簡易檢索 / 詳目顯示

研究生: Vania Kurniawan
Vania Kurniawan
論文名稱: 分子量對壓克力微奈米泡材結構的影響
Controlling Structure of PMMA Bimodal Ultramicrocellular Foam by Blending Different Molecular Weight
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 胡孝光
Shiaw-Guang Hu
楊申語
Sen-Yeu Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 114
中文關鍵詞: 奈米泡沫PMMA共混物黏彈性CO2固態發泡雙峰結構泡
外文關鍵詞: Nanofoam, PMMA blends, viscoelastic properties, CO2 solid-state foaming, bimodal foam
相關次數: 點閱:254下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於具有優異的性能,高分子奈米泡材近年來受到廣泛的重視。一般而言奈米泡的泡孔小,因而密度偏高,目前的研究中,密度能達到0.1-0.2 g/cm3的低密度密度的奈米泡材是學界研究重點。其中,若不涉及力學性質的應用,在奈米泡材中引入大泡可以成為一個解決方案,期望能同時降低密度而不喪失奈米泡沫所具有的優異性能。在這項研究中,三種不同商用的PMMA,標記為PMMA-L,PMMA-M和PMMA-H,被用作原料。通過將PMMA-L或PMMA-M與各種wt%的PMMA-H共混來製備PMMA摻混物,以獲得具有不同粘彈性的PMMA,以製造具有雙峰泡孔(bimodal foam)結構的高分子,這項研究的新穎之處在於僅通過混合不同分子量的PMMA,使用CO2作為發泡劑就可以成功地製造具有雙峰結構的泡孔。從泡孔大小分析,可以在PMMA-LH混合物和PMMA-MH摻混物中觀察到泡孔由次微米級降低到奈米級的轉變,我們的研究發現,在PMMA-L中添加30-40 wt%的PMMA-H以及在PMMA-M中添加10-20 wt%的PMMA-H時,會發生明顯的次微米-奈米級泡孔轉變。並且泡孔由閉孔泡逐漸轉變為開孔泡。從流變學的角度分析,我們發現,產生雙峰泡結構,與未發生糾纏的高分子含量有關。


    Nanocellular foam and ultramicrocellular foam becomes an interesting material to be explored due to the superior properties offered. Nanofoam with low foam density in the range of 0.1-0.2 g/cm3 is a good candidate to be used as a thermal insulating material, but still challenging to be obtained. Introducing big bubbles to nanofoam can become one solution to obtain low density without losing the insulating and mechanical properties possessed by nanofoam. In this study, three grades of PMMA with different molecular weight, labeled as PMMA-L, PMMA-M, and PMMA-H were used as the raw materials. PMMA blends were prepared by blending either PMMA-L or PMMA-M with various wt% of PMMA-H, labeled as “PMMA-LH” or “PMMA-MH,” to obtain PMMA matrices with varied viscoelastic properties. The novelty of this study lies in the bimodal foam production only by blending one type of polymer with different molecular weight, thus eliminate dispersion and compatibility problems. Bimodal foams were successfully fabricated by solid-state foaming using CO2 as a blowing agent. Based on cell size analysis, the transition from ultramicrocellular to nanocellular foam can be observed in PMMA-LH blends and PMMA-MH blends at certain PMMA-H content, which is defined as the critical point. It was found that the critical points of PMMA-LH occur at the addition of 30 to 40 wt% PMMA-H, while for PMMA-MH occur at the addition of 10 to 20 wt% PMMA-H. Moreover, in those critical points, cell morphology transition from closed cell to open cell was also observed and such a result could be explained by estimating the non-entangled percentage of PMMA.

    摘要 I Abstract II Acknowledgements III List of Contents IV List of Figures VI List of Tables IX Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Polymer Foam 3 2.2 From Conventional Foam to Nanocellular Foam 5 2.3 PMMA Foam 8 2.4 Foaming Process 12 2.4.1. Blowing Agent 12 2.5 Phase Separation 14 2.5.1. Nucleation 18 2.5.2. Spinodal Decomposition 23 2.6 Batch Foaming 25 2.7 Bimodal Foam 27 Chapter 3 Experimental Method 29 3.1 Materials 29 3.2 Apparatus 34 3.3 Procedures 36 3.3.1 Blending 37 3.3.2 CO2 Solubility Measurement 37 3.3.3 Batch Foaming 38 3.3.4 Minimum Foaming Temperature Approach 39 3.4 Analysis 40 3.4.1 Melt Index (MI) 40 3.4.2 PMMA Purification 40 3.4.3 Differential Scanning Calorimetry (DSC) 41 3.4.4 Foam Density 42 3.4.5 Scanning Electron Microscope (SEM) 42 3.4.6 Cell Size 42 3.4.7 Cell Density 43 3.4.8 Open Cell Content 44 3.4.9 Rheological Behavior 45 Chapter 4 Results and Discussion 46 4.1 Polymer Blend Properties 46 4.1.1 Melt Index (MI) 47 4.1.2 Glass Transition Temperature (Tg) 47 4.1.3 Molecular Weight 50 4.1.4 Rheological Behavior 50 4.2 Influence of PMMA-H Content on Foaming Behavior 54 4.3 Formation of Bimodal Foam 68 4.4 Effect of PMMA-H Content on Cell Size and Cell Density 73 4.5 Cell Morphology 89 Chapter V Conclusion 91 References 92 Appendix A Foaming Results 101

    1. Martini-Vvedensky JE, Suh NP, Waldman FA. Microcellular closed cell foams and their method of manufacture. US 4473665,
    2. Notario B, Pinto J, Solorzano E, De Saja JA, Dumon M, Rodríguez-Pérez MA. Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer 2015;56:57-67.
    3. Notario B, Pinto J, Rodríguez-Pérez MA. Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties. Polymer 2015;63:116-126.
    4. Notario B, Ballesteros A, Pinto J, Rodríguez-Pérez MA. Nanoporous PMMA: A novel system with different acoustic properties. Mater Lett 2016;168:76-79.
    5. Notario B, Pinto J, Verdejo R, Rodríguez-Pérez MA. Dielectric behavior of porous PMMA: From the micrometer to the nanometer scale. Polymer 2016; 107:302-305.
    6. Costeux S. CO2-blown nanocellular foams. J Appl Polym Sci 2014; 131(23): 41293
    7. Guo H, Nicolae A, Kumar V. Solid-state poly(methyl methacrylate) (PMMA) nanofoams. Part II: Low-temperature solid-state process space using CO2 and the resulting morphologies. Polymer 2015;70:231-241.
    8. Liao Z, E.; Yeh, S. K.; Chu, C. C.; Tseng, T. W. Critical parameters of generating PMMA nanocellular foam. In: SPE ANTEC. Indianapolis, May, 2016. p.1773-1778.
    9. Gong P, Wang G, Tran M-P, Buahom P, Zhai S, Li G, Park CB. Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation. Carbon 2017;120:1-10.
    10. Bernardo V, Martin-De Leon J, Pinto J, Verdejo R, Rodriguez-Perez MA. Modeling the heat transfer by conduction of nanocellular polymers with bimodal cellular structures. Polymer 2019;160:126-137.
    11. Zhang C, Zhu B, Li D, Lee LJ. Extruded polystyrene foams with bimodal cell morphology. Polymer 2012;53:2435-2442.
    12. Ma Z, Zhang G, Yang Q, Shi X, Liu Y. Mechanical and dielectric properties of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions. J Cell Plast 2014;51(3):307-327.
    13. Notario B, Pinto J, Rodriguez-Perez MA. Nanoporous polymeric materials: A new class of materials with enhanced properties. Prog Mater Sci 2016;78-79:93-139.
    14. Sawai M, Miyamoto K, Takemura K, Mori M, Kiuchi K. Super low density polyurethane systems for sports shoes. J Cell Plast 2000;36(4):286-293.
    15. Liu P, Chen G-F. Applications of polymer foams. In: Liu P,Chen G-F, editor. Porous materials : processing and applications. USA: Elsevier: Butterworth-Heinemann, 2014. p.385, 389, 400.
    16. Hocking MB. Relative merits of polystyrene foam and paper in hot drink cups: Implications for packaging. Environmental Management 1991;15(6):731-747.
    17. Stadlbauer M, Folland R. Physical properties of polypropylene foams – how to predict and control them. Cell Polym 2004;23(6):403-416.
    18. Pinto J, Dumon M, Rodriguez-Perez MA, Garcia R, Dietz C. Block copolymers self-assembly allows obtaining tunable micro or nanoporous membranes or depth filters based on PMMA; fabrication method and nanostructures. J Phys Chem C 2014;118(9):4656-4663.
    19. Shimko DA, Nauman EA. Development and characterization of a porous poly(methyl methacrylate) scaffold with controllable modulus and permeability. J Biomed Mater Res Part B 2007;80:360-369.
    20. Weber H, Grave ID, Rorhl E. Foamed Plastics. In: Elvers B, editor. Ullmann's Polymers and Plastics. John Wiley & Sons, 2016. p.1585.
    21. Okolieocha C, Raps D, Subramaniam K, Altstädt V. Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review. Eur Polym J 2015;73:500-519.
    22. Lee LJ, Zeng CC, Cao X, Han XM, Shen J, Xu GJ. Polymer nanocomposite foams. Compos Sci Technol 2005;65:2344-2363.
    23. Chen L, Rende D, Schadler LS, Ozisik R. Polymer nanocomposite foams. J Mater Chem A 2013;1(12):3837-3850.
    24. Lee S-T, Park CB, Ramesh NS. Introduction to polymeric foams. In: Lee S-T, editor. Polymeric foams: science and technology. Boca Raton: CRC Press, 2006. p.10-11.
    25. Queheillalt DT, Sypeck DJ, Haydn N.G. Wadley. Ultrasonic characterization of cellular metal structures. Mater Sci Eng A 2002;323:138-147.
    26. Shimbo M, Higashitani I, Miyano Y. Mechanism of strength improvement of foamed plastics having fine cell. J Cell Plast 2007;43(2):157-167.
    27. Kumar V, Vanderwel M, Weller J, Seeler KA. Experimental characterization of the tensile behavior of microcellular polycarbonate foams. J Eng Mater Technol 1994;116(4):439-445.
    28. Costeux S. CO2-blown nanocellular foams. J Appl Polym Sci 2014;131(23)
    29. Martín-De León J, Bernardo V, Rodríguez-Pérez MÁ. Key production parameters to obtain transparent nanocellular PMMA. Macromol Mater Eng 2017:1700343.
    30. Costeux S, Zhu L. Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer 2013;54(11):2785-2795.
    31. Forest C, Chaumont P, Cassagnau P, Swoboda B, Sonntag P. Polymer nano-foams for insulating applications prepared from CO2 foaming. Prog Polym Sci 2015;41:122-145.
    32. Krause B, Sijbesma HJP, Munuklu P, Van Der Vegt NFA, Wessling M. Bicontinuous nanoporous polymers by carbon dioxide foaming. Macromolecules 2001;34(25):8792-8801.
    33. Guo H, Solid-state polymer nanofoams, Ph.D. Dissertation Department of Mechanical Engineering, University of Washington: 2015.
    34. Stevens MP. Basic Principles. In: Stevens MP, editor. Polymer chemistry: An introduction. New York: Oxford University Press, 1999. p.19.
    35. Ali U, Karim KJBA, Buang NA. A Review of the properties and applications of poly (Methyl Methacrylate) (PMMA). Polym Rev 2015;55(4):678-705.
    36. Miller RL. Crystallographic data and melting points for various polymers. In: Brandrup J, Immergut EH, Grulke EA, editor. Polymer handbook. New York: Wiley, 1999. p.VI/204.
    37. Goel SK, Beckman EJ. Generation of microcellular polymeric foams using supercritical carbon dioxide. II: Cell growth and skin formation. Polym Eng Sci 1994;34(14):1148-1156.
    38. Guo H, Kumar V. Solid-state poly(methyl methacrylate) (PMMA) nanofoams. Part I: Low-temperature CO2 sorption, diffusion, and the depression in PMMA glass transition. Polymer 2015;57:157-163.
    39. Handa YP, Zhang Z. A new technique for measuring retrograde vitrification in polymer–gas systems and for making ultramicrocellular foams from the retrograde phase. J Polym Sci, Part B: Polym Phys 2000;38(5):716-725.
    40. Yeh S-K, Liu Y-C, Chu C-C, Chang K-C, Wang S-F. Mechanical properties of microcellular and nanocellular thermoplastic polyurethane nanocomposite foams created using supercritical carbon dioxide. Ind Eng Chem Res 2017;56(30):8499-8507.
    41. Sandler JKW, Francis T, Lopes PMS. Nanoporous polymer foams. US 8,529,808 B2, 2013.
    42. Ono T, Wu X, Furuya T, Yoda S. Development of a rapid decompression system for nanocellular foaming at 100 MPa. J Supercrit Fluids 2019;149:26-33.
    43. Martín-De León J, Bernardo V, Rodríguez-Pérez M. Low density nanocellular polymers based on PMMA produced by gas dissolution foaming: Fabrication and cellular structure characterization. Polymers 2016;8:265-280.
    44. Pinto J, Notario B, Verdejo R, Dumon M, Costeux S, Rodriguez-Perez MA. Molecular confinement of solid and gaseous phases of self-standing bulk nanoporous polymers inducing enhanced and unexpected physical properties. Polymer 2017;113:27-33.
    45. Ye CZ, Xiaobing; Shevchenko, Elena; Li, Jie. CO2 batch foaming for fabricating semi-transparent PMMA nanofoam films. In: SPE Foams 2018. Montreal, September 2018.
    46. Xu ZM, Jiang XL, Liu T, Hu GH, Zhao L, Zhu ZN, Yuan WK. Foaming of polypropylene with supercritical carbon dioxide. J Supercrit Fluids 2007;41(2):299-310.
    47. Zhang H, Yu C-N, Liang Y, Lin G-X, Meng C. Foaming behavior and microcellular morphologies of incompatible SAN/CPE blends with supercritical carbon dioxide as a physical blowing agent. Polymers 2019;11:89-102.
    48. Sato Y, Yurugi M, Fujiwara K, Takishima S, Masuoka H. Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure. Fluid Phase Equilib 1996;125:129-138.
    49. Lide DR. Critical constants. In: Lide DR, editor. CRC Handbook of chemistry and physics. Boca Raton: CRC Press, 2003. p.6-53.
    50. Huang E, Liao X, Zhao C, Park CB, Yang Q, Li G. Effect of unexpected CO2's phase transition on the high-pressure differential scanning calorimetry performance of various polymers. ACS Sustainable Chem Eng 2016;4(3):1810-1818.
    51. Robeson L. Historical perspective of advances in the science and technology of polymer blends. Polymers 2014;6(5):1251-1265.
    52. Inoue T. Reaction-induced phase decomposition in polymer blends. Prog Polym Sci 1995;20(1):119-153.
    53. Sarkar S, Banerjee S, Roy S, Ghosh R, Ray PP, Bagchi B. Composition dependent non-ideality in aqueous binary mixtures as a signature of avoided spinodal decomposition. J Chem Sci 2015;127(1):49-59.
    54. Hamley IW. Polymers. In: Hamley IW, editor. Introduction to soft matter: synthetic and biological self-assembling materials. New York City, United States: John Wiley & Sons, 2008. p.74-75.
    55. Zhao Y, Maurya D, Miner A, A. Khodaparast G, Priya SJ. Enhanced thermoelectric performance in PbTe–PbS nanocomposites. Energy Harvesting Syst 2015;2(1-2):55-62.
    56. Costeux S, Khan I, Bunker SP, Jeon HK. Experimental study and modeling of nanofoams formation from single phase acrylic copolymers. J Cell Plast 2015;57(2):197-221.
    57. Wang C, Leung SN, Bussmann M, Zhai WT, Park CB. Numerical investigation of nucleating-agent-enhanced heterogeneous nucleation. Ind Eng Chem Res 2010;49(24):12783-12792.
    58. Leung SN, Park CB, Li H. Numerical simulation of polymeric foaming processes using modified nucleation theory. Plast Rubber Compos Process Appl 2006;35(3):93-100.
    59. Blander M, Katz J. Bubble nucleation in liquids. AlChE J 1979;21(5):833-848.
    60. Brennen CE. Phase change, nucleation, and cavitation. In: Brennen CE, editor. Cavitation and bubble dynamics. New York: Oxford University Press 1995. p.29.
    61. Costeux S, Foether D, Kim H. Foam injection-molding process designed to produce sub-micron cells. In: SPE ANTEC. Anaheim, May, 2017. p.2460-2465.
