簡易檢索 / 詳目顯示

研究生: 李石之
Shih-chih Lee
論文名稱: 最佳化單一輸入PID模糊控制器設計
Design and Optimization of the PID-Type Single Input Fuzzy Logic Controller
指導教授: 施慶隆
Ching-long Shih
口試委員: 黃安橋
An-chyau Huang
許新添
Hsin-teng Hsu
黃志良
Chih-lyang Hwang
孔光源
Kuang-yuan Kung
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 119
中文關鍵詞: 單一輸入PID模糊控制器模糊規則庫穩態誤差基因演算法直接推力
外文關鍵詞: Single Input PID-Type Fuzzy Logic Controller, Direct Thrust Control
相關次數: 點閱:307下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於無法找出數學模式、無法給予明確定義,或者是難以使用傳統控制方法及技巧分析的非線性時變系統,模糊控制器能夠有效控制且其強健穩定性能優於傳統控制器。隨著受控系統的複雜度增加與控制性能越加要求,這些複雜的高階受控系統通常會有多重輸入與輸出以及龐大的規則數,此外,模糊控制器還有穩態誤差過大的問題。本論文提出單一輸入PID模糊控制器以降低複雜控制系統大量的規則數及穩態誤差。
    而影響模糊控制器性能的因素包含輸出輸入語言變數的設定、模糊化界面、歸屬函數的設計、模糊規則庫的設計、推論引擎與解模糊化界面。其中以模糊規則庫與歸屬函數最為重要。為使其達到最佳化的目的,本文也提出一個新的適應函數嘗試以基因演算法合併精英保留法來搜尋模糊控制器歸屬函數的形狀與尺規因子。
    最後經由MATLAB與SIMULINK在電腦進行模擬,對於雙旋翼直昇機模型姿態控制及線型永磁式同步馬達位置控制系統均可以成功的設計控制器。實作的部分是以本文所提控制架構,結合直接推力控制架構應用在線型永磁式同步馬達全行程精密位置控制,控制系統之穩態誤差約為0.045 mm,而控制器只使用3條模糊規則。


    As compared with conventional controllers (e.g., PID control, linear quadratic control … ), the fuzzy controllers present excess robustness and performance in plants with imprecise, unknown, or nonlinear characteristics. Large-scale complex fuzzy systems such as multi-input-multi-output interconnected systems, lead to a large computation and a significant amount of rules. Furthermore, a severe drawback is the existence of steady-state error. This thesis presents a single input PID-type fuzzy logic controller for simultaneously reducing the steady-state error and the required number of fuzzy rules.
    The factors affecting a fuzzy controller include its linguistic variables of input and output, fuzzification design, membership function design, fuzzy rules base, inference engine and defuzzification design. The rule base and the membership functions are considered as two most important factors. To optimize the control performances, this thesis proposed a new fitness function and applied genetic algorithms which incorporate「Elite method」to choose the shapes of the membership functions and the scaling factors.
    Finally, several simulations using Matlab/Simulink were investigated. The results showed that it can be successfully performed in two-rotor-helicopter system and permanent magnet linear synchronous motor (PMLSM) system. In this thesis, a new framework was also proposed to implement the direct thrust control method for a real-word PMLSM more important precision position control system. The steady-state error of experimental results was about 0.045mm, and the proposed control systems require only three rules.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 符號索引 V III 圖表索引 X 表格索引 X IV 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機及目的 2 1.3研究內容 2 1.4論文架構 3 第2章 傳統模糊控制器與改良式模糊控制器 5 2.1 傳統模糊控制器 5 2.1.1模糊控制系統架構 6 2.1.2模糊化 7 2.1.3模糊知識庫 12 2.1.4推論引擎 13 2.1.5解模糊化 14 2.2改良式模糊控制器 16 2.2.1多階模糊控制器 16 2.2.2單輸入模糊控制器 18 2.2.3單一輸入PID模糊控制器 22 第3章 結合基因演算法之單一輸入PID模糊控制器 26 3.1基因演算法之概述 26 3.1.1個體 27 3.1.2族群人口 29 3.1.3適應函數 29 3.1.4複製 32 3.1.5交配 34 3.1.6突變 37 3.1.7終止條件 38 3.1.8演算法程序 38 3.2基因演算法之特點與探討 40 3.2.1基因演算法的特點 40 3.2.2基因演算法之探討 41 3.2.3改良式基因演算法之流程 44 3.3結合基因演算法之單一輸入PID模糊控制器設計 46 第4章 模擬結果 49 4.1雙旋轉翼直昇機模型系統 49 4.1.1數學模式 49 4.1.2最佳化TRMS姿態控制器 55 4.1.3 TRMS姿態控制之模擬結果 57 4.2線型永磁式同步馬達系統 60 4.2.1數學模式 61 4.3線型永磁式同步馬達之直接推力控制 63 4.3.1磁通與推力磁滯控制器 64 4.3.2電壓空間向量與動子磁通角度區間 65 4.3.3電壓向量切換表 68 4.3.4電磁推力、動子磁通及磁通相位角估測器 70 4.3.5傳統型估測器 72 4.3.6具有校正係數之修正型估測器 74 4.3.7新修正型與舊傳統型估測器性能比較 76 4.4線型永磁式同步馬達直接推力控制的模擬測試 77 4.4.1模擬結果 80 第5章 實作結果 82 5.1系統實作測試 82 5.1.1實驗系統架構 83 5.1.2實驗結果 84 第6章 結論與建議 89 6.1 結論 89 6.2 未來發展之建議 90 參考文獻 91

    [1] D. Sinha, P. Sinha, E. R. Dougherty and S. Batmen, “Design and Analysis on Fuzzy Morphological Algorithms for Image Processing”, IEEE Transactions on Fuzzy Systems, Vol. 5, No. 4, pp. 570-584 (1997)
    [2] K. Y. Lian, C. S. Chiu, T. S. Chiang, and Peter Liu, “LMI-Based Fuzzy Chaotic Synchronization and Communications”, IEEE Transactions on Fuzzy Systems, Vol. 9, No. 4, pp. 539-553 (2001)
    [3] B. D. Liu, C. Y. Chen, and J. Y. Tsao, “Design of Adaptive Fuzzy Logic Controller Based on Linguistic-Hedge Concepts and Genetic Algorithms”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 31, No. 1, pp. 32-53 ( 2001)
    [4] G. V. S. Raju, J. Zhou, and Roger A. Kiser, “Hierarchical Fuzzy Control,” International Journal Control, Vol. 54, No. 5, pp. 1201-1216 (1991)
    [5] G. V. S. Raju, and Jun Zhou, “Adaptive Hierarchical Fuzzy Controller,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 24, pp. 973-980 (1993)
    [6] B. J. Choi, S. W. Kwak, and B. K. Kim, “Design and Stability Analysis of Single-Input Fuzzy Logic Controller,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 30, No. 2, pp. 303-309 (2000)
    [7] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley, Reading, MA (1989)
    [8] K. F. Man, K. S. Tang, and S. Kwong, “Genetic Algorithms: Concepts and Application,” IEEE Transactions on Industrial Electronics, Vol. 43, No. 5, pp. 519-534 (1996)
    [9] Gen, Mitsuo, Cheng, and Runwei, Genetic Algorithms and engineering design, Wiley, New York (1997)
    [10] Y. S. Zhou, and L. Y. Lai, “Optimal Design for Fuzzy Controllers by Genetic Algorithms,” IEEE Transactions on Industry Applications, Vol. 36, No. 1, pp. 93-97 (2000)
    [11] J. Craig Potts, Terri D. Giddens, and Surya B. Yadav, “The Development and Evaluation of an Improved Genetic Algorithm Based on Migration and Artificial Selection,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 24, No. 1, pp. 73-86, January (1994)
    [12] Cui J., Wang C., Yang J., and Liu L., “Analysis of Direct Thrust Force Control for Permanent Magnet Linear Synchronous Motor,” Proceedings of the 5th World Congress on Intelligent Control and Automation, pp. 4418-4421, Hangzhou, P.R. China (2004)
    [13] 陳義明,「以直接推力控制實現線型永磁同步馬達控制之研究」,碩士論文,國防大學理工學院,桃園 (2007)。
    [14] Kwon, B., Woo, K., and Kim, S., “Finite Element Analysis of Direct Thrust-Controlled Linear Induction Motor,” IEEE Trans. Mage., Vol. 35, pp. 1306-1309, May (1995)
    [15] Mamdani, E. H. and Assilian S., “An experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Man-Machine Studies, Vol. 7, No. 1, pp. 1-13 (1975)
    [16] Mamdani, E. H., “Application of Fuzzy Algorithms for Control of Simple Dynamic Plant,” Proceedings of the Institution of Electrical Engineers, Vol. 121, No. 12, pp. 1585-1588 (1974)
    [17] C. Dou and J. A. Macedo, “Complex System Inference-Control and Fuzzy Logic Modeling,” International Journal Control, Vol. 65, No. 5, pp. 373-378 (1995)
    [18] Jacob S. Glower and Jeffrey Munighan, “Designing Fuzzy Controller from a Variable Structures Standpoint,” IEEE Transactions on Fuzzy Systems, Vol. 5, No. 1, pp. 138-144 (1997)
    [19] Mamdani E. H., “Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis,” IEEE Transactions on Computers, Vol. 26, pp. 1182-1191 (1997)
    [20] Yeh, Z. M., “Adaptive Multivariable Fuzzy Logic Controller,” Fuzzy Sets and Systems, Vol. 86, pp. 43-60 (1997)
    [21] Yeh, Z. M., and Chen, H. P., “A Novel Approach for Multistage Inference Fuzzy Control,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 28, No. 6, pp. 935-946 (1998)
    [22] Brehm, T., and Rattan, K. S., “Hybrid Fuzzy Logic PID Controller,” Proceedings of the 1993 IEEE International Conference on Aerospace and Electronics, pp. 807-813 (1993)
    [23] Yu Qin, and S. Du, “A Fuzzy PID Controller Optimized by Genetic Algorithms Used for a Single Phase Power Factor Pre-regulator,” Proceedings of the 23th IEEE International Conference on Industrial Electronics, Control, and Instrumentation, pp. 338-342 (1997)
    [24] Tang, K. S., Kim Fung Man, Guanrong Chen, and Kwong, S., “An Optimal Fuzzy PID Controller,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 4, pp. 757-765 (2001)
    [25] He, Y. B., Lim, G. H., and Chua, P. S. K., “Comparison and Application of Three Integral-improved Methods on Conventional Fuzzy Control Strategy,” Proceedings of the 2002 IEEE International Conference on Industrial Technology, Vol. 1, pp. 214-219 (2002)
    [26] Homaifar, A., and McCormick, E., “Simultaneous Design of Membership Functions and Rule Sets Controllers Using Genetic Algorithms,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 3, No. 2, pp. 129-139 (1995)
    [27] Belarbi, K., and Titel, F., “Genetic Algorithm for the Design of a Class of Fuzzy Controllers: an Alternative Approach,” IEEE Transactions on Fuzzy Systems, Vol. 8, No. 4, pp. 398-405 (2000)
    [28] Zhou, Y. S., and Lai, L. Y., “Optimal Design for Fuzzy Controllers by Genetic Algorithms,” IEEE Transactions on Industry Applications, Vol. 36, No. 1, pp. 93-97 (2000)
    [29] C. Ergun and K. Hacioglu, “Multiuser Detection Using a Genetic Algorithm in CDMA Communications Systems”, IEEE Transactions on Communications, Vol. 48, No. 4, pp. 1374-1383 (2000)
    [30] Wang, Y. P., Hur, D. R., Chung, H. H., Watson, N. R., Arrillaga, J., and Matair, S. S., “A Genetic Algorithms Approach to Design an Optimal PI Controller for Static var Compensator”, Proceedings of the 2000 IEEE International Conference on Power System Technology, Vol. 3, pp. 1557-1562 (2000)
    [31] Grefenstette, J., “Optimization of Control Parameters for Genetic Algorithms”, IEEE Transactions on System, Man, and Cybernetics, Vol. 16, No. 1, pp. 122-128 (1986)
    [32] E. Goldberg David, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, Mass.: Addison-Wesley Pub. Co. (1989)
    [33] Srinivas, M., and Patnaik, L. M., “Genetic Algorithms: A Survey,” IEEE Computer, Vol. 27, No. 6, pp. 17-26 (1994)
    [34] A. Kenneth and D. Jong, “Using genetic algorithms to solve NP-complete problems”, Proceedings of the 3th IEEE International Conference on Genetic Algorithms, pp. 124-132 (1989)
    [35] G. Syswerda, “Uniform crossover in genetic algorithms,” Proceedings of the 2th IEEE International Conference on Genetic Algorithms, pp. 100-107 (1987)
    [36] J. Craig Potts, Terri D. Giddens, and Surya B. Yadav, “The Development and Evaluation of an Improved Genetic Algorithm Based on Migration and Artificial Selection,” IEEE Transactions on System, Man, and Cybernetics, Vol. 24, No. 1, pp. 73-86 (1994)
    [37] Xu Hongze, Wei XueYe, and Xu Maosheng., “Schema Analysis of Multi-points Crossover Genetic Algorithm,” Proceedings of the 3th World Congress on Intelligent Control and Automation, pp. 521-524, Fehei, P.R. China (2000)
    [38] Srinivas, M., and Patnaik, L. M., “Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms,” IEEE Transactions on System, Man, and Cybernetics, Vol. 24, No. 4, pp. 656-667 (1994)
    [39] Shih, C. L., and Chen, M. L., “Mathematical model and set-point stabilizing controller design of a twin rotor MIMO system,” Asian Journal of Control, Vol. 10, No. 1, pp. 107-114 (2008)
    [40] 王晚成,網路互動式線型永磁同步馬達控制系統之實現,碩士論文,國防大學中正理工學院,桃園 (2006)。
    [41] Famouri, P., “Control of a Linear Permanent Magnet Brushless DC Motor via Exact Linearization Methods,” IEEE Transactions on Energy Conversion, Vol. 7, No. 3, pp. 544-551 (1992)
    [42] 劉昌煥,交流電機控制-向量控制與直接轉矩控制原理第3版,東華書局,台北,第213-219頁 (2005)。
    [43] 林正浩,「三相感應電動機之DSP直接轉矩控制系統研製」,碩士論文,國立台灣大學,台北,第8-11頁 (2003)。
    [44] 朱景華,「永磁同步馬達之直接轉矩控制的研究」,碩士論文,國防大學中正
    理工學院,桃園,第21-31頁 (2000)。
    [45] C. C. Sung, and Y. S. Huang, “Based on Direct Thrust Control for Linear Synchronous Motor Systems,” IEEE Transactions on Industrial Electronics, Vol. 56,
    No. 5, pp. 1629-1639 (2009)
    [46] Takahashi, I., “Decoupling Control of Thrust and Attractive Force of a LIM Using Space Vector Controlled Inverter,” IEEE Transactions on Industrial Applications, Vol. 29, No. 1, pp. 161-167 (2005)
    [47] Lai, Y. S., and Chen, J. H., “A New Approach to Direct Torque Control of Induction Motor Drives for Constant Inverter Switching Frequency and Torque Ripple Reduction,” IEEE Transactions on Energy Conversion, Vol. 16, No. 3, pp. 220-227 (2001)
    [48] Stojic, D., and Vukosavic S., “Sensorless Induction Motor Drive Based on Flux Acceleration Torque Control,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 3, pp. 1796-1800 (2007)
    [49] Kaboli, S., Zolghadri, M. R., and Vahdati-Khajeh, E., “A Fast Flux Search Controller for DTC-Based Induction Motor Drives,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 5, pp. 2407-2416 (2007)
    [50] Wu, R., and Slemon, G. R., “A Permanent Magnet Motor Drive without a Shaft Sensor,” IEEE Transactions on Industrial Applications, Vol. 27, No. 5, pp. 1005-1011 (1991)
    [51] Hurst, K. D., Habetler, T. G., and Griva, G., “Zero-Speed Tacholess IM Torque Control: Simply a Matter of Stator Voltage Integration,” IEEE Transactions on Industrial Applications, Vol. 34, No. 4, pp. 790-795 (1998)
    [52] Hucai Lu, Weimin Yang, Yuetong Xu, Peiqiong Yu, and Zichen Chen, “Position Sensorless Control of Surface-Mounted PMLSM with a Novel Starting Method,” Proceedings of the 2006 IEEE International Conference on Information Acquisition, Weihai, Shandong, China, pp. 1174-1178 (2006)
    [53] Jun Hu, and Bin Wu, “New Integration Algorithms for Estimating Motor Flux Over a Wide Speed Range,” IEEE Transactions on Power Electronics, Vol. 13, No. 5, pp. 969-977 (1998)

    無法下載圖示 全文公開日期 2016/06/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE