簡易檢索 / 詳目顯示

研究生: Nigus Maregu Demewoz
Nigus Maregu Demewoz
論文名稱: 低密度 PMMA 奈米泡材的製備和表徵
Fabrication and Characterization of Low-Density PMMA Nanocellular Foam
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 林育君
Yu-Chun Lin
葉樹開
Shu-Kai Yeh
賴森茂
Sun-Mou Lai
邱方遒
Fang-Chyou Chiu
童世煌
Shih-Huang Tung
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 177
中文關鍵詞: 米泡材PMMA 共混物黏彈性雙峰泡材低密度奈米泡材PMMA-TPU 摻混物成核效率
外文關鍵詞: Nanocellular foam, PMMA blends, viscoelastic properties, bimodal foam, Low-density nanocellular foam, PMMA-TPU blend, nucleation efficiency
相關次數: 點閱:243下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
由於其優異的性能,奈米泡材是一種有前景的新材料。本研究使用批式發泡來製造以 CO2 作為發泡劑的低密度奈米多孔泡材。低密度奈米多孔泡材是高性能隔熱的絕佳選擇。然而,製造低密度奈米多孔泡材非常具有挑戰性。降低奈米孔泡材密度的一種方法是引入微米泡孔並製造雙峰泡材結構。目前已知雙峰泡孔結構可提供獨特的物理特性並有助於降低相對密度。本研究提出了一種通過混合不同分子量的 PMMA 來創建雙峰微泡孔/奈米泡孔結構的簡單方法。將微型氣泡引入均勻的奈米孔結構可能是降低泡材密度的一種方法,並且可能不會影響某些特性。除了雙峰結構之外,還觀察到從超微孔結構到奈米孔結構的轉變,從閉孔結構到開孔結構。這些轉變可能與非纏結 PMMA 含量的弛豫時間和重量百分比有關。雙峰奈米孔或開孔結構的形成可以通過粘彈性特性,例如弛豫時間來預測。
降低奈米孔泡材密度的另一種方法是使用高效成核劑增加孔密度並降低支柱分數。在本研究中,將聚甲基丙烯酸甲酯 (PMMA) 與三種不同硬度的熱塑性聚氨酯 (TPU) 混合,以研究 TPU 對奈米孔結構和泡材密度的影響。 TPU 的黏度控制了共混物的奈米結構。將 2 wt% TPU 與 PMMA 混合產生了一個分散良好的體系,最小的 TPU 粒徑小於 100 nm。 CO2 吹製的奈米孔泡材具有新的花束狀結構,孔密度為 1016 cells/cm3。這些 TPU 奈米粒子的成和效率可高達 3674 倍。成核效率的意外增加可能是由於 TPU 顆粒分散良好。如此高的成核效率產生了開孔結構,其中支柱體積的比例降低並顯著降低了泡材密度。我們可以製造出相對密度小於 0.2 且平均孔徑小於 100 nm的奈米孔泡材。在 PMMA 中添加 2 wt% 的 TPU 可使相對密度降低 32.26%,從 0.31 到 0.18。


This thesis highlights the comprehensive study of low-density nanocellular foam. Because of its excellent properties, nanocellular foam is new promising material. This research uses solid-state batch foaming to create low-density nanocellular foam with CO2 as a blowing agent. Low-density nanocellular foam is an excellent choice for high-performance thermal insulation. However, creating low-density nanocellular foam is very challenging. One way to reduce the density of nanocellular foam is to introduce microcellular cells and create a bimodal foam structure. Because the bimodal cellular structure gives special physical properties and lowers relative density, this study proposes a simple method for creating a bimodal microcellular/nanocellular structure by blending PMMAs with varying molecular weights. Introducing microsized bubbles into homogeneous nanocellular structures could be one way to reduce foam density while retaining some properties. Behind the bimodal structure, a transition from an ultramicrocellular to a nanocellular structure was observed. The cell structure evolved from a closed-cell to an open-cell structure. These transitions may be related to the relaxation time and weight percentage of non-entangled PMMA content. These properties may be applied to predict the bimodal nanocellular or open-cell structure formation.
The other way to reduce the density of nanocellular foam is by increasing the cell density and lowering the strut fraction using highly efficient nucleating agents. In this study, poly(methyl methacrylate) (PMMA) was blended with thermoplastic polyurethanes (TPUs) of different hardnesses to study the impact of TPUs on the nanocellular structure and foam density. The viscosity of TPU controlled the nanostructure of the blend. Blending 2 wt% TPU with PMMA generated a well-dispersed system, with the smallest TPU particle size less than 100 nm. The CO2-blown nanocellular foam possessed a bouquet-like structure with a cell density of 1016 cells/cm3. These TPU nanoparticles provided an ultrahigh nucleation efficiency of 3674 times. The unexpected increase in nucleation efficiency could result from the well-dispersed TPU particles. Such a high nucleation efficiency created an open-cell structure with decreased strut fraction and significantly lowered the foam density. We can create a nanocellular foam with a relative density of less than 0.2 and an average cell size of less than 100. Adding 2 wt% of TPU to PMMA reduces the relative density by 32.26%, from 0.31 to 0.18.

摘要 i Abstract ii Acknowledgments iii List of Contents iv List of Figures viii List of Tables xii List of Abbreviations and Symbols xiii Chapter-1 Introduction 1 1.1 Background of the Study 1 1.2 Motivation and Goals 7 1.3 Thesis Organization 7 Chapter- 2 Literature Review 8 2.1 Polymer Foam 8 2.2 Classification of polymer foam 8 2.3 Foaming process 11 2.3.1 Blowing Agent 12 2.4 Fabrication of Nanocellular foam 14 2.5 Phase separation 15 2.5.1 Nucleation 20 2.5.1.1 Homogenous Nucleation 22 2.5.1.2 Heterogeneous Nucleation 24 2.5.2 Spinodal Decomposition 30 2.6 Batch Foaming Process 32 2.7 Properties of Nanocellular Foam 35 2.7.1 Relative Density 35 2.7.2 Mechanical Properties 36 2.7.3 Thermal Conductivity 37 2.7.4 Transparency 40 2.8 Challenges in Nanocellular Foam 41 Chapter 3 Experimental Methods 45 3.1 Introduction 45 3.2. Materials 45 3.2.1 Poly (methyl methacrylate) (PMMA) 45 3.2.2 Thermoplastic Polyurethane (TPU) 47 3.2.3 Carbon Dioxide (CO2) 48 3.3 Production of Blends 48 3.4 Foaming Experiment 49 3.5 Characterization 50 3.5.1 Melt Flow Index (MFI) 50 3.5.2 PMMA Purification 51 3.5.3 Differential Scanning Calorimetry (DSC) 51 3.5.4 Nanostructure of PMMA-TPU Blend 51 3.5.5 Rheological Behavior 52 3.5.6 CO2 Solubility Measurement 52 3.5.7 Foam Density 53 3.5.8 SEM Image Characterization 53 3.5.9 Open-cell Content 55 Chapter 4 Controlling the Structure and Density of PMMA Bimodal Nanocellular Foam by Blending Different Molecular Weights 56 4.1 Introduction 56 4.2 Experimental 58 4.2.1 Materials 58 4.2.2 PMMA Purification 59 4.2.3 PMMA blend production 59 4.2.4 CO2 solubility measurement 60 4.2.5 Foaming experiment 60 4.2.6 Rheological behavior 60 4.2.7 Foam Characterization 60 4.2.8 Open-cell content 61 4.3 Result and Discussion 62 4.3.1 PMMA Characterization 62 4.3.2 Physical Properties and Miscibility of the Blends 62 4.3.3 CO2 solubility in PMMA blends 65 4.3.4 Influence of PMMA-H content on foaming behavior 66 4.3.5 Formation of bimodal foam 75 4.3.6 Bimodal foam structure characterization 79 4.3.7 Effect of PMMA-H content on cell size, cell density, and open-cell content 82 4.3.8 The effect of molecular weight and relaxation time on cell structure 84 4.4 Conclusion 90 Chapter 5 Fabrication and characterization of low-density nanocellular foam based on PMMA/TPU blends 92 5.1 Introduction 92 5.2 Experimental section 94 5.2.1 Materials 94 5.2.2 PMMA-TPU blend production 94 5.2.3 Foaming experiment 95 5.2.4 Nanostructure of PMMA-TPU blend 95 5.2.5 CO2 solubility 95 5.2.6 Density and cellular structure 96 5.2.7 Rheological behavior 96 5.2.8 Open-cell content 96 5.3 Result and Discussion 97 5.3.1 Rheological properties 97 5.3.2 Phase morphology of PMMA-TPU blend 99 5.3.3. Cellular structure of PMMA-TPU blend 103 5.3.3.1 The effects of TPU hardness on PMMA-TPU foam 103 4.3.3.2 The effects of foaming temperature 113 4.3.3.3 Effects of saturation pressure and temperature 117 4.3.3.4 Relative density and cell size mapping 120 4.3.3.5 Nucleation efficiency 122 5.4 Conclusion 123 Chapter 6 Summary and Future Work 125 6.1 Short Summary 125 6.2 Future Work 127 References 128 Appendix I 147 Appendix II: The effects of molecular weight and CO2 solubility on the structure of PMMA nanocellular foam 149 Abstract 149 Introduction 149 Materials and Experiment 150 Result and discussion 151 Conclusion 153

S.-K. Yeh, , N.M. Demewoz, and V. Kurniawan, Controlling the structure and density of PMMA bimodal nanocellular foam by blending different molecular weights. Polymer Testing, 2021. 93: p. 107004.
2. https://www.precedenceresearch.com/polymer-foam-market. Acces time 10, January 2022, 5:16 PM.
3. A. Wong, H. Guo, V. Kumar, C.B. Park, N.P. Suh, Microcellular Plastics. Encyclopedia of Polymer Science and Technology, 2016: p. 1-57.
4. S. Costeux, CO2-blown nanocellular foams. Journal of Applied Polymer Science, 2014. 131(23).
5. C. Thiagarajan, R. Sriraman, T.D. Chaudhari, M. Kumar, V.K. Sinha, A. Pattanayak, Nano-cellular polymer foam and methods for making them. 2010, US 7,838,108 B2 .
6. J. Martín-de Le´on, V. Bernardo, M. Rodríguez-P´erez, Low-Density nanocellular polymers based on PMMA produced by gas dissolution foaming: fabrication and cellular structure characterization. Polymers, 2016. 8(7): p. 265.
7. B. Notario, J. Pinto, M.A. Rodriguez-Perez, Nanoporous polymeric materials: A new class of materials with enhanced properties. Progress in Materials Science, 2016. 78-79: p. 93-139.
8. J. Pinto, J., M. Dumon, and M.A. Rodriguez-Perez, Nanoporous polymer foams from nanostructured polymer blends: Preparation, characterization, and properties, in Recent Developments in Polymer Macro, Micro and Nano Blends: Preparation and Characterisation. 2016. p. 237-288.
9. Priddy,D.B, and J. Scheirs, Modern Styrenic Polymers: Polystyrenes and Styrenic Copolymers. Wiley series in polymer science, 2003.
10. Feldman, D., Polymer History. Designed Monomers and Polymers, 2008. 11(1): p. 1-15.
11. Nofar, M.R. and C.B. Park, Introduction to Plastic Foams and Their Foaming. 2018. p. 1-16.
12. J.E. Martini-Vvedensky, N.P. Suh, and F.A. Waldman, Microcellular closed cell foams and their method of manufacture. US4473665A.
13. B. Notario, J. Pinto, E. Solorzano, J.A. de Saja, M. Dumon, M.A. Rodríguez-P´erez, Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer, 2015. 56: p. 57-67.
14. J. Martín-de León, V. Bernardo, and M.Á. Rodríguez-Pérez, Key production parameters to obtain transparent nanocellular PMMA. Macromolecular Materials and Engineering, 2017: p. 1700343-1700347.
15. B. Notario, A. Ballesteros, J. Pinto, M.A. Rodríguez-P´erez, Nanoporous PMMA: A novel system with different acoustic properties. Materials Letters, 2016. 168: p. 76-79.
16. B. Notario, J. Pinto, R. Verdejo, M.A. Rodríguez-P´erez, Dielectric behavior of porous PMMA: From the micrometer to the nanometer scale. Polymer, 2016. 107: p. 302-305.
17. S. Costeux, Nanocellular Foams, in Polymeric Foams. 2016, CRC Press. p. 205-249.
18. Miller, D, P. Chatchaisucha, and V. Kumar, Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide I. Processing and structure. Polymer, 2009. 50(23): p. 5576-5584.
19. H. Guo, and V. Kumar, Some thermodynamic and kinetic low-temperature properties of the PC-CO2 system and morphological characteristics of solid-state PC nanofoams produced with liquid CO2. Polymer, 2015. 56: p. 46-56.
20. V. Bernardo, J. Martín-de León, and M.A. Rodríguez-Pérez, Production and characterization of nanocellular polyphenylsulfone foams. Materials Letters, 2016. 178: p. 155-158.
21. C. Forest, P. Chaumont, P. Cassagnau, B. Swoboda, P. Sonntag, Nanofoaming of PMMA using a batch CO2 process: Influence of the PMMA viscoelastic behaviour. Polymer, 2015. 77: p. 1-9.
22. S. Costeux, CO2-blown nanocellular foams. Journal of Applied Polymer Science, 2014. 131(23): p. 41293.
23. H. Guo, and V. Kumar, Solid-state poly(methyl methacrylate) (PMMA) nanofoams. Part I: Low-temperature CO2 sorption, diffusion, and the depression in PMMA glass transition. Polymer, 2015. 57: p. 157-163.
24. T. Ono, X. Wu, S. Horiuchi, T. Furuya, S. Yoda, Two-step foaming process for production of PMMA nanocellular polymer foams via ultra-high pressure and rapid depressurization. Journal of Supercritical Fluids, 2020. 165.
25. S.-K. Yeh, Z.-E. Liao, K.-C. Wang, Y.-T. Ho, V. Kurniawan, P.-C. Tseng, T.-W. Tseng, Effect of molecular weight to the structure of nanocellular foams: Phase separation approach. Polymer, 2020. 191: p. 122275.
26. V. Bernardo, J. Martin-de Leon, E. Laguna-Gutierrez, T. Catelani, J. Pinto, A. Athanassiou, M.A. Rodriguez-Perez, Understanding the role of MAM molecular weight in the production of PMMA/MAM nanocellular polymers. Polymer, 2018. 153: p. 262-270.
27. C. Okolieocha, D. Raps, K. Subramaniam and V. Altstädt, Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review. European Polymer Journal, 2015. 73: p. 500-519.
28. S. Liu, J. Duvigneau, and G.J. Vancso, Nanocellular polymer foams as promising high performance thermal insulation materials. European Polymer Journal, 2015. 65: p. 33-45.
29. G. Wang, J. Zhao, G. Wang, L. H. Mark, C.B. Park and G. Zhao, Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties. European Polymer Journal, 2017. 95: p. 382-393.
30. C. Forest, P. Chaumont, P. Cassagnau, B. Swoboda and P. Sonntag, Polymer nano-foams for insulating applications prepared from CO2 foaming. Progress in Polymer Science, 2015. 41: p. 122-145.
31. N.P Suh, Impact of microcellular plastics on industrial practice and academic research. Macromolecular Symposia, 2003. 201(1): p. 187-202.
32. H. Guo, A. Nicolae, and V. Kumar, Solid-state poly(methyl methacrylate) (PMMA) nanofoams. Part II: Low-temperature solid-state process space using CO2 and the resulting morphologies. Polymer, 2015. 70: p. 231-241.
33. S. Costeux, and L. Zhu, Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer, 2013. 54(11): p. 2785-2795.
34. V. Bernardo, J. Martín-de León, E. Laguna-Gutiérrez and M. Á. Rodríguez-Pérez, PMMA-sepiolite nanocomposites as new promising materials for the production of nanocellular polymers. European Polymer Journal, 2017. 96: p. 10-26.
35. J. Pinto, M. Dumon, M. Pedros, J. Reglero and M. A. Rodriguez-Perez, Nanocellular CO2 foaming of PMMA assisted by block copolymer nanostructuration. Chemical Engineering Journal, 2014. 243: p. 428-435.
36. J. Pinto, M. Dumon, M. A. Rodriguez-Perez, R. Garcia and C. Dietz, Block Copolymers self-assembly allows obtaining tunable micro or nanoporous membranes or depth filters based on PMMA; fabrication method and nanostructures. Journal of Physical Chemistry C, 2014. 118(9): p. 4656-4663.
37. C. Forest, P. Chaumont, P. Cassagnau, B. Swoboda and P. Sonntag, CO2 nano-foaming of nanostructured PMMA. Polymer, 2015. 58: p. 76-87.
38. V. Bernardo, J. Martin-de Leon, J. Pinto, T. Catelani, A. Athanassiou and M. A. Rodriguez-Perez, Low-density PMMA/MAM nanocellular polymers using low MAM contents: Production and characterization. Polymer, 2019. 163: p. 115-124.
39. G. Wang, J. Zhao, L. H. Mark, G. Wang, K. Yu, C. Wang, Ultra-tough and super thermal-insulation nanocellular PMMA/TPU. Chemical Engineering Journal, 2017. 325: p. 632-646.
40. J. M. D. León, V. Bernardo, E. Laguna‐Gutiérrez and M. Á. Rodríguez‐Pérez, Influence of the viscosity of poly(methyl methacrylate) on the cellular structure of nanocellular materials. Polymer International, 2019. 69(1): p. 72-83.
41. J. Martín‐de León, V. Bernardo, P. Cimavilla‐Román, S. Pérez‐Tamarit and M. Á. Rodríguez‐Pérez, Overcoming the challenge of producing large and flat nanocellular polymers: a study with PMMA. Advanced Engineering Materials, 2019. 21(6): 1900148
42. J. Martín-de León, V. Bernardo, and M.Á. Rodríguez-Pérez, Two-Stage depressurization in gas dissolution foaming: the production of nanocellular materials free of defects. Macromolecular Materials and Engineering, 2020. 305(9): p. 2000283.
43. Guo, H., A. Nicolae, and V. Kumar, Fabrication of high temperature polyphenylsulfone nanofoams using high pressure liquid carbon dioxide. Cellular Polymers, 2016. 35(3): p. 119-142.
44. Guo, H., A. Nicolae, and V. Kumar, Solid-state microcellular and nanocellular polysulfone foams. Journal of Polymer Science Part B: Polymer Physics, 2015. 53(14): p. 975 - 985.
45. S. Costeux, I. Khan, S. P. Bunker and H. K. Jeon, Experimental study and modeling of nanofoams formation from single phase acrylic copolymers. Journal of Cellular Plastics, 2015. 57(2): p. 197-221.
46. S. Costeux, S.P. Bunker, and H.K. Jeon, Homogeneous nanocellular foams from styrenic-acrylic polymer blends. Journal of Materials Research, 2013. 28(17): p. 2351-2365.
47. Y. Fujimoto, S. S. Ray, M. Okamoto, A. Ogami, K. Yamada and K. Ueda, Well-Controlled Biodegradable Nanocomposite foams: From microcellular to nanocellular. Macromolecular Rapid Communications, 2003. 24(7): p. 457-461.
48. Ema, Y., M. Ikeya, and M. Okamoto, Foam processing and cellular structure of polylactide-based nanocomposites. Polymer, 2006. 47(15): p. 5350-5359.
49. Y.H. Lee, C.B. Park, K.H. Wang and M.H. Lee, HDPE-clay nanocomposite foams blown with supercritical CO2. Journal of Cellular Plastics, 2005. 41(5): p. 487-502.
50. S. Liu, B. Zoetebier, L. Hulsman, Y. Zhang, J. Duvigneau and G. J. Vancso, Nanocellular polymer foams nucleated by core-shell nanoparticles. Polymer, 2016. 104: p. 22-30.
51. V. Realinho, M. Antunes, A. B. Martínez and J. I. Velasco, Influence of nanoclay concentration on the CO2 diffusion and physical properties of PMMA montmorillonite microcellular foams. Industrial & Engineering Chemistry Research, 2011. 50(24): p. 13819-13824.
52. J. Pinto, J. A. Reglero-Ruiz, M. Dumon and M. A. Rodriguez-Perez, Temperature influence and CO2 transport in foaming processes of poly(methyl methacrylate)–block copolymer nanocellular and microcellular foams. Journal of Supercritical Fluids, 2014. 94: p. 198-205.
53. G. Wang, J. Zhao, C. Ge, G. Zhao and C. B. Park, Nanocellular poly(ether-block-amide)/MWCNT nanocomposite films fabricated by stretching-assisted microcellular foaming for high-performance EMI shielding applications. Journal of Materials Chemistry C, 2021,9, 1245-1258.
54. X. Wu, S. Yoda, Y. Morita, S. Horiuchi, H. Niino, T. Tai, K. Tazumi (METH) Acrylic resin foam, method for producing (meth) acrylic resin foam, and resin composition for foaming. JP2020079374A
55. V. Bernardo, J. Martin-de Leon, I. Sanchez-Calderon, E. Laguna-Gutierrez and M. A. Rodriguez-Perez, Nanocellular Polymers with a Gradient cellular structure based on poly(methyl methacrylate)/thermoplastic polyurethane blends produced by gas dissolution foaming. Macromolecular Materials and Engineering, 2020. 305(1): p. 1900428.
56. J. Martín-de León, V. Bernardo, and M.Á. Rodriguez-Perez, Cyclic gas dissolution foaming as an approach for simultaneously reducing cell size and relative density in nanocellular PMMA. Polymers, 2021. 13(14): p. 2383.
57. S. Pérez-Tamarit, B. Notario, E. Solórzano and M. A. Rodriguez-Perez, Light transmission in nanocellular polymers: Are semi-transparent cellular polymers possible? Materials Letters, 2018. 210: p. 39-41.
58. J. Pinto, D. Morselli, V. Bernardo, B. Notario, D. Fragouli, M. A. Rodriguez-Perez, Nanoporous PMMA foams with templated pore size obtained by localized in situ synthesis of nanoparticles and CO2 foaming. Polymer, 2017. 124: p. 176-185.
59. V. Bernardo, J. Martin-de Leon, J. Pinto, R. Verdejo and M. A. Rodriguez-Perez, Modeling the heat transfer by conduction of nanocellular polymers with bimodal cellular structures. Polymer, 2019. 160: p. 126-137.
60. V. Bernardo, J. Martin-de Leon, J. Pinto, U. Schade and M. A. Rodriguez-Perez, On the interaction of infrared radiation and nanocellular polymers: First experimental determination of the extinction coefficient. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020. 600: p. 124937.
61. Yeh, S.-K., W.-H. Liu, and Y.-M. Huang, Carbon dioxide-blown expanded polyamide bead foams with bimodal cell structure. Industrial & Engineering Chemistry Research, 2019. 58(8): p. 2958-2969.
62. T. Li, G. Zhao, G. Wang, L. Zhang and J. Hou, Thermal‐Insulation, electrical, and mechanical properties of highly‐expanded PMMA/MWCNT nanocomposite foams fabricated by supercritical CO2 foaming. Macromolecular Materials and Engineering, 2019. 304(6): 1800789.
63. Liu, P.S. and G.F. Chen, Chapter 1 - General Introduction to porous materials, in Porous Materials, P.S. Liu and G.F. Chen, Editors. 2014, Butterworth-Heinemann: Boston. p. 1-20.
64. Shen, J., C.C. Zeng, and L.J. Lee, Synthesis of poly styrene-carbon nanofibers nanocomposite foams. Polymer, 2005. 46(14): p. 5218-5224.
65. L. Chen, D. Rende, L. S. Schadler and R. Ozisik, Polymer nanocomposite foams. Journal of Materials Chemistry A, 2013. 1(12): p. 3837-3850.
66. E. Di Maio and E. Kiran, Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. Journal of Supercritical Fluids, 2018. 134: p. 157-166.
67. D. T Queheillalt, D. J Sypeck, and H.N.G Wadley, Ultrasonic characterization of cellular metal structures. Materials Science and Engineering: A Vol. 323(1-2). 2002. 138-147.
68. C.W. Visser, D.N. Amato, J. Mueller and J. A. Lewis, Architected Polymer Foams via Direct Bubble Writing. Adv Mater, 2019. 31(46): p. e1904668.
69. W.-l. Kong, J.-B. Bao, J. Wang, G.-H. Hu, Y. Xu and L. Zhao, Preparation of open-cell polymer foams by CO2 assisted foaming of polymer blends. Polymer, 2016. 90: p. 331-341.
70. E. Lopez-Gonzalez, C. Saiz-Arroyo and M. A. Rodriguez-Perez, Low-density open-cell flexible polyolefin foams as efficient materials for oil absorption: influence of tortuosity on oil absorption. International Journal of Environmental Science and Technology, 2019. 17(3): p. 1663-1674.
71. Y. Pang, S. Wang, M. Wu, W. Liu, F. Wu, P. C. Lee, Kinetics study of oil sorption with open-cell polypropylene/polyolefin elastomer blend foams prepared via continuous extrusion foaming. Polymers for Advanced Technologies, 2018. 29(4): p. 1313-1321.
72. V. Kumar, Microcellular polymers: Novel materials for the 21st century. Progress in rubber and plastics technology, 1993. 9(1): p. 54-70.
73. J.S. Colton and N.P. Suh, Nucleation of microcellular foam: Theory and practice. Polymer Engineering & Science, 1987. 27(7): p. 500-503.
74. M. Shimbo, I. Higashitani and Y. Miyano, Mechanism of Strength Improvement of Foamed Plastics Having Fine Cell. 2007. 43(2): p. 157-167.
75. V. Kumar, M. VanderWel, J. Weller and K. A. Seeler, Experimental characterization of the tensile behavior of microcellular polycarbonate foams. Journal of Engineering Materials and Technology, Transactions of the ASME, 1994. 116(4): p. 439-445.
76. Mishra, R., J. Militky, and M. Venkataraman, Chapter 7 - Nanoporous Materials, in Nanotechnology in Textiles, R. Mishra and J. Militky, Editors. 2019, Woodhead Publishing. p. 311-353.
77. Zuber, A.A., E. Klantsataya, and A. Bachhuka, Volume 3, Chapter 6 - Biosensing, in Comprehensive Nanoscience and Nanotechnology 2nd edition, D.L. Andrews, R.H. Lipson, and T. Nann, Editors. 2019, Academic Press: Oxford. p. 105-126.
78. B. Notario, J. Pinto and M. A. Rodríguez-Pérez, Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties. Polymer, 2015. 63: p. 116-126.
79. P. Rattanakawin, K. Yoshimoto, Y. Hikima, A. Chandra, T. Hayakawa, M. Tosaka, Highly Ordered Nanocellular Polymeric Foams Generated by UV-Induced Chemical Foaming. ACS Macro Letters, 2020. 9(10): p. 1433-1438.
80. Z.-M. Xu, X.-L. Jiang, T. Liu, G.-H. Hu, L. Zhao, Z.-N. Zhu, Foaming of polypropylene with supercritical carbon dioxide. The Journal of Supercritical Fluids, 2007. 41(2): p. 299-310.
81. S.-T.Lee, Polymeric Foams: Innovations in Processes, Technologies, and Products. Polymeric Foams. CRC Press 2016
82. J. Xu, Microcellular injection molding. Wiley series on polymer engineering and technology. 2010, Hoboken, N.J.: Wiley. 618 p.
83. Goel, S.K. and E.J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. II: Cell growth and skin formation. Polymer Engineering & Science, 1994. 34(14): p. 1148-1156.
84. J. Martín-de León, J. L. Pura, V. Bernardo and M. Á. Rodríguez-Pérez, Transparent nanocellular PMMA: Characterization and modeling of the optical properties. Polymer, 2019. 170: p. 16-23.
85. Shieh, Y.-T. and K.-H. Liu, Solubility of CO2 in Glassy PMMA and PS over a Wide Pressure Range: The Effect of Carbonyl Groups. Journal of Polymer Research, 2002. 9(2): p. 107-113.
86. S. Costeux, and L. Zhu, Thermoplastic nanocellular foams with low relative density using CO2 as the blowing agent. SPE FOAMS 2011 ConferenceAt: Iselin, NJ, United States.
87. L. Robeson, Historical perspective of advances in the science and technology of polymer blends. Polymers, 2014. 6(5): p. 1251-1265.
88. S. Sarkar, S. Banerjee, S. Roy, R. Ghosh, P. P. Ray and B. Bagchi, Composition dependent non-ideality in aqueous binary mixtures as a signature of avoided spinodal decomposition. Journal of Chemical Sciences, 2015. 127(1): p. 49-59.
89. J.G. Liu, X.H. Yu, L.J. Xue, Y.C. Han Chapter 16 Morphology Control of Polymer thin Films. In “Polymer Morphology: Principles, Characterization, and Processing” edited by Q. P. Guo, 2016. p. 299-316. John Wiley & Sons, Inc
90. L. Xue, J. Zhang, and Y. Han, Phase separation induced ordered patterns in thin polymer blend films. Progress in Polymer Science, 2012. 37(4): p. 564-594.
91. K. Liu, and E. Kiran, Pressure-Induced Phase Separation in Polymer Solutions:  Kinetics of Phase Separation and Crossover from Nucleation and Growth to Spinodal Decomposition in Solutions of Polyethylene in n-Pentane. Macromolecules, 2001. 34(9): p. 3060-3068.
92. T. Inoue, Reaction-induced phase decomposition in polymer blends. Progress in Polymer Science, 1995. 20(1): p. 119-153.
93. L. Verdolotti, M.R. Di Caprio, M. Lavorgna, G. Buonocore, Polyurethane Nanocomposite Foams, in Polyurethane Polymers. 2017. p. 277-310.
94. S.N. Leung, C.B. Park, D. Xu, H. Li and R.G. Fenton, Computer Simulation of Bubble-Growth Phenomena in Foaming. Industrial & Engineering Chemistry Research, 2006. 45(23): p. 7823-7831.
95. M. Amon, and C.D. Denson, A study of the dynamics of foam growth: Analysis of the growth of closely spaced spherical bubbles. Polymer Engineering & Science, 1984. 24(13): p. 1026-1034.
96. H.E. Naguib, C.B. Park, and N. Reichelt, Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Journal of Applied Polymer Science, 2004. 91(4): p. 2661-2668.
97. S. Costeux, I. Khan, S. P. Bunker and H. K. Jeon, Experimental study and modeling of nanofoams formation from single phase acrylic copolymers. Journal of Cellular Plastics, 2014. 51(2): p. 197-221.
98. C. Wang, S.N. Leung, M. Bussmann, W.T. Zhai and C.B. Park, Numerical investigation of nucleating-agent-enhanced heterogeneous nucleation. Industrial and Engineering Chemistry Research, 2010. 49(24): p. 12783-12792.
99. S.N. Leung, C.B. Park, and H. Li, Numerical simulation of polymeric foaming processes using modified nucleation theory. Plastics, Rubber and Composites, 2006. 35(3): p. 93-100.
100. S.K. Goel, and E.J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. I: effect of pressure and temperature on nucleation. Polymer Engineering and Science, 1994. 34(14): p. 1137-1147.
101. I. Khan, D. Adrian, and S. Costeux, A model to predict the cell density and cell size distribution in nano-cellular foams. Chemical Engineering Science, 2015. 138: p. 634-645.
102. B. Krause, H.J.P. Sijbesma, P. Munuklu, N.F.A. van der Vegt and M. Wessling, Bicontinuous nanoporous polymers by carbon dioxide foaming. Macromolecules, 2001. 34(25): p. 8792-8801.
103. C.B. Park, D.F. Baldwin, and N.P. Suh, Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polymer Engineering and Science, 1995. 35(5): p. 432-440.
104. D. Tammaro, A. Astarita, E. Di Maio and S. Iannace, Polystyrene Foaming at High Pressure Drop Rates. Industrial and Engineering Chemistry Research, 2016. 55(19): p. 5696-5701.
105. T. Ono, X. Wu, T. Furuya and S. Yoda, Development of a rapid decompression system for nanocellular foaming at 100 MPa. Journal of Supercritical Fluids, 2019. 149: p. 26-33.
106. J.S. Colton, and N.P. Suh, The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polymer Engineering & Science, 1987. 27(7): p. 485-492.
107. Y.T. Shieh, and T.T. Hsiao, Morphological changes of PVDF/PMMA blends via CO2 treatments. Journal of Supercritical Fluids, 2009. 48(1): p. 64-71.
108. R.B. McClurg, Design criteria for ideal foam nucleating agents. Chemical Engineering Science, 2004. 59(24): p. 5779-5786.
109. N.H. Fletcher, , Size Effect in Heterogeneous Nucleation. Journal of Chemical Physics, 1958. 29(3): p. 5.
110. R. Cole, Boiling Nucleation†. Advances in Heat Transfer, 1974. 10: p. 85-166.
111. M. Blander, and J.L. Katz, Bubble nucleation in liquids. AIChE Journal, 1975. 21(5): p. 833-848.
112. M. Blander, Bubble nucleation in liquids. Advances in Colloid and Interface Science, 1979. 10(1): p. 1-32.
113. C.E. Brennen, Cavitation and Bubble Dynamics. New York Oxford, Oxford University Press, 1995: p. 29.
114. S.N. Leung, Mechanisms of cell nucleation, growth, and coarsening in plastic foaming: Theory, simulation, and experiment. 2009, Ph.D. Dissertation, Department of Mechanical and Indistrial Engineering, the University of Toronto .
115. R. Zhang, and H. Yokoyama, Fabrication of Nanoporous Structures in Block Copolymer Using Selective Solvent Assisted with Compressed Carbon Dioxide. Macromolecules, 2009. 42(10): p. 3559-3564.
116. C. Dutriez, K. Satoh, M. Kamigaito and H. Yokoyama, Nanocellular foaming of fluorine containing block copolymers in carbon dioxide: The role of glass transition in carbon dioxide. RSC Advances, 2012. 2(7): p. 2821-2827.
117. H. Yokoyama, and K. Sugiyama, Nanocellular Structures in Block Copolymers with CO2-philic Blocks Using CO2as a Blowing Agent: Crossover from Micro- to Nanocellular Structures with Depressurization Temperature. Macromolecules, 2005. 38(25): p. 10516-10522.
118. A. Ameli, M. Nofar, C. B. Park, P. Pötschke and G. Rizvi, Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold. Carbon, 2014. 71(0): p. 206-217.
119. S.H. Mahmood, M. Keshtkar, and C.B. Park, Determination of carbon dioxide solubility in polylactide acid with accurate PVT properties. Journal of Chemical Thermodynamics, 2014. 70: p. 13-23.
120. J.H. Aubert, and R.L. Clough, Low-density, microcellular polystyrene foams. Polymer, 1985. 26(13): p. 2047-2054.
121. V.I. Kalikmanov, Nucleation theory. Lecture notes in physics. 2013, Dordrecht ; London: Springer. xv, 316 p.
122. J.W. Cahn, , Phase Separation by Spinodal Decomposition in Isotropic Systems. The Journal of Chemical Physics, 1965. 42(1): p. 93-99.
123. K.B. Rundman, and J.E. Hilliard, Early stages of spinodal decomposition in an aluminum-zinc alloy. Acta Metallurgica, 1967. 15(6): p. 1025-1033.
124. M. Hatanaka, and H. Saito, In-Situ Investigation of Liquid−Liquid Phase Separation in Polycarbonate/Carbon Dioxide System. Macromolecules, 2004. 37(19): p. 7358-7363.
125. Y.-I. Chang, , W.-Y. Cheng, and L. Jang, A novel method of making PVF porous foam without using the pore forming agent. Journal of Applied Polymer Science, 2015. 132(1).
126. M. Liu, S. Liu, Z. Xu, Y. Wei and H. Yang, Formation of microporous polymeric membranes via thermally induced phase separation: A review. Frontiers of Chemical Science and Engineering, 2016. 10(1): p. 57-75.
127. T. Standau, C. Zhao, S. Murillo Castellon, C. Bonten and V. Altstadt , Chemical Modification and Foam Processing of Polylactide (PLA). Polymers (Basel), 2019. 11(2).
128. J.L. Ruiz-Herrero, , S. Estravis, and M.A. Rodríguez-Perez, Polymeric Foams, in Kirk-Othmer Encyclopedia of Chemical Technology. 2017, John Wiley & Sons, Inc.
129. B. Xiang, Y. Jia, Y. Lei, F. Zhang, J. He, T. Liu, Mechanical properties of microcellular and nanocellular silicone rubber foams obtained by supercritical carbon dioxide. Polymer Journal, 2019. 51(6): p. 559-568.
130. V. Goodarzi, M. Fasihi, H. Garmabi, M. Ohshima, K. Taki and M. Reza Saeb, Microstructure, mechanical and electrical characterizations of bimodal and nanocellular polypropylene/graphene nanoplatelet composite foams. Materials Today Communications, 2020. 25.
131. G. Wang, C. Wang, J. Zhao, G. Wang, C. B. Park and G. Zhao, Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material. Nanoscale, 2017. 9(18): p. 5996-6009.
132. M. Alvarez-Lainez, M.A. Rodriguez-Perez, and J.A. De Saja, Thermal conductivity of open-cell polyolefin foams. Journal of Polymer Science Part B: Polymer Physics, 2008. 46(2): p. 212-221.
133. R. Hasanzadeh, T. Azdast, A. Doniavi and R. Eungkee Lee, Thermal-insulation performance of low density polyethylene (LDPE) foams: Comparison between two radiation thermal conductivity models. Polyolefins Journal, 2019. 6(1): p. 13-21.
134. S.S. Sundarram, and W. Li, On thermal conductivity of micro- and nanocellular polymer foams. Polymer Engineering and Science, 2013. 53(9): p. 1901-1909.
135. P. Buahom, C. Wang, M. Alshrah, G. Wang, P. Gong, M.-P. Tran, Wrong expectation of superinsulation behavior from largely-expanded nanocellular foams. Nanoscale, 2020. 12(24): p. 13064-13085.
136. J. Zhao, G. Wang, C. Wang and C. B. Park, Ultra-lightweight, super thermal-insulation and strong PP/CNT microcellular foams. Composites Science and Technology, 2020. 191.
137. G.M Pajonk, Transparent silica aerogels. Journal of Non-Crystalline Solids, 1998. 225: p. 307–314.
138. EU, Energy Performance of Buildings Directive: EPBD and EPBD2 (https://ec.europa.eu/energy/en/topics/energy efficiency/buildings).
139. R. Baetens, B.P. Jelle, and A. Gustavsen, Aerogel insulation for building applications: A state-of-the-art review. Energy and Buildings, 2011. 43(4): p. 761-769.
140. R. Baetens, B.P. Jelle, J.V. Thue, M.J. Tenpierik, S. Grynning, S. Uvsløkk, G.Arild, Vacuum insulation panels for building applications: A review and beyond. Energy and Buildings, 2010. 42(2): p. 147-172.
141. K.M. Lee, E.K. Lee, S.G. Kim, C.B. Park and H.E. Naguib, Bi-cellular Foam Structure of Polystyrene from Extrusion Foaming Process. Journal of Cellular Plastics, 2009. 45(6): p. 539-553.
142. P. Gong, G. Wang, M. P. Tran, P. Buahom, S. Zhai, G. Li, C.B. Park, Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation. Carbon, 2017. 120: p. 1-10.
143. Z. Ma, G. Zhang, Q. Yang, X. Shi and Y. Liu, Mechanical and dielectric properties of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions. Journal of Cellular Plastics, 2014. 51(3): p. 307-327.
144. C. Zhang, B. Zhu, D. Li and L. J. Lee, Extruded polystyrene foams with bimodal cell morphology. Polymer, 2012. 53(12): p. 2435-2442.
145. D. Kohlhoff, A. Nabil, and M. Ohshima, In situ preparation of cross-linked polystyrene/poly(methyl methacrylate) blend foams with a bimodal cellular structure. Polymers for Advanced Technologies, 2012. 23(10): p. 1350-1356.
146. U. Ali, K.J.B.A. Karim, and N.A. Buang, A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polymer Reviews, 2015. 55(4): p. 678-705.
147. J.E. Weller, and V. Kumar, Solid-State Microcellular Polycarbonate Foams. I. The Steady-State Process Space Using Subcritical Carbon Dioxide. Polymer Engineering and Science, 2010. 50(11): p. 2160-2169.
148. K. H. Liao, S. Kobayashi, H. Kim, A. A. Abdala and C. W. Macosko, Influence of Functionalized Graphene Sheets on Modulus and Glass Transition of PMMA. Macromolecules, 2014. 47(21): p. 7674-7676.
149. S. Li, J. Shen, and A.E. Tonelli, The influence of a contaminant in commercial PMMA: A purification method for its removal and its consequences. Polymer, 2018. 135: p. 355-361.
150. C. Zhao, and Y. Qiao, Characterization of nanoporous structures: From three dimensions to two dimensions. Nanoscale, 2016. 8(40): p. 17658-17664.
151. M. Pantoula, and C. Panayiotou, Sorption and swelling in glassy polymer/carbon dioxide systems: Part I. Sorption. The Journal of Supercritical Fluids, 2006. 37(2): p. 254-262.
152. V. Kumar, and N.P. Suh, A process for making microcellular thermoplastic parts. Polymer Engineering and Science, 1990. 30(20): p. 1323-1329.
153. J.E. Martini-Vvedensky, N.P. Suh, and F.A. Waldman, Microcellular closed cell foams and their method of manufacture. 1984, Massachusetts Institute of Technology.
154. C.B. Park, V. Padareva, P.C. Lee and H.E. Naguib, Extruded open-celled LDPE-based foams using non-homogeneous melt structure. Journal of Polymer Engineering, 2005. 25(3): p. 239-260.
155. B.E. Obi, Fundamentals of Polymeric Foams and Classification of Foam Types, in Polymeric Foams Structure-Property-Performance, 2018, William Andrew Publishing: Oxford. p. 93-129.
156. Y. Roiter and S. Minko, Minko, AFM Single Molecule Experiments at the Solid−Liquid Interface:  In Situ Conformation of Adsorbed Flexible Polyelectrolyte Chains. Journal of the American Chemical Society, 2005. 127(45): p. 15688-15689.
157. I.A. Haidar Ahmad, and A.M. Striegel, Determining the absolute, chemical-heterogeneity-corrected molar mass averages, distribution, and solution conformation of random copolymers. Analytical and Bioanalytical Chemistry, 2010. 396(4): p. 1589-1598.
158. I.M. Kalogeras, and W. Brostow, Glass transition temperatures in binary polymer blends. Journal of Polymer Science Part B: Polymer Physics, 2009. 47(1): p. 80-95.
159. L. Chang and E.M. Woo, Tacticity effects on glass transition and phase behavior in binary blends of poly(methyl methacrylate)s of three different configurations. Polymer Chemistry, 2010. 1(2): p. 198-202.
160. W. Brostow, R. Chiu, I. M. Kalogeras and A. Vassilikou-Dova, Prediction of glass transition temperatures: Binary blends and copolymers. Materials Letters, 2008. 62(17): p. 3152-3155.
161. S. Wu, Chain entanglement and melt viscosity of compatible polymer blends: poly(methyl methacrylate) and poly(styrene-acrylonitrile). Polymer, 1987. 28(7): p. 1144-1148.
162. I.C. Sanchez, and R.H. Lacombe, Statistical thermodynamics of polymer solutions. Macromolecules, 1978. 11(6): p. 1145-1156.
163. M.A. Shafi, K. Joshi, and R.W. Flumerfelt, Bubble size distributions in freely expanded polymer foams. Chemical Engineering Science, 1997. 52(4): p. 635-644.
164. H. Guo, K. Nadella, and V. Kumar, Effect of intrinsic viscosity on solid-state microcellular foaming of polyethylene terephthalate. Journal of Materials Research, 2013. 28(17): p. 2374-2379.
165. B.A. Rodeheaver, and J.S. Colton, Open-celled microcellular thermoplastic foam. Polymer Engineering & Science, 2001. 41(3): p. 380-400.
166. D. L. Tomasko, H. B. Li, D. H. Liu, X. M. Han, M. J. Wingert, L. J. Lee, K.W. Koelling, A review of CO2 applications in the processing of polymers. Industrial & Engineering Chemistry Research, 2003. 42(25): p. 6431-6456.
167. R.K. Gupta, Polymer and composite rheology, in Plastics engineering. 2000, Marcel Dekker: New York. p. 38.
168. M. Mours, and H. Winter, Time-resolved rheometry. Rheologica Acta, 1994. 33(5): p. 385-397.
169. S.T. Lee, and C.B. Park, Foam extrusion : principles and practice. Second edition. ed. Polymeric foams. 2014, Boca Raton: Taylor & Francis. pages cm.
170. S. Costeux, and D. Foether. Continuous extrusion of nanocellular foam. in Annual Technical Conference - ANTEC, Conference Proceedings. 2015.
171. S. Costeux, D.F., Hyunwoo Kim. Foam Injection-Molding Process Designed to Produce Sub-Micron Cells. in SPE ANTEC. 2017. Anaheim, CA USA: Society of Plastics Engineers.
172. B. Aher, N.M. Olson, and V. Kumar, Production of bulk solid-state PEI nanofoams using supercritical CO2. Journal of Materials Research, 2013. 28(17): p. 2366-2373.
173. S. Siripurapu, J. M. DeSimone, S. A. Khan and R. J. Spontak, Controlled foaming of polymer films through restricted surface diffusion and the addition of nanosilica particles or CO2-philic surfactants. Macromolecules, 2005. 38(6): p. 2271-2280.
174. K. Goren, L. Chen, L. S. Schadler and R. Ozisik, Influence of nanoparticle surface chemistry and size on supercritical carbon dioxide processed nanocomposite foam morphology. Journal of Supercritical Fluids, 2010. 51(3): p. 420-427.
175. S. Liu, A. Pandey, J. Duvigneau, J. Vancso and J. H. Snoeijer, Size-Dependent Submerging of Nanoparticles in Polymer Melts: Effect of Line Tension. Macromolecules, 2018. 51(7): p. 2411-2417.
176. S. Liu, R. Eijkelenkamp, J. Duvigneau and G. J. Vancso, Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions: Impact of Particle Size, Line Tension, and Surface Functionality. ACS Appl Mater Interfaces, 2017. 9(43): p. 37929-37940.
177. S. Liu, S. Yin, J. Duvigneau and G. J. Vancso, Bubble Seeding Nanocavities: Multiple Polymer Foam Cell Nucleation by Polydimethylsiloxane-Grafted Designer Silica Nanoparticles. ACS Nano, 2020. 14(2): p. 1623-1634.
178. S. Liu, S. De Beer, K. M. Batenburg, H. Gojzewski, J. Duvigneau and G. J. Vancso, Designer Core–Shell Nanoparticles as Polymer Foam Cell Nucleating Agents: The Impact of Molecularly Engineered Interfaces. ACS Applied Materials & Interfaces, 2021. 13(14): p. 17034-17045.
179. V. Bernardo, F. Loock, J. Martin‐de Leon, N. A. Fleck and M. A. Rodriguez‐Perez, Mechanical Properties of PMMA‐Sepiolite Nanocellular Materials with a Bimodal Cellular Structure. Macromolecular Materials and Engineering, 2019, 304, 1900041.
180. N.S. Ramesh, D.H. Rasmussen, and G.A. Campbell, The heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing low glass transition particles. Part II: Experimental results and discussion. Polymer Engineering & Science, 1994. 34(22): p. 1698-1706.
181. S. G. Kim, S. N. Leung, C. B. Park and M. Sain, The effect of dispersed elastomer particle size on heterogeneous nucleation of TPO with N2 foaming. Chemical Engineering Science, 2011. 66(16): p. 3675-3686.
182. M.H.N. Famili, H. Janani, and M.S. Enayati, Foaming of a polymer-nanoparticle system: Effect of the particle properties. Journal of Applied Polymer Science, 2011. 119(5): p. 2847-2856.
183. H. Janani, and M.H.N. Famili, Investigation of a strategy for well controlled inducement of microcellular and nanocellular morphologies in polymers. Polymer Engineering & Science, 2010. 50(8): p. 1558-1570.
184. S.E. Zakiyan, M.H.N. Famili, and M. Ako, Controlling foam morphology of polystyrene via surface chemistry, size and concentration of nanosilica particles. Journal of Materials Science, 2014. 49(18): p. 6225-6239.
185. S. Wu, Formation of dispersed phase in incompatible polymer blends: Interfacial and rheological effects. Polymer Engineering & Science, 1987. 27(5): p. 335-343.
186. W. Li, J. Liu, C. Hao, K. Jiang, D. Xu and D. Wang, Interaction of thermoplastic polyurethane with polyamide 1212 and its influence on the thermal and mechanical properties of TPU/PA1212 blends. Polymer Engineering & Science, 2008. 48(2): p. 249-256.
187. K. Tokuda, T. Ogino, M. Kotera and T. Nishino, Simple method for lowering poly(methyl methacrylate) surface energy with fluorination. Polymer Journal, 2015. 47(1): p. 66-70.
188. S. Wu, Calculation of interfacial tension in polymer systems. Journal of Polymer Science Part C: Polymer Symposia, 1971. 34(1): p. 19-30.
189. P. Pötschke, J. Pionteck, and H. Stutz, Surface tension, interfacial tension, and morphology in blends of thermoplastic polyurethanes and polyolefins. Part I. Surface tension of melts of TPU model substances and polyolefins. Polymer, 2002. 43(25): p. 6965-6972.
190. M. Bonfil, A. Sirkecioglu, O. Bingol-Ozakpinar, F. Uras and F. S. Güner, Castor oil and PEG-based shape memory polyurethane films for biomedical applications. Journal of Applied Polymer Science, 2014. 131(15): 40590.
191. R. Zhu, X. Wang, J. Yang, Y. Wang, Z. Zhang, Y. Hou, F. Lin, Y. Yi, Influence of Hard Segments on the Thermal, Phase-Separated Morphology, Mechanical, and Biological Properties of Polycarbonate Urethanes. Applied Sciences, 2017. 7(3): p. 306.
192. S. Muñoz-Pascual, C. Saiz-Arroyo, A. Vananroye, P. Moldenaers and M. A. Rodriguez-Perez, Effect on the Impact Properties of Adding Long-Chain Branched Polypropylene in Polypropylene-Polyolefin Elastomer Cellular Polymers Produced by Core-Back Injection Molding. Macromolecular Materials and Engineering, 2021.
193. S. Ito, K. Matsunaga, M. Tajima and Y. Yoshida, Generation of microcellular polyurethane with supercritical carbon dioxide. Journal of Applied Polymer Science, 2007. 106(6): p. 3581-3586.
194. J.S. Colton, and N.P. Suh, Nucleation of microcellular foam: Theory and practice. Polymer Engineering and Science, 1987. 27(7): p. 500-503.
195. T. Nomura, M. Alonso, Y. Kousaka and K. Tanaka, A Model for Simultaneous Homogeneous and Heterogeneous Nucleation. Journal of Colloid and Interface Science, 1998. 203: p. 170–176.
196. R. Miyamoto, S. Yasuhara, H. Shikuma and M. Ohshima, Preparation of micro/nanocellular polypropylene foam with crystal nucleating agents. Polymer Engineering & Science, 2013. 54(9): p. 2075-2085.
197. T. Nemoto, J. Takagi, and M. Ohshima, Control of Bubble Size and Location in Nano-/Microscale Cellular Poly(propylene)/Rubber Blend Foams. Macromolecular Materials and Engineering, 2008. 293(7): p. 574-580.

QR CODE