簡易檢索 / 詳目顯示

研究生: 徐玉姍
Yu-Shan Hsu
論文名稱: 銅銦磷硒層狀半導體之晶體成長與特性研究
Crystal Growth and Characterization of Layered CuInP2Se6 Semiconductor
指導教授: 何清華
Ching-Hwa Ho
周宏隆
Hung-Lung Chou
口試委員: 何清華
Ching-Hwa Ho
周宏隆
Hung-Lung Chou
李奎毅
Kuei-Yi Lee
林俊良
Chun-Liang Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 121
中文關鍵詞: 銅銦磷硒層狀材料半導體相變鐵電材料
外文關鍵詞: CuInP2Se6, 2D Materials, Semiconductor, Phase Transition, Ferroelectric Materials
相關次數: 點閱:263下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用化學氣相傳導法,成長出過渡金屬硫屬化合物半導體材料 CuInP2Se6,並研究其結構、光學與電學特性。藉由能量色散X射線光譜、X 射線光電子能譜儀確認成長之材料成分與預期相符。高解像能電子顯微鏡與X射線晶格繞射分析儀確認 CuInP2Se6 為六方晶系。從極化拉曼及溫度相依拉曼實驗中,觀察到不同極化角度下之各振動模態的消長變化。光學量測中,利用顯微光激螢光光譜、光穿透及熱調制反射光譜實驗,確認材料能隙位置。CuInP2Se6 300 K 時,直接能隙約為 1.6 eV,隨溫度降低而藍移約至 1.83 eV。120 K 時觀察到 1.311 eV 的缺陷束縛激子訊號;溫度相依拉曼實驗120 K 時,結果顯示在溫度 120 K 時會出現新的振動模態,表明 CuInP2Se6 在此溫度下時可能發生結構相變或電荷重排等現象。電學量測中,利用熱探針及霍爾量測實驗確定 CuInP2Se6 為 p 型半導體,室溫時電阻率為2.57×104 Ω-cm,載子濃度 5.09×1011 cm-3。從溫度相依電阻率實驗中,其電阻率隨溫度降低而增加,呈現半導體行為。在照光之 V-I 量測中,表明 CuInP2Se6 具有明顯的光吸收效應及光電效應。上述結果顯示 CuInP2Se6 在光學和電子元件中具有應用潛力,如光催化、相變化記憶體和光電子元件等。


In this work CuInP2Se6 single crystals are grown using the ChemicalVapor Transport (CVT) method with Iodine (I2) as the transport agent. Thestructure, optical, and electrical properties of CuInP2Se6 are investigated. TheEnergy-dispersive X-ray Spectroscopy (EDS) and X-ray PhotoelectronSpectroscopy (XPS) measurements are employed to validate that the grownmaterial has the expected composition. Furthermore, High-ResolutionTransmission Electron Microscopy (HRTEM) and X-Ray Diffraction (XRD)analyses reveal that CuInP2Se6 belongs to the hexagonal crystal system. Theangular-dependent micro-Raman spectroscopy is conducted within thetemperature range of 8 K to 300 K. The results reveal variations in thevibrational modes at different polarized angles with a new peaks is observed asthetemperature decreases to 120 K. Optical measurements, includingMicroPhotoluminescence (μPL), Transmittance, and Thermoreflectance (TR) arecarried out to determine the bandgap positions of the crystals. CuInP2Se6 has adirect bandgap of approximately 1.6 eV at 300 K, which blue shifts toapproximately 1.75 eV with decreasing temperature to 20 K. At 120 K, a defectboundexciton signal is briefly observed at 1.311 eV. The temperaturedependent Raman spectroscopy also reveals novel Raman peaks at 120 K,indicating that CuInP2Se6 at this temperature may undergo structural phasetransitions, lattice distortions, or charge rearrangement phenomena. Electricalmeasurements using a hot probe and the Hall Effect confirm that CuInP2Se6 isa p-type semiconductor with a resistivity of 2.57 × 104 Ω-cm and a carrierconcentration of 5.09 × 1011 cm-3. The temperature-dependent resistivityexperiment demonstrates an increase in resistivity as the temperature decreases,indicating semiconductor behavior in CuInP2Se6. The photo V-I measurementsof CuInP2Se6 show a significant photo response, indicating its strong lightabsorption and high capacity for generating photocurrent, thereby making it aphotosensitive material. In summary, CuInP2Se6 exhibits promising characteristics that make it a promising candidate for integration intooptoelectronic devices, photocatalysis systems, phase-change memory andphotonic devices.

致謝 摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 第二章 晶體成長 2.1化學氣相傳導法(Chemical Vapor Transport, CVT) 2.2晶體成長系統配置 2.2.1真空系統 2.2.2三區成長高溫爐 2.3晶體成長流程 2.3.1石英管清洗 2.3.2元素比例秤重 2.3.3封閉石英管 2.3.4晶體化合及成長 第三章 實驗原理及量測系統 3.1掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 3.2能量色散X射線光譜(Energy-Dispersive X-ray Spectroscopy, EDS) 3.3穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 3.4 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 3.5 X射線晶格繞射分析儀(X-ray Diffractometer, XRD) 3.6原子力顯微鏡(Scanning Probe Microscopy, AFM) 3.7拉曼散射光譜(Raman Spectroscopy) 3.8顯微光激螢光光譜(Micro-Photoluminescence Spectroscopy, μPL) 3.9光穿透光譜(Transmittance) 3.10熱調制反射光譜(Thermoreflectance, TR) 3.11熱探針量測(Hot Probe) 3.12照光之電壓電流量測(Photo V-I) 3.13霍爾效應(Hall Effect) 3.14溫度相依電阻率量測(Temperature Dependent Resistivity) 第四章 實驗結果與分析 4.1能量色散X射線譜分析(EDS) 4.2穿透式電子顯微鏡影像分析(TEM) 4.3 X射線光電子能譜分析(XPS) 4.4 X-ray晶格繞射分析(XRD) 4.5原子力顯微鏡分析(AFM) 4.6拉曼散射光譜分析(Raman Spectroscopy) 4.6.1雷射比較 4.6.2溫度相依拉曼實驗(Temperature dependent Raman) 4.6.3極化拉曼(Polarized Raman) 4.7顯微光激螢光光譜分析(μPL) 4.8光穿透光譜分析(Transmittance) 4.9熱調制反射光譜分析(TR) 4.9.0能隙與溫度整理 4.10熱探針實驗結果分析(Hot Probe) 4.11照光之電壓電流量測結果分析(Photo V-I) 4.12霍爾量測結果分析(Hall Effect) 4.13溫度相依電阻率量測(Temperature Dependent Resistivity) 第五章 結論 第六章 參考文獻

[1] W. Zhongchang, "Atomic structure and electronic property of two-dimensional ferroelectric CuInP2Se6," Ceram. Int., vol. 46, no 1, p. 7014-7018, 2020.
[2] V. B. Cajipe, "Dielectric measurement study of lamellar CuInP2Se6: successive transitions towards a ferroelectric state via an incommensurate phase," Solid State Commun., vol. 115, no. 1, p. 13-17, 2000.
[3] G. Wolschin, "The ising model in one and two dimensions," Heidelberg University, Germany, Heidelberg, 2020.
[4] G. Wanlin, "Tunable electronic and magnetic properties of two-dimensional materials and their one-dimensional derivatives," Wiley Interdiscip. Rev. Comput. Mol. Sci., vol. 6, no. 4, pp. 324-350, 2016.
[5] S. V. Kalinin, "CuInP2S6 room temperature layered ferroelectric," Nano Lett., vol. 15, no. 6, pp. 3808-3814, 2015.
[6] L. Lin, and Y. Guidong, "Facilitated charge transfer in ZnIn2S4@CuInP2S6 heterojunctions towards efficient photocatalytic H2 generation," Mater. Lett., vol. 333, no. 15, pp. 133654, 2023.
[7] P. Ke,"Rubrene/CuInP2S6 organic/inorganic heterojunctions for ferroelectric organic transistor memory devices," Surf. Interfaces, vol. 38, pp. 102801, 2023.
[8] H. Jianhua, "Strong piezoelectric response in layered CuInP2S6 nanosheets for piezoelectric nanogenerators," Nano Energy, vol. 99, pp. 107371, 2022.
[9] Yu. M. Vysochanskii, "Phase transitions and optical absorption edge in CuInP2Se6 layered ferrielectrics," PHYS STATUS SOLIDI A, vol. 198, no. 2, pp. 487-494, 2003.
[10] L. Chun, "Controllable valley polarization and strain modulation in 2D 2H-VS2/CuInP2Se6 heterostructures," Nanomaterials, vol. 12, no. 14, pp. 2461, 2022.
[11] A. S. Michael, and M. Petro, "Metal thio- and selenophosphates as multifunctional van der Waals layered materials," Adv. Mater., vol. 29, p. 1602852, 2017.
[12] E. G. Konstantin, "Van der Waals ferroelectrics," Wiley-VCH, USA, New Jersey, 2022.
[13] H. Schäfer, "Chemical transport reactions," Academic Press, USA, New York, 1964.
[14] L. Jiao, "Two-dimensional semiconductors grown by chemical vapor transport," Angew. Chem.-Int. Edit., vol. 56, no. 13, pp. 3611-3615, 2017.
[15] 胡薰方,「CuMP2S6(M=In, Cr)層狀化合物之晶體成長與特性研究」,國立臺灣科技大學碩士論文,pp. 1-83,2020。
[16] 歐陽云宣,「過渡金屬硫屬化合物半導體TiS3與AgBiP2Se6之晶體成長與特性研究」,國立臺灣科技大學碩士論文,pp. 1-127,2022。
[17] C. M. Becchi, and M. D'Elia, "Introduction to the basic concepts of modern physics," Springer Cham, USA, New York, 2007.
[18] R. F. Egerton, "Physical principles of electron microscopy," Springer Cham, USA, New York, 2005.
[19] J. F. Watts, and J. Wolstenholme, "An introduction to surface analysis by XPS and AES," John Wiley & Sons Inc, USA, New York, 2003.
[20] C. Kittel, "Introduction to solid state physics," John Wiley & Sons Inc, USA, New York, 1996.
[21] S. N. Magonov, and M. H. Whangbo, "Surface analysis with STM and AFM," VCH, Weinheim, USA, New Jersey, 1996.
[22] P. Graves, and D. Gardiner, "Practical raman spectroscopy," Springer Cham, USA, New York, 1989.
[23] S. Perkowitz, "Optical characterization of semiconductors: infrared, Raman, and photoluminescence spectroscopy," Academic Press, USA, San Diego, 1993.
[24] M. Fleischmann, P.J. Hendra, and A.J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett., vol. 26, no. 2, p. 163-166, 1974.
[25] H. W. Verleur, "Determination of optical constants from reflectance or transmittance measurements on bulk crystals or thin films," J Opt Soc Am A, vol. 58, no. 10, pp. 1356-1364, 1968.
[26] B. Seraphin, R. Hess, and N. Bottka, "Field effect of the reflectivity in germanium," J. Appl. Phys., vol. 36, no. 7, pp. 2242-2250, 1965.
[27] F. H. Pollak, and H. Shen, "Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices," Mater. Sci. Eng. R Rep., vol. 10, no. 7-8, pp. 1-374, 1993.
[28] C. H. Ho, H. W. Lee, and Z. H. Cheng, "Practical thermoreflectance design for optical characterization of layer semiconductors," Rev. Sci. Instrum., vol. 75, no. 4, pp. 1098-1102, 2004.
[29] A. Axelevitch, and G. Golan, "Hot-probe method for evaluation of majority charged carriers concentration in semiconductor thin films," Facta Univ.-Ser. Electron. Energ., vol. 26, no. 3, pp. 187-195, 2013.
[30] L.J. Van der Pauw, "A method of measuring specific resistivity and Hall Effect of discs of arbitrary shape," Philips Res. Rep., vol. 13, no. 1, pp. 1-9, 1958.
[31] D. K. Schroder, "Semiconductor material and device characterization," John Wiley & Sons Inc, USA, New York, 1990.
[32] M. Petro, "Piezoelectric domain walls in van der Waals antiferroelectric CuInP2Se6," Nat. Commun., no. 11, p. 3623, 2020.
[33] Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," Physica, vol. 34, no. 1, pp. 149-154, 1967.
[34] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, "Handbook of X-ray photoelectron spectroscopy," Perkin-Elmer Corporation, Minnesota, 1992.

無法下載圖示 全文公開日期 2028/08/24 (校內網路)
全文公開日期 2028/08/24 (校外網路)
全文公開日期 2028/08/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE