization of 1-D alumina (Al2O3) nanofibers in an electric field. Bulletin of the polish academy of sciences technical sciences. 2007;55:195-201.
[56] Song X, Liu L. Characterization of electrospun ZnO–SnO2 nanofibers for ethanol sensor. Sensors and Actuators A: Physical. 2009;154:175-9.
[57] Park S-J, Chase G, Jeong K-U, Kim H. Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol–gel precursor. Journal of Sol-Gel Science and Technology. 2010;54:188-94.
[58] Li D, Xia Y. Fabrication of Titania Nanofibers by Electrospinning. Nano Letters. 2003;3:555-60.
[59] Lee WS, Park Y-S, Cho Y-K. Significantly enhanced antibacterial activity of TiO2 nanofibers with hierarchical nanostructures and controlled crystallinity. Analyst. 2015;140:616-22.
[60] He G, Cai Y, Zhao Y, Wang X, Lai C, Xi M, et al. Electrospun anatase-phase TiO2 nanofibers with different morphological structures and specific surface areas. Journal of Colloid and Interface Science. 2013;398:103-11.
[61] Hashimoto K, Irie H, Fujishima A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics. 2005;44.
[62] Doh S. J, Kim C, Lee SG, Lee SJ, Kim H. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. Journal of Hazardous Materials. 2008;154:118-27.
[63] Gao H, Qiao B, Wang T-J, Wang D, Jin Y. Cerium Oxide Coating of Titanium Dioxide Pigment to Decrease Its Photocatalytic Activity. Industrial & Engineering Chemistry Research. 2013;53:189-97.
[64] Fu G, Vary PS, Lin C-T. Anatase TiO2 Nanocomposites for Antimicrobial Coatings. The Journal of Physical Chemistry B. 2005;109:8889-98.
[65] Park J-A, Moon J, Lee S-J, Kim SH, Zyung T, Chu HY. Structural, electrical and gas sensing properties of eletrospun TiO2 nanofibers. Thin Solid Films. 2010;518:6642-5.
[66] Grätzel M. Sol-Gel Processed TiO2 Films for Photovoltaic Applications. Journal of Sol-Gel Science and Technology. 2001;22:7-13.
[67] Mondal K, Bhattacharyya S, Sharma A. Photocatalytic Degradation of Naphthalene by Electrospun Mesoporous Carbon-Doped Anatase TiO2 Nanofiber Mats. Industrial & Engineering Chemistry Research. 2014;53:18900-9.
[68] Soo-Jin Park, Yong C. Kang, Ju Y. Park, Ed A. Evans, Rex D. Ramsier, Chase GG. Physical Characteristics of Titania Nanofibers Synthesized by Sol-Gel and Electrospinning Techniques. Journal of Engineered Fibers and Fabrics. 2010;5.
[69] So W, Park S, Kim K, Shin C, Moon S. The crystalline phase stability of titania particles prepared at room temperature by the sol-gel method. Journal of Materials Science. 2001;36:4299-305.
[70] Li D, Haneda H, Hishita S, Ohashi N. Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization. Chemistry of Materials. 2005;17:2588-95.
[71] Kim S-J, Lee EG, Park SD, Jeon CJ, Cho YH, Rhee CK, et al. Photocatalytic Effects of Rutile Phase TiO2 Ultrafine Powder with High Specific Surface Area Obtained by a Homogeneous Precipitation Process at Low Temperatures. Journal of Sol-Gel Science and Technology. 2001;22:63-74.
[72] Brinker CJ, Scherer GW. Sol-Gel Science, The Physics and Chemistry of Sol-gel Processing. New York: Academic Press; 1990.
[73] Hench LL, West JK. The sol-gel process. Chemical Reviews. 1990;90:33-72.
[74] Charbonneau C, Gauvin R, Demopoulos GP. Nucleation and growth of self-assembled nanofibre-structured rutile (TiO2) particles via controlled forced hydrolysis of titanium tetrachloride solution. Journal of Crystal Growth. 2009;312:86-94.
[75] Pongsorrarith V, Srisitthiratkul C, Laohhasurayotin K, Intasanta N. Solution- and air-recoverable photocatalytic nanofibers by facile and cost-effective electrospinning and co-precipitation processes. Materials Letters. 2012;67:1-4.
[76] Yu J, Yu H, Cheng B, Zhao X, Zhang Q. Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. Journal of Photochemistry and Photobiology A: Chemistry. 2006;182:121-7.
[77] Joshi P, Zhang L, Davoux D, Zhu Z, Galipeau D, Fong H, et al. Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency. Energy & Environmental Science. 2010;3:1507-10.
[78] Macwan DP, Dave PN, Chaturvedi S. A review on nano-TiO2 sol–gel type syntheses and its applications. Journal Mater Science. 2011;46:3669-86.
[79] Katsuhiro O, Bin D, Yosuke T, Takayuki N, Michiyo Y, Shinichiro S, et al. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology. 2006;17:1026.
[80] Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic Activity for Hydrogen Evolution of Electrospun TiO2 Nanofibers. ACS Applied Materials & Interfaces. 2009;1:1140-3.
[81] Meng X, Shin D-W, Yu SM, Jung JH, Kim HI, Lee HM, et al. Growth of hierarchical TiO2 nanostructures on anatase nanofibers and their application in photocatalytic activity. CrystEngComm. 2011;13:3021-9.
[82] Kim I-D, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL. Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers. Nano Letters. 2006;6:2009-13.
[83] Vu D, Li X, Li Z, Wang C. Phase-Structure Effects of Electrospun TiO2 Nanofiber Membranes on As(III) Adsorption. Journal of Chemical & Engineering Data. 2013;58:71-7.
[84] Yan L, Si S, Chen Y, Yuan T, Fan H, Yao Y, et al. Electrospun in-situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers and Polymers. 2011;12:207-13.
[85] Su C, Hong BY, Tseng CM. Sol–gel preparation and photocatalysis of titanium dioxide. Catalysis Today. 2004;96:119-26.
[86] Ranade MR, Navrotsky A, Zhang HZ, Banfield JF, Elder SH, Zaban A, et al. Energetics of nanocrystalline TiO2. Proceedings of the National Academy of Sciences. 2002;99:6476-81.
[87] Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, Coss Rd, Oskam G. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology. 2008;19:145605.
[88] Pottier A, Chaneac C, Tronc E, Mazerolles L, Jolivet J-P. Synthesis of brookite TiO nanoparticles by thermolysis of TiCl in strongly acidic aqueous media. Journal of Materials Chemistry. 2001;11:1116-21.
[89] Terabe K, Kato K, Miyazaki H, Yamaguchi S, Imai A, Iguchi Y. Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide. Journal of Materials Science. 1994;29:1617-22.
[90] Beltrán A, Gracia L, Andrés J. Density Functional Theory Study of the Brookite Surfaces and Phase Transitions between Natural Titania Polymorphs. The Journal of Physical Chemistry B. 2006;110:23417-23.
[91] Huang X, Leal M, Li Q. Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes. Water Research. 2008;42:1142-50.
[92] Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M. Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Sci Rep. 2014;4.
[93] Hanaor DH, Sorrell C. Review of the anatase to rutile phase transformation. Journal of Materials Science. 2011;46:855-74.
[94] Ong W-J, Tan L-L, Chai S-P, Yong S-T, Mohamed AR. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale. 2014;6:1946-2008.
[95] Landmann M, Rauls E, Schmidt WG. The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of Physics: Condensed Matter. 2012;24:195503.
[96] Ghosh TB, Dhabal S, Datta AK. On crystallite size dependence of phase stability of nanocrystalline TiO2. Journal of Applied Physics. 2003;94:4577-82.
[97] Zhang B, Wei F, Wu Q, Piao L, Liu M, Jin Z. The Formation and Evolution of the High Surface Energy Facets of Anatase TiO2. The Journal of Physical Chemistry C. 2015.
[98] Xiong Z, Wu H, Zhang L, Gu Y, Zhao XS. Synthesis of TiO2 with controllable ratio of anatase to rutile. Journal of Materials Chemistry A. 2014;2:9291-7.
[99] Mehranpour H, Askari M, Ghamsari MS. Nucleation and Growth of TiO2 Nanoparticles: InTech 2011.
[100] Zhang J, Li M, Feng Z, Chen J, Li C. UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. The Journal of Physical Chemistry B. 2006;110:927-35.
[101] Sugimoto T, Zhou X. Synthesis of Uniform Anatase TiO2 Nanoparticles by the Gel–Sol Method: Adsorption of OH− Ions to Ti(OH)4 Gel and TiO2 Particles. Journal of Colloid and Interface Science. 2002;252:347-53.
[102] LaMer VK, Dinegar RH. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society. 1950;72:4847-54.
[103] Fostad G, Hafell B, Frde A, Dittmann R, Sabetrasekh R, Will J, et al. Loadable TiO2 scaffolds—A correlation study between processing parameters, micro CT analysis and mechanical strength. Journal of the European Ceramic Society. 2009;29:2773-81.
[104] Cannillo V, Chiellini F, Fabbri P, Sola A. Production of Bioglass® 45S5 – Polycaprolactone composite scaffolds via salt-leaching. Composite Structures. 2010;92:1823-32.
[105] Oh S, Daraio C, Chen L-H, Pisanic TR, Fiñones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. Journal of Biomedical Materials Research Part A. 2006;78A:97-103.
[106] Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews. 2009;61:1033-42.
[107] Arcos D, Vallet-Regí M. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia. 2010;6:2874-88.
[108] Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, et al. Hybrid bone implants: Self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials. 2008;29:161-71.
[109] Diez-Pascual AM, Diez-Vicente AL. Effect of TiO2 nanoparticles on the performance of polyphenylsulfone biomaterial for orthopaedic implants. Journal of Materials Chemistry B. 2014;2:7502-14.
[110] Smith BS, Yoriya S, Grissom L, Grimes CA, Popat KC. Hemocompatibility of titania nanotube arrays. Journal of Biomedical Materials Research Part A. 2010;95A:350-60.
[111] El-Hibri MJ. Polymers Containing Sulfur, Polysulfones. Kirk-Othmer Encyclopedia of Chemical Technology: John Wiley & Sons, Inc.; 2000.
[112] Karpagavalli R, Zhou A, Chellamuthu P, Nguyen K. Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V. Journal of Biomedical Materials Research Part A. 2007;83A:1087-95.
[113] Thonemann B, Schmalz G, Hiller KA, Schweikl H. Responses of L929 mouse fibroblasts, primary and immortalized bovine dental papilla-derived cell lines to dental resin components. Dental Materials. 2002;18:318-23.
[114] Brooke LF, Toby DB, Zee U, Dietmar WH, Paul DD, Tim RD. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication. 2013;5:025001.
[115] Wong B, Teoh S-H, Kang L. Polycaprolactone scaffold as targeted drug delivery system and cell attachment scaffold for postsurgical care of limb salvage. Drug Delivery and Translational Research. 2012;2:272-83.
[116] Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee H-S, et al. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24:801-8.
[117] Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. Journal of Immunological Methods. 1983;64:313-20.
[118] Cullity BD, Stock SR. Elements of X-ray Diffraction. New Jersey: Prentice Hall, Inc.; 2001.
[119] Gouadec G, Colomban P. Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Progress in Crystal Growth and Characterization of Materials. 2007;53:1-56.
[120] Hoogenboom R, Schlaad H. Bioinspired Poly(2-oxazoline)s. Polymers. 2011;3:467-88.
[121] Coats AW, Redfern JP. Thermogravimetric analysis. A review. Analyst. 1963;88:906-24.
[122] Llansola-Portoles MJ, Bergkamp JJ, Finkelstein-Shapiro D, Sherman BD, Kodis G, Dimitrijevic NM, et al. Controlling Surface Defects and Photophysics in TiO2 Nanoparticles. The Journal of Physical Chemistry A. 2014;118:10631-8.
[123] Yan J, Wu G, Guan N, Li L, Li Z, Cao X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Physical Chemistry Chemical Physics. 2013;15:10978-88.
[124] Patterson AL. The Scherrer Formula for X-Ray Particle Size Determination. Physical Review. 1939;56:978-82.
[125] Bornside DE, Macosko CW, Scriven LE. Spin coating: One‐dimensional model. Journal of Applied Physics. 1989;66:5185-93.
[126] Glass JE. Water-Soluble Polymers: American Chemical Society; 1986.
[127] Murphy-Ullrich JE. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? The Journal of Clinical Investigation. 2001;107:785-90.
[128] Zhu L, Ye X, Tang G, Zhao N, Gong Y, Zhao Y, et al. Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. Journal of Biomedical Materials Research Part A. 2006;78A:515-22.

[1] Chronakis IS. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review. Journal of Materials Processing Technology. 2005;167:283-93.
[2] Zhang X, Xu S, Han G. Fabrication and photocatalytic activity of TiO2 nanofiber membrane. Materials Letters. 2009;63:1761-3.
[3] Li Y, Gong J, He G, Deng Y. Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application. Materials Chemistry and Physics. 2011;129:477-82.
[4] Thavasi V, Singh G, Ramakrishna S. Electrospun nanofibers in energy and environmental applications. Energy & Environmental Science. 2008;1:205-21.
[5] Martina R, Subramanian S, Damian P, Seeram R, Michele M. Multifunctional membranes based on spinning technologies: the synergy of nanofibers and nanoparticles. Nanotechnology. 2008;19:285707.
[6] Venkatachalam S, Hayashi H, Ebina T, Nanjo H. Preparation and Characterization of Nanostructured TiO2 Thin Films by Hydrothermal and Anodization Methods. 2013.
[7] Sangkhaprom N, Supaphol P, Pavarajarn V. Fibrous zinc oxide prepared by combined electrospinning and solvothermal techniques. Ceramics International. 2010;36:357-63.
[8] Wei Q, Li Q, Hou D, Yang Z, Gao W. Surface characterization of functional nanostructures sputtered on fiber substrates. Surface and Coatings Technology. 2006;201:1821-6.
[9] Li D, Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials. 2004;16:1151-70.
[10] Chacko DK, Madhavan AA, Arun TA, Thomas S, Anjusree GS, Deepak TG, et al. Ultrafine TiO2 nanofibers for photocatalysis. RSC Advances. 2013;3:24858-62.
[11] Zhang J, Zhou P, Liu J, Yu J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics. 2014;16:20382-6.
[12] Wetchakun N, Incessungvorn B, Wetchakun K, Phanichphant S. Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method. Materials Letters. 2012;82:195-8.
[13] Jin C-Y, Zhu B-S, Wang X-F, Lu Q-H. Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells. Chemical Research in Toxicology. 2008;21:1871-7.
[14] Yang W-E, Hsu M-L, Lin M-C, Chen Z-H, Chen L-K, Huang H-H. Nano/submicron-scale TiO2 network on titanium surface for dental implant application. Journal of Alloys and Compounds. 2009;479:642-7.
[15] Haddow DB, Kelly JM, James PF, Short RD, Scutt AM, Rawsterne R, et al. Cell response to sol-gel derived titania coatings. Journal of Materials Chemistry. 2000;10:2795-801.
[16] Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. Journal of Biomedical Materials Research Part A. 2010;92A:1218-24.
[17] Black J, Hastings G. Handbook of Biomaterial Properties: Chapman & Hall, London; 1998
[18] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667-81.
[19] Wu S, Weng Z, Liu X, Yeung KWK, Chu PK. Functionalized TiO2 Based Nanomaterials for Biomedical Applications. Advanced Functional Materials. 2014;24:5464-81.
[20] Sridhar R, Sundarrajan S, Venugopal JR, Ravichandran R, Ramakrishna S. Electrospun inorganic and polymer composite nanofibers for biomedical applications. Journal of Biomaterials Science, Polymer Edition. 2012;24:365-85.
[21] Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42:261-72.
[22] Burger C, Hsiao BS, Chu B. Nanofibrous Materials and Their Applications. Annual Review of Materials Science. 2006;36:333-68.
[23] Wu Y, Jia W, An Q, Liu Y, Chen J, Li G. Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications. Nanotechnology. 2009;20.
[24] Yoon K, Hsiao BS, Chu B. Functional nanofibers for environmental applications. Journal of Materials Chemistry. 2008;18:5326-34.
[25] Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer. 2007;48:3306-16.
[26] Guner PT, Miko A, Schweinberger FF, Demirel AL. Self-assembled poly(2-ethyl-2-oxazoline) fibers in aqueous solutions. Polymer Chemistry. 2012;3:322-4.
[27] Huang W, Wang M-J, Liu C-L, You J, Chen S-C, Wang Y-Z, et al. Phase separation in electrospun nanofibers controlled by crystallization induced self-assembly. Journal of Materials Chemistry A. 2014;2:8416-24.
[28] Tao SL, Desai TA. Aligned Arrays of Biodegradable Poly(ε-caprolactone) Nanowires and Nanofibers by Template Synthesis. Nano Letters. 2007;7:1463-8.
[29] Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology. 2003;63:2223-53.
[30] Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. Journal of Applied Polymer Science. 2005;96:557-69.
[31] Perkgoz NK, Toru RS, Unal E, Sefunc MA, Tek S, Mutlugun E, et al. Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range. Applied Catalysis B: Environmental. 2011;105:77-85.
[32] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216.
[33] Sell SA, Bowlin GL. Creating small diameter bioresorbable vascular grafts through electrospinning. Journal of Materials Chemistry. 2008;18:260-3.
[34] Lotus AF, Tacastacas SN, Pinti MJ, Britton LA, Stojilovic N, Ramsier RD, et al. Fabrication and characterization of TiO2–ZnO composite nanofibers. Physica E. 2011;43:857-61.
[35] Li Z, Wang C. Effects of Working Parameters on Electrospinning. One-Dimensional nanostructures: Springer Berlin Heidelberg; 2013. p. 15-28.
[36] Thompson CJ, Chase GG, Yarin AL, Reneker DH. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer. 2007;48:6913-22.
[37] Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances. 2010;28:325-47.
[38] Wu H, Pan W, Lin D, Li H. Electrospinning of ceramic nanofibers: Fabrication, assembly and applications. J Adv Ceram. 2012;1:2-23.
[39] Ramakrishna S, Fujihara K, Teo W-E, Lim T-C. An Introduction to Electrospinning and Nanofibers. Singapore: World Scientific; 2005.
[40] Wang T, Kumar S. Electrospinning of polyacrylonitrile nanofibers. Journal of Applied Polymer Science. 2006;102:1023-9.
[41] Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters. 2004;58:493-7.
[42] Yang Q, Li Z, Hong Y, Zhao Y, Qiu S, Wang C, et al. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. Journal of Polymer Science Part B: Polymer Physics. 2004;42:3721-6.
[43] Li D, McCann JT, Xia Y, Marquez M. Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes. Journal of the American Ceramic Society. 2006;89:1861-9.
[44] Yuan X, Zhang Y, Dong C, Sheng J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International. 2004;53:1704-10.
[45] Haridas AK, Sharma CS, Sritharan V, Rao TN. Fabrication and surface functionalization of electrospun polystyrene submicron fibers with controllable surface roughness. RSC Advances. 2014;4:12188-97.
[46] Li Z, Wang C. Effects of Working Parameters on Electrospinning. One-Dimensional Nanostructures: SpringerBriefs in Materials; 2013. p. 15-28.
[47] Son WK, Youk JH, Lee TS, Park WH. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer. 2004;45:2959-66.
[48] Lee MW, An S, Latthe SS, Lee C, Hong S, Yoon SS. Electrospun Polystyrene Nanofiber Membrane with Superhydrophobicity and Superoleophilicity for Selective Separation of Water and Low Viscous Oil. ACS Applied Materials & Interfaces. 2013;5:10597-604.
[49] Lee KH, Kim HY, La YM, Lee DR, Sung NH. Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats. Journal of Polymer Science Part B: Polymer Physics. 2002;40:2259-68.
[50] Kamal K. Gupta, Akshay Kundan, Pradeep K. Mishra, Pradeep Srivastava, Sujata Mohanty, Narendra K. Singh, et al. Polycaprolactone composites with TiO2 for potential nanobiomaterials: tunable properties using different phases. Physical Chemistry Chemical Physics. 2012;14:12844-53.
[51] Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials. 2006;27:596-606.
[52] Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials. 2005;26:2527-36.
[53] Li L, Jiang Z, Li M, Li R, Fang T. Hierarchically structured PMMA fibers fabricated by electrospinning. RSC Advances. 2014;4:52973-85.
[54] Choi S-S, Lee S, Im S, Kim S, Joo Y. Silica nanofibers from electrospinning/sol-gel process. Journal of Materials Science Letters. 2003;22:891-3.
[55] Azad AM, Noibi M, Ramachandran M. Fabrication and characterization of 1-D alumina (Al2O3) nanofibers in an electric field. Bulletin of the polish academy of sciences technical sciences. 2007;55:195-201.
[56] Song X, Liu L. Characterization of electrospun ZnO–SnO2 nanofibers for ethanol sensor. Sensors and Actuators A: Physical. 2009;154:175-9.
[57] Park S-J, Chase G, Jeong K-U, Kim H. Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol–gel precursor. Journal of Sol-Gel Science and Technology. 2010;54:188-94.
[58] Li D, Xia Y. Fabrication of Titania Nanofibers by Electrospinning. Nano Letters. 2003;3:555-60.
[59] Lee WS, Park Y-S, Cho Y-K. Significantly enhanced antibacterial activity of TiO2 nanofibers with hierarchical nanostructures and controlled crystallinity. Analyst. 2015;140:616-22.
[60] He G, Cai Y, Zhao Y, Wang X, Lai C, Xi M, et al. Electrospun anatase-phase TiO2 nanofibers with different morphological structures and specific surface areas. Journal of Colloid and Interface Science. 2013;398:103-11.
[61] Hashimoto K, Irie H, Fujishima A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics. 2005;44.
[62] Doh S. J, Kim C, Lee SG, Lee SJ, Kim H. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. Journal of Hazardous Materials. 2008;154:118-27.
[63] Gao H, Qiao B, Wang T-J, Wang D, Jin Y. Cerium Oxide Coating of Titanium Dioxide Pigment to Decrease Its Photocatalytic Activity. Industrial & Engineering Chemistry Research. 2013;53:189-97.
[64] Fu G, Vary PS, Lin C-T. Anatase TiO2 Nanocomposites for Antimicrobial Coatings. The Journal of Physical Chemistry B. 2005;109:8889-98.
[65] Park J-A, Moon J, Lee S-J, Kim SH, Zyung T, Chu HY. Structural, electrical and gas sensing properties of eletrospun TiO2 nanofibers. Thin Solid Films. 2010;518:6642-5.
[66] Grätzel M. Sol-Gel Processed TiO2 Films for Photovoltaic Applications. Journal of Sol-Gel Science and Technology. 2001;22:7-13.
[67] Mondal K, Bhattacharyya S, Sharma A. Photocatalytic Degradation of Naphthalene by Electrospun Mesoporous Carbon-Doped Anatase TiO2 Nanofiber Mats. Industrial & Engineering Chemistry Research. 2014;53:18900-9.
[68] Soo-Jin Park, Yong C. Kang, Ju Y. Park, Ed A. Evans, Rex D. Ramsier, Chase GG. Physical Characteristics of Titania Nanofibers Synthesized by Sol-Gel and Electrospinning Techniques. Journal of Engineered Fibers and Fabrics. 2010;5.
[69] So W, Park S, Kim K, Shin C, Moon S. The crystalline phase stability of titania particles prepared at room temperature by the sol-gel method. Journal of Materials Science. 2001;36:4299-305.
[70] Li D, Haneda H, Hishita S, Ohashi N. Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization. Chemistry of Materials. 2005;17:2588-95.
[71] Kim S-J, Lee EG, Park SD, Jeon CJ, Cho YH, Rhee CK, et al. Photocatalytic Effects of Rutile Phase TiO2 Ultrafine Powder with High Specific Surface Area Obtained by a Homogeneous Precipitation Process at Low Temperatures. Journal of Sol-Gel Science and Technology. 2001;22:63-74.
[72] Brinker CJ, Scherer GW. Sol-Gel Science, The Physics and Chemistry of Sol-gel Processing. New York: Academic Press; 1990.
[73] Hench LL, West JK. The sol-gel process. Chemical Reviews. 1990;90:33-72.
[74] Charbonneau C, Gauvin R, Demopoulos GP. Nucleation and growth of self-assembled nanofibre-structured rutile (TiO2) particles via controlled forced hydrolysis of titanium tetrachloride solution. Journal of Crystal Growth. 2009;312:86-94.
[75] Pongsorrarith V, Srisitthiratkul C, Laohhasurayotin K, Intasanta N. Solution- and air-recoverable photocatalytic nanofibers by facile and cost-effective electrospinning and co-precipitation processes. Materials Letters. 2012;67:1-4.
[76] Yu J, Yu H, Cheng B, Zhao X, Zhang Q. Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. Journal of Photochemistry and Photobiology A: Chemistry. 2006;182:121-7.
[77] Joshi P, Zhang L, Davoux D, Zhu Z, Galipeau D, Fong H, et al. Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency. Energy & Environmental Science. 2010;3:1507-10.
[78] Macwan DP, Dave PN, Chaturvedi S. A review on nano-TiO2 sol–gel type syntheses and its applications. Journal Mater Science. 2011;46:3669-86.
[79] Katsuhiro O, Bin D, Yosuke T, Takayuki N, Michiyo Y, Shinichiro S, et al. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology. 2006;17:1026.
[80] Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic Activity for Hydrogen Evolution of Electrospun TiO2 Nanofibers. ACS Applied Materials & Interfaces. 2009;1:1140-3.
[81] Meng X, Shin D-W, Yu SM, Jung JH, Kim HI, Lee HM, et al. Growth of hierarchical TiO2 nanostructures on anatase nanofibers and their application in photocatalytic activity. CrystEngComm. 2011;13:3021-9.
[82] Kim I-D, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL. Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers. Nano Letters. 2006;6:2009-13.
[83] Vu D, Li X, Li Z, Wang C. Phase-Structure Effects of Electrospun TiO2 Nanofiber Membranes on As(III) Adsorption. Journal of Chemical & Engineering Data. 2013;58:71-7.
[84] Yan L, Si S, Chen Y, Yuan T, Fan H, Yao Y, et al. Electrospun in-situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers and Polymers. 2011;12:207-13.
[85] Su C, Hong BY, Tseng CM. Sol–gel preparation and photocatalysis of titanium dioxide. Catalysis Today. 2004;96:119-26.
[86] Ranade MR, Navrotsky A, Zhang HZ, Banfield JF, Elder SH, Zaban A, et al. Energetics of nanocrystalline TiO2. Proceedings of the National Academy of Sciences. 2002;99:6476-81.
[87] Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, Coss Rd, Oskam G. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology. 2008;19:145605.
[88] Pottier A, Chaneac C, Tronc E, Mazerolles L, Jolivet J-P. Synthesis of brookite TiO nanoparticles by thermolysis of TiCl in strongly acidic aqueous media. Journal of Materials Chemistry. 2001;11:1116-21.
[89] Terabe K, Kato K, Miyazaki H, Yamaguchi S, Imai A, Iguchi Y. Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide. Journal of Materials Science. 1994;29:1617-22.
[90] Beltrán A, Gracia L, Andrés J. Density Functional Theory Study of the Brookite Surfaces and Phase Transitions between Natural Titania Polymorphs. The Journal of Physical Chemistry B. 2006;110:23417-23.
[91] Huang X, Leal M, Li Q. Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes. Water Research. 2008;42:1142-50.
[92] Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M. Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Sci Rep. 2014;4.
[93] Hanaor DH, Sorrell C. Review of the anatase to rutile phase transformation. Journal of Materials Science. 2011;46:855-74.
[94] Ong W-J, Tan L-L, Chai S-P, Yong S-T, Mohamed AR. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale. 2014;6:1946-2008.
[95] Landmann M, Rauls E, Schmidt WG. The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of Physics: Condensed Matter. 2012;24:195503.
[96] Ghosh TB, Dhabal S, Datta AK. On crystallite size dependence of phase stability of nanocrystalline TiO2. Journal of Applied Physics. 2003;94:4577-82.
[97] Zhang B, Wei F, Wu Q, Piao L, Liu M, Jin Z. The Formation and Evolution of the High Surface Energy Facets of Anatase TiO2. The Journal of Physical Chemistry C. 2015.
[98] Xiong Z, Wu H, Zhang L, Gu Y, Zhao XS. Synthesis of TiO2 with controllable ratio of anatase to rutile. Journal of Materials Chemistry A. 2014;2:9291-7.
[99] Mehranpour H, Askari M, Ghamsari MS. Nucleation and Growth of TiO2 Nanoparticles: InTech 2011.
[100] Zhang J, Li M, Feng Z, Chen J, Li C. UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. The Journal of Physical Chemistry B. 2006;110:927-35.
[101] Sugimoto T, Zhou X. Synthesis of Uniform Anatase TiO2 Nanoparticles by the Gel–Sol Method: Adsorption of OH− Ions to Ti(OH)4 Gel and TiO2 Particles. Journal of Colloid and Interface Science. 2002;252:347-53.
[102] LaMer VK, Dinegar RH. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society. 1950;72:4847-54.
[103] Fostad G, Hafell B, Frde A, Dittmann R, Sabetrasekh R, Will J, et al. Loadable TiO2 scaffolds—A correlation study between processing parameters, micro CT analysis and mechanical strength. Journal of the European Ceramic Society. 2009;29:2773-81.
[104] Cannillo V, Chiellini F, Fabbri P, Sola A. Production of Bioglass® 45S5 – Polycaprolactone composite scaffolds via salt-leaching. Composite Structures. 2010;92:1823-32.
[105] Oh S, Daraio C, Chen L-H, Pisanic TR, Fiñones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. Journal of Biomedical Materials Research Part A. 2006;78A:97-103.
[106] Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews. 2009;61:1033-42.
[107] Arcos D, Vallet-Regí M. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia. 2010;6:2874-88.
[108] Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, et al. Hybrid bone implants: Self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials. 2008;29:161-71.
[109] Diez-Pascual AM, Diez-Vicente AL. Effect of TiO2 nanoparticles on the performance of polyphenylsulfone biomaterial for orthopaedic implants. Journal of Materials Chemistry B. 2014;2:7502-14.
[110] Smith BS, Yoriya S, Grissom L, Grimes CA, Popat KC. Hemocompatibility of titania nanotube arrays. Journal of Biomedical Materials Research Part A. 2010;95A:350-60.
[111] El-Hibri MJ. Polymers Containing Sulfur, Polysulfones. Kirk-Othmer Encyclopedia of Chemical Technology: John Wiley & Sons, Inc.; 2000.
[112] Karpagavalli R, Zhou A, Chellamuthu P, Nguyen K. Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V. Journal of Biomedical Materials Research Part A. 2007;83A:1087-95.
[113] Thonemann B, Schmalz G, Hiller KA, Schweikl H. Responses of L929 mouse fibroblasts, primary and immortalized bovine dental papilla-derived cell lines to dental resin components. Dental Materials. 2002;18:318-23.
[114] Brooke LF, Toby DB, Zee U, Dietmar WH, Paul DD, Tim RD. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication. 2013;5:025001.
[115] Wong B, Teoh S-H, Kang L. Polycaprolactone scaffold as targeted drug delivery system and cell attachment scaffold for postsurgical care of limb salvage. Drug Delivery and Translational Research. 2012;2:272-83.
[116] Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee H-S, et al. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24:801-8.
[117] Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. Journal of Immunological Methods. 1983;64:313-20.
[118] Cullity BD, Stock SR. Elements of X-ray Diffraction. New Jersey: Prentice Hall, Inc.; 2001.
[119] Gouadec G, Colomban P. Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Progress in Crystal Growth and Characterization of Materials. 2007;53:1-56.
[120] Hoogenboom R, Schlaad H. Bioinspired Poly(2-oxazoline)s. Polymers. 2011;3:467-88.
[121] Coats AW, Redfern JP. Thermogravimetric analysis. A review. Analyst. 1963;88:906-24.
[122] Llansola-Portoles MJ, Bergkamp JJ, Finkelstein-Shapiro D, Sherman BD, Kodis G, Dimitrijevic NM, et al. Controlling Surface Defects and Photophysics in TiO2 Nanoparticles. The Journal of Physical Chemistry A. 2014;118:10631-8.
[123] Yan J, Wu G, Guan N, Li L, Li Z, Cao X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Physical Chemistry Chemical Physics. 2013;15:10978-88.
[124] Patterson AL. The Scherrer Formula for X-Ray Particle Size Determination. Physical Review. 1939;56:978-82.
[125] Bornside DE, Macosko CW, Scriven LE. Spin coating: One‐dimensional model. Journal of Applied Physics. 1989;66:5185-93.
[126] Glass JE. Water-Soluble Polymers: American Chemical Society; 1986.
[127] Murphy-Ullrich JE. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? The Journal of Clinical Investigation. 2001;107:785-90.
[128] Zhu L, Ye X, Tang G, Zhao N, Gong Y, Zhao Y, et al. Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. Journal of Biomedical Materials Research Part A. 2006;78A:515-22.

無法下載圖示 全文公開日期 2020/08/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE