簡易檢索 / 詳目顯示

研究生: 高貫軒
Kuan-Hsuan - Kao
論文名稱: 以數位微影定義非平面圖案之開發
Development of Digital Lithography for Printing Patterns on Nonplanar Substrate
指導教授: 郭鴻飛
Hung-Fei Kuo
口試委員: 楊振雄
none
郭俞麟
none
郭永麟
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 63
中文關鍵詞: 非平面微影圖案數位微反射鏡裝置無光罩微影點陣列式掃描
外文關鍵詞: Non-planar photographic pattern, digital micromirror device, maskless lithography, dot-matrix scanning
相關次數: 點閱:1774下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 曝光微影技術是印刷電路板(printed circuit board, PCB)製程中的重要技術之一,近年來製程中對精密度要求不斷提高,並要求更高解析度更小的線寬,使得傳統接觸印刷製程之缺點越來越明顯。光學微影技術是將線路或微結構透過光學的方式成像於基板上。傳統的曝光機製作光罩往往花費許多時間以及製程成本,製作完成的光罩有不平坦或缺陷時,會造成PCB曝光不良的問題。為了減少光罩在PCB微影製程中所產生的問題以及成本,因此近年來發展了無光罩微影技術。本研究主要探討在非平面移基材上曝光之微影系統參數最佳化以加強解析度,使用數位微反射鏡裝置(digital micro-mirror device, DMD)形成,以點陣列並定義L/S與CH圖案拖曳。首先使用Virtual Lab分析動態光罩微影系統潛像,檢測影響潛像品質之光學參數,並以紫外光405nm雷射光束在非平面矽晶圓光阻表面上,以光點陣列掃描成像。探討曝光解析度之問題,本文在運用脈衝寬度調頻(Pulse Width Modulation,PWM)操作DMD光罩之開啟時序組合最佳化光源覆蓋模態像素,並採用多目標粒子群最佳化(Multi-Objective Particle Swarm Optimization,MOPSO)演算法,分別對非平面平台移動速度及光源像素覆蓋率做規劃,以覆蓋率調整曝光效果設定最小線寬以及提升成像對數斜率(Image Log-Slope,ILS)為目標函數,演算法將覆蓋率配合平台高度移動和平面移動及DMD鏡子控制做組合,提升微影曝光系統的解析度,有效達到曝光劑量之控制並在微影製程中得到10um以內之曝光線寬。


    Exposure lithography is one of the important technologies in the printed circuit board (PCB) process. In recent years, the precision of the process has been increasing, which makes traditional contact printing the shortcomings of the process more and more obvious. Optical lithography is the transmission line or micro-structure through the optical imaging on the substrate. Traditional exposure machine masking often spend a lot of time and process cost, the production of the mask is not flat or defect, will cause PCB exposure problems. In this paper, we focus on the optimization of dynamic mask photomicrograph system parameters for non-planar mobile platform to enhance the resolution. The mask is designed with digital micro-mirror device (DMD). The mask is exposed in dot pattern the latent image of dynamic photomask system was analyzed by Virtual Lab. In this paper, we use the Pulse Width Modulation (PWM) to operate the DMD mask's turn-on timing combination, which can be used in the combination of the scanning platform and the exposure to explore the exposure resolution. (MOPSO) algorithm, the moving speed of the nonplanar platform and the pixel coverage of the light source are respectively designed. When the coverage adjustment is carried out, the coverage of the light source is changed. Exposure search for minimum linewidth, and improved image log-slope (ILS). The algorithm combines coverage with platform height and plane movement and DMD mirror control to enhance the resolution of the lithography exposure system, Effective exposure dose control and in the lithography process to get 10um or less exposure line width.

    目錄 致謝 I 中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 8 1.3 論文架構 8 第二章 動態光罩微影系統成像 9 2.1 簡介 9 2.2數位光罩微影系統潛像數值分析 14 2.3 潛像品質分析 16 2.4 結論 20 第三章 PSO多目標最佳化 21 3.1 簡介 21 3.2多目標最佳化原理 22 3.3 多目標最佳化應用於改善光阻成像品質 26 3.4 MATLAB程序開發及與Virtual Lab之連結 35 3.5 結論 37 第四章 微影圖案定義製程視窗 38 4.1 簡介 38 4.2 微影系統校準 39 4.3 非平面曝光模式分析 44 4.4非平面微影製程實驗 50 4.5結論 53 第五章 結論 55 5.1 實驗結果討論與分析 55 5.2 本研究之貢獻 56 5.3 未來研究方向 57 參考文獻 58

    [1] T. Chao, Introduction to semiconductor manufacturing technology, (2001).
    [2] W. Greig, Integrated circuit packaging, assembly and interconnections, Springer Science & Business Media2007.
    [3] R. Garg, Microstrip antenna design handbook, Artech house2001.
    [4] M.J. Madou, Fundamentals of microfabrication: the science of miniaturization, CRC press2002.
    [5] K. Jain, M. Klosner, M. Zemel, S. Raghunandan, Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production, Proceedings of the IEEE, 93 (2005) 1500-1510.
    [6] T. Ito, S. Okazaki, Pushing the limits of lithography, Nature, 406 (2000) 1027-1031.
    [7] K. Mitzner, Complete PCB design using OrCAD Capture and PCB editor, Newnes2009.
    [8] H. Wu, W. Hu, H.-c. Hu, X.-w. Lin, G. Zhu, J.-W. Choi, V. Chigrinov, Y.-q. Lu, Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system, Optics Express, 20 (2012) 16684-16689.
    [9] C.A. Rothenbach, M.C. Gupta, High resolution, low cost laser lithography using a Blu-ray optical head assembly, Optics and Lasers in Engineering, 50 (2012) 900-904.
    [10] T. Horiuchi, S. Koyama, H. Kobayashi, Simple maskless lithography tool with a desk-top size using a liquid-crystal-display projector, Microelectronic Engineering, 141 (2015) 37-43.
    [11] R. Barbucha, M. Tanski, M. Kocik, Multi-diode laser system for UV exposure of the photoresists, SPIE Microtechnologies, International Society for Optics and Photonics2015, pp. 95200P-95200P-95206.
    [12] M. Rahlves, M. Rezem, K. Boroz, S. Schlangen, E. Reithmeier, B. Roth, Flexible, fast, and low-cost production process for polymer based diffractive optics, Optics express, 23 (2015) 3614-3622.
    [13] Z.-C. Lin, W.-J. Wu, Multiple linear regression analysis of the overlay accuracy model, IEEE transactions on Semiconductor Manufacturing, 12 (1999) 229-237.
    [14] C. Mack, Fundamental principles of optical lithography: the science of microfabrication, John Wiley & Sons2008.
    [15] H.J. Levinson, Principles of lithography, SPIE Bellingham, Wash, USA2005.
    [16] T.A. Anhoj, A.M. Jorgensen, D.A. Zauner, J. Hübner, The effect of soft bake temperature on the polymerization of SU-8 photoresist, Journal of Micromechanics and Microengineering, 16 (2006) 1819.
    [17] C.A. Mack, Field guide to optical lithography, SPIE Press Bellingham, Washington, USA2006.
    [18] D.A. Steele, A. Coniglio, C. Tang, B. Singh, S. Nip, C.J. Spanos, Characterizing post-exposure bake processing for transient-and steady-state conditions in the context of critical dimension control, SPIE's 27th Annual International Symposium on Microlithography, International Society for Optics and Photonics2002, pp. 517-530.
    [19] K. Tung, W. Wong, E. Pun, Polymeric optical waveguides using direct ultraviolet photolithography process, Applied Physics A, 80 (2005) 621-626.
    [20] X. Guo, J. Du, Y. Guo, C. Du, Z. Cui, J. Yao, Simulation of DOE fabrication using DMD-based gray-tone lithography, Microelectronic engineering, 83 (2006) 1012-1016.
    [21] T. MÞlders, W. Henke, K. Elian, C. NÃķlscher, M. Sebald, New stochastic post-exposure bake simulation method, Journal of Micro/Nanolithography, MEMS, and MOEMS, 4 (2005) 043010-043010-043025.
    [22] F.C. van Delft, J.P. Weterings, A.K. van Langen-Suurling, H. Romijn, Hydrogen silsesquioxane/novolak bilayer resist for high aspect ratio nanoscale electron-beam lithography, Journal of Vacuum Science & Technology B, 18 (2000) 3419-3423.
    [23] M. Colburn, A. Grot, M.N. Amistoso, B.J. Choi, T.C. Bailey, J.G. Ekerdt, S. Sreenivasan, J. Hollenhorst, C.G. Willson, Step and flash imprint lithography for sub-100-nm patterning, Microlithography 2000, International Society for Optics and Photonics2000, pp. 453-457.
    [24] R. Miller, R. Gale, H.P. Cleveland, M.L. Burton, Multiple bias level reset waveform for enhanced DMD control, Google Patents1998.
    [25] C.G.K. Malek, SU8 resist for low-cost X-ray patterning of high-resolution, high-aspect-ratio MEMS, Microelectronics Journal, 33 (2002) 101-105.
    [26] A. del Campo, C. Greiner, SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography, Journal of Micromechanics and Microengineering, 17 (2007) R81.
    [27] J.D. Herbsleb, D. Moitra, Global software development, IEEE software, 18 (2001) 16-20.
    [28] E. Carmel, R. Agarwal, Tactical approaches for alleviating distance in global software development, IEEE software, 18 (2001) 22-29.
    [29] D.W. Karolak, Global software development: managing virtual teams and environments, IEEE Computer Society Press1999.
    [30] C. Ebert, P. De Neve, Surviving global software development, IEEE software, 18 (2001) 62-69.
    [31] J.D. Herbsleb, A. Mockus, An empirical study of speed and communication in globally distributed software development, IEEE Transactions on software engineering, 29 (2003) 481-494.
    [32] D. Damian, D. Moitra, Guest Editors' Introduction: Global Software Development: How Far Have We Come?, IEEE software, 23 (2006) 17-19.
    [33] T.-J. You, C.-K. Bok, K.-S. Shin, CD metrology for avoiding shrinkage of ArF resist patterns in 100 nm ArF lithography, SPIE's 27th Annual International Symposium on Microlithography, International Society for Optics and Photonics2002, pp. 724-732.
    [34] M. Saito, T. Hayashi, K. Fujihara, K. Saito, J. Lin, R. Midorikawa, Study of ADI (after develop inspection) using electron beam, SPIE 31st International Symposium on Advanced Lithography, International Society for Optics and Photonics2006, pp. 615248-615248-615248.
    [35] T. Hayashi, M. Saito, K. Fujihara, S. Shibuya, Y. Kudou, H. Nagaike, J. Lin, J. Jau, Study of ADI (After Develop Inspection) on photo resist wafers using electron beam (II), Advanced Lithography, International Society for Optics and Photonics2007, pp. 65184C-65184C-65110.
    [36] T. Hayashi, M. Saito, K. Fujihara, J. Jau, Study of ADI (After Develop Inspection) on photo resist wafers using electron beam (III): novel method for ADI on metal hard mask by penetration contrast, SPIE Advanced Lithography, International Society for Optics and Photonics2008, pp. 69223E-69223E-69212.
    [37] K. Inai, K. Ohya, H. Kuwada, R. Kawasaki, M. Saito, K. Fujihara, T. Hayashi, J. Jau, K. Kanai, Electron beam charging of a SiO2 layer on Si: a comparison between Monte Carlo-simulated and experimental results, SPIE Lithography Asia-Taiwan, International Society for Optics and Photonics2008, pp. 71400X-71400X-71408.
    [38] M. Nowak, A. Antończak, P. Kozioł, K. Abramski, Laser prototyping of printed circuit boards, Opto-Electronics Review, 21 (2013) 320-325.
    [39] A. Alwaidh, M. Sharp, P. French, Laser processing of rigid and flexible PCBs, Optics and Lasers in Engineering, 58 (2014) 109-113.
    [40] N. Koshida, A. Kojima, N. Ikegami, R. Suda, M. Yagi, J. Shirakashi, H. Miyaguchi, M. Muroyama, S. Yoshida, K. Totsu, Development of ballistic hot electron emitter and its applications to parallel processing: active-matrix massive direct-write lithography in vacuum and thin-film deposition in solutions, Journal of Micro/Nanolithography, MEMS, and MOEMS, 14 (2015) 031215-031215.
    [41] K. Ryoo, M. Kim, J. Sung, K. Kim, M. Kang, Maskless laser direct imaging lithography using a 355-nm UV light source in manufacturing of flexible fine dies, Journal of Mechanical Science and Technology, 29 (2015) 365-370.
    [42] M. Erdmanis, P. Sievilä, A. Shah, N. Chekurov, V. Ovchinnikov, I. Tittonen, Focused ion beam lithography for fabrication of suspended nanostructures on highly corrugated surfaces, Nanotechnology, 25 (2014) 335302.
    [43] C.M. Fonseca, P.J. Fleming, Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization, ICGA, Citeseer1993, pp. 416-423.
    [44] M. Clerc, Particle swarm optimization, John Wiley & Sons2010.
    [45] C.C. Coello, M.S. Lechuga, MOPSO: A proposal for multiple objective particle swarm optimization, Evolutionary Computation, 2002. CEC'02. Proceedings of the 2002 Congress on, IEEE2002, pp. 1051-1056.
    [46] J. Horn, N. Nafpliotis, D.E. Goldberg, A niched Pareto genetic algorithm for multiobjective optimization, Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on, Ieee1994, pp. 82-87.
    [47] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE transactions on Evolutionary Computation, 3 (1999) 257-271.
    [48] L.H. Erdmann, A. Deparnay, F. Wirth, R. Brunner, MEMS-based lithography for the fabrication of micro-optical components, Micromachining and Microfabrication, International Society for Optics and Photonics2004, pp. 79-84.
    [49] C. Liu, X. Guo, F. Gao, B. Luo, X. Duan, J. Du, C. Qiu, Imaging simulation of maskless lithography using a DMD, Photonics Asia 2004, International Society for Optics and Photonics2005, pp. 307-314.
    [50] Z. Xiong, H. Liu, X. Tan, Z. Lu, C. Li, L. Song, Z. Wang, Diffraction analysis of digital micromirror device in maskless photolithography system, Journal of Micro/Nanolithography, MEMS, and MOEMS, 13 (2014) 043016-043016.
    [51] E. Johnsen, A. Charnes and WW Cooper: Management Models and Industrial Applications of linear Programming, Vol. I. and Vol. II, ialt 859 sider. John Wiley and Sons, Inc. London 1961. lait 183 sh, Ledelse og Erhvervskonomi, 26.
    [52] P. Czyzżak, A. Jaszkiewicz, Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization, Journal of Multi‐Criteria Decision Analysis, 7 (1998) 34-47.
    [53] J.D. Knowles, D.W. Corne, Approximating the nondominated front using the Pareto archived evolution strategy, Evolutionary computation, 8 (2000) 149-172.
    [54] J.E. Fieldsend, S. Singh, A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence, (2002).
    [55] C.A.C. Coello, G.T. Pulido, M.S. Lechuga, Handling multiple objectives with particle swarm optimization, IEEE Transactions on evolutionary computation, 8 (2004) 256-279.
    [56] S. Mohankrishna, D. Maheshwari, P. Satyanarayana, S.C. Satapathy, A comprehensive study of particle swarm based multi-objective optimization, Proceedings of the International Conference on Information Systems Design and Intelligent Applications 2012 (INDIA 2012) held in Visakhapatnam, India, January 2012, Springer2012, pp. 689-701.
    [57] C.R. Raquel, P.C. Naval Jr, An effective use of crowding distance in multiobjective particle swarm optimization, Proceedings of the 7th annual conference on Genetic and evolutionary computation, ACM2005, pp. 257-264.
    [58] D. Liu, K.C. Tan, C.K. Goh, W.K. Ho, A multiobjective memetic algorithm based on particle swarm optimization, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37 (2007) 42-50.
    [59] C. Tan, C.K. Goh, K.C. Tan, A. Tay, A cooperative coevolutionary algorithm for multiobjective particle swarm optimization, 2007 IEEE Congress on Evolutionary Computation, IEEE2007, pp. 3180-3186.
    [60] O. Nakoulima, A. Omrane, J. Velin, On the pareto control and no-regret control for distributed systems with incomplete data, SIAM journal on control and optimization, 42 (2003) 1167-1184.
    [61] J. Jang, S. Han, S.E. Chung, Y.J. Choi, S. Kwon, Development of conformal phosphor coating technique for light-emitting diodes using image-processing-based maskless lithography, Microelectronic Engineering, 118 (2014) 11-14.
    [62] T.-Y. Sun, W.-C. Wu, S.-J. Tsai, C.-C. Liu, S.-Y. Chiu, S.-T. Hsieh, Particle swarm optimizer for multi-objective problems based on proportional distribution and cross-over operation, Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on, IEEE2008, pp. 2658-2663.
    [63] Z. Shi, Y. Gao, Pixel-based partially coherent image method for maskless lithography system, Optik-International Journal for Light and Electron Optics, 124 (2013) 3292-3295.
    [64] C.-C. Chen, M.-H. Li, C.-Y. Chang, J.-K. Sheu, G.-C. Chi, W.-T. Cheng, J.-H. Yeh, J.-Y. Chang, T. Ito, GaN diffractive microlenses fabricated with gray-level mask, Optics communications, 215 (2003) 75-78.
    [65] J.L. Conner, M.J. Overlaur, K. Kornher, Signal generator for controlling a spatial light modulator, Google Patents1996.
    [66] D.B. Doherty, H. Chu, J.D. Huffman, Blocked stepped address voltage for micromechanical devices, Google Patents2002.
    [67] J.S. Farris, A. Hearn, SLM display data address mapping for four bank frame buffer, Google Patents2004.
    [68] T.W. Ives, Microelectromechanical device having a stiffened support beam, and methods of forming stiffened support beams in MEMS, Google Patents2003.
    [69] J.B. Sampsell, T. Shionoya, Spatial light modulator display pointing device, Google Patents1997.
    [70] A. Van Brocklin, E. Martin, S. Wang, A. Ghozeil, MEMS device having time-varying control, Google Patents2004.

    QR CODE