    62. Costeux S, Lantz DR, Beaudoin DA, Barger MA. Continuous process for extruding nanoporous foam. US 9,145,478 B2
    63. Standau T, Zhao C, Castellón SM, Bonten C, Altstädt V. Chemical modification and foam processing of polylactide (PLA). Polymers 2019;11(2):306-344.
    64. Lee K-M, Lee EK, Kim SG, Park CB, Naguib HE. Bi-cellular foam structure of polystyrene from extrusion foaming process. J Cell Plast 2009;45(6):539-553.
    65. Arora KA, Lesser AJ, Mccarthy TJ. Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules 1998;31(14):4614-4620.
    66. Kohlhoff D, Abacha N, Ohshima M. In situ preparation of cross-linked polystyrene/poly(methyl methacrylate) blend foams with a bimodal cellular structure. Polym Adv Technol 2012;23:1350-1356.
    67. Yeh S-K, Liu W-H, Huang Y-M. Carbon dioxide-blown expanded polyamide bead foams with bimodal cell structure. Ind Eng Chem Res 2019;58(8):2958-2969.
    68. Pantoula M, Panayiotou C. Sorption and swelling in glassy polymer/carbon dioxide systems: Part I. Sorption. J Supercrit Fluids 2006;37(2):254-262.
    69. Liao K-H, Kobayashi S, Kim H, Abdala AA, Macosko CW. Influence of functionalized graphene sheets on modulus and glass transition of PMMA. Macromolecules 2014;47(21):7674-7676.
    70. Li S, Shen J, Tonelli AE. The influence of a contaminant in commercial PMMA: A purification method for its removal and its consequences. Polymer 2018;135:355-361.
    71. Zhao C, Qiao Y. Characterization of nanoporous structures: From three dimensions to two dimensions. Nanoscale 2016;8(40):17658-17664.
    72. Kumar V, Suh NP. A process for making microcellular thermoplastic parts. Polym Eng Sci 1990;30(20):1323-1329.
    73. Bernardo V, Martin-De Leon J, Laguna-Gutierrez E, Catelani T, Pinto J, Athanassiou A, Rodriguez-Perez MA. Understanding the role of MAM molecular weight in the production of PMMA/MAM nanocellular polymers. Polymer 2018;153:262-270.
    74. Shenoy AV, Saini DR, Nadkarni VM. Rheology of poly(vinyl chloride) formulations from melt flow index measurements. Journal of Vinyl Technology 1983;5(4):192-197.
    75. Bremner T, Rudin A, G. Cook D. Melt flow index values and molecular weight distributions of commercial thermoplastics. J Appl Polym Sci 1990;41:1617-1627.
    76. Wypych G. Introduction. In: Wypych G, editor. Handbook of plasticizers. Canada: ChemTec Publishing, Elsevier, 2017. p.3.
    77. Chang L, Woo EM. Tacticity effects on glass transition and phase behavior in binary blends of poly(methyl methacrylate)s of three different configurations. Polym Chem 2010;1(2):198-202.
    78. Kalogeras IM, Brostow W. Glass transition temperatures in binary polymer blends. J Polym Sci, Part B: Polym Phys 2009;47(1):80-95.
    79. Brostow W, Chiu R, Kalogeras IM, Vassilikou-Dova A. Prediction of glass transition temperatures: Binary blends and copolymers. Mater Lett 2008;62(17):3152-3155.
    80. Haidar Ahmad I, Striegel A. Determining the absolute, chemical-heterogeneity-corrected molar mass averages, distribution, and solution conformation of random copolymers. Anal Bioanal Chem 2009;396:1589-98.
    81. Stojanović DB, Brajović L, Orlović A, Dramlić D, Radmilović V, Uskoković PS, Aleksić R. Transparent PMMA/silica nanocomposites containing silica nanoparticles coating under supercritical conditions. Prog Org Coat 2013;76(4):626-631.
    82. Paydayesh A, Arefazar A, Jalaliarani A. A morphological study on the migration and selective localization of graphene in the PLA/PMMA blends. J Appl Polym Sci 2016;133(34):43799-43810.
    83. Wang J-H, Young T-H, Lin D-J, Sun M-K, Huang H-S, Cheng L-P. Preparation of clay/PMMA nanocomposites with intercalated or exfoliated structure for bone cement synthesis. Macromol Mater Eng 2006;291(6):661-669.
    84. Thanh HV, Chen CCA, Kuo CH. Injection molding of PC/PMMA blend for fabricate of the secondary optical elements of LED illumination. Advanced Materials Research 2012;579:134-141.
    85. Peng G, Zhao X, Zhan Z, Ci S, Wang Q, Liang Y, Zhao M. New crystal structure and discharge efficiency of poly(vinylidene fluoride-hexafluoropropylene)/poly(methyl methacrylate) blend films. RSC Advances 2014;4(32):16849-16854.
    86. Chau JLH, Hsieh CC, Lin YM, Li AK. Preparation of transparent silica–PMMA nanocomposite hard coatings. Prog Org Coat 2008;62(4):436-439.
    87. Hayat MD, Li T, Cao P. Incorporation of PVP into PEG/PMMA based binder system to minimize void nucleation. Mater Des 2015;87:932-938.
    88. Mezger TG. Oscillatory tests. In: Mezger TG, editor. The rheology handbook: for users of rotational and oscillatory rheometers. Hannover: Vincentz Network GmbH & Co KG, 2006. p.137.
    89. Mours M, Winter H. Time-resolved rheometry. Rheol Acta 1994;33(5):385-397.
    90. Guo H, Kumar V. Some thermodynamic and kinetic low-temperature properties of the PC-CO2 system and morphological characteristics of solid-state PC nanofoams produced with liquid CO2. Polymer 2015;56:46-56.
    91. Sanchez IC, Lacombe RH. An elementary molecular theory of classical fluids. Pure fluids. The Journal of Physical Chemistry 1976;80(21):2352-2362.
    92. Sanchez IC, Lacombe RH. Elementary equation of state for polymer liquids. J Polym Sci Part B Polym Lett 1977;15(2):71-75.
    93. Bernardo V, Martín-De León J, Laguna-Gutiérrez E, Rodríguez-Pérez MÁ. PMMA-sepiolite nanocomposites as new promising materials for the production of nanocellular polymers. Eur Polym J 2017;96:10-26.
    94. Holl MR, Dynamic analysis, measurement, and control of cell growth in solid state polymeric foams, Department of Mechanical Engineering, PhD Dissertation University of Washington: 1995.
    95. Weller JE, The effects of processing and microstructure on the tensile behavior of microcellular foams, Department of Mechanical Engineering, PhD Dissertation University of Washington: 1996.
    96. Scriven LE. Equilibrium bicontinuous structures. In: Mittal KL, editor. Micellization, solubilization, and microemulsions: Boston, MA: Springer US, 1977. p.877-893.
    97. Liao ZE, Generating poly(methyl methacrylate) nanocellular foam by solid state foaming, Master Thesis National Taipei University of Technology: Department of Chemical Engineering and Biotechnology, 2016.
    98. Shafi MA, Joshi K, Flumerfelt RW. Bubble size distributions in freely expanded polymer foams. Chem Eng Sci 1997;52(4):635-644.
    99. Guo H, Nadella K, Kumar V. Effect of intrinsic viscosity on solid-state microcellular foaming of polyethylene terephthalate. J Mater Res 2013;28(17):2374-2379.
    100. Gupta RK. Chapter 3 Shear viscosity of melts of flexible chain polymers. In Polymer and composite rheology. New York: Marcel Dekker, 2000. p.38.
    101. Forest C, Chaumont P, Cassagnau P, Swoboda B, Sonntag P. Nanofoaming of PMMA using a batch CO2 process: Influence of the PMMA viscoelastic behaviour. Polymer 2015;77:1-9.
    102. Dontula N, Greener J, Fleischer CA, Park CB, Lee PC, Wang J, Naguib HE. Manufacturing process for open celled microcellular foam. US 6,958,365 B2,
    103. Rodeheaver BA, Colton JS. Open-celled microcellular thermoplastic foam. Polym Eng Sci 2001;41(3):380-400.
    104. He YT, Foaming behavior of poly(methyl methacrylate) nanocellular foam, Department of Materials Science and Engineering, Master's Thesis National Taiwan University of Science and Technology 2018.

    無法下載圖示 全文公開日期 2024/08/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE