簡易檢索 / 詳目顯示

研究生: 陳家蓁
Jia-Zhen Chen
論文名稱: 多功能絲素蛋白分離薄膜之開發
Development of Multi-Functional Silk Fibroin Separation Membranes
指導教授: 胡蒨傑
Chien-Chieh Hu
口試委員: 孫一明
Yi-Ming Sun
賴君義
Juin-Yih Lai
洪維松
Wei-Song Hung
王志逢
Chih-Feng Wang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 97
中文關鍵詞: 絲素蛋白薄膜結晶度氧化石墨稀滲透蒸發蛋白質分離
外文關鍵詞: Silk fibroin membranes, Graphene oxide, Crystallinity, Pervaporation, Protein separation
相關次數: 點閱:334下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

絲素蛋白是無毒且生物相容性極佳的天然高分子,使用絲素蛋白可以製作適合生技產物分離的環境友善薄膜,絲素蛋白薄膜易溶於水且機械強度不佳限制了其應用的發展,本研究使用兩種方法誘導絲素蛋白結構轉變,經由乙醇後處理法及聚乙二醇共混法,成功製備出緻密或多孔絲素蛋白薄膜,研究開發出的薄膜可應用於多種液相分離程序。
研究第一部份製備絲素蛋白緻密薄膜,探討乙醇後處理時間對絲素蛋白薄膜結晶度及滲透蒸發效能的影響,結果證實,乙醇後處理時間由0秒增加至300秒,有效調控絲素蛋白薄膜的結晶度由36 %增加至49 %,比較SF-0s和SF-300s薄膜於異丙醇/水滲透蒸發的效能,當進料端溶液為70 wt%的異丙醇水溶液時,滲透通量自337 g/hr•m2提升至465 g/hr•m2,透過端水濃度維持在97 wt%以上,而具有高比例結晶結構的SF-300s薄膜在進料端水濃度為90 wt%時,滲透通量和透過端水濃度為1138 g/hr•m2和99 wt%,另外,在進料溶液的溫度為70 ℃時,滲透通量和透過端水濃度分別為1613 g/hr•m2和93 wt%,上述結果證實薄膜中高比例的結晶結構,能夠避免絲素蛋白分子鏈過度膨潤或擾動,提升該薄膜於異丙醇/水滲透蒸發系統的效能及穩定性。為了提升滲透通量,本研究於絲素蛋白系統中導入氧化石墨稀奈米片,成功利用高分子與無機片材界面區域形成的質傳通道提升滲透通量,其中以添加0.5 wt% GO的混合基質薄膜有577 g/hr•m2的最高滲透通量及93 wt%的透過端水濃度,此外,該薄膜於進料溶液溫度為70 ℃時,有1320 g/hr•m2的滲透通量及98 wt%的滲透端水濃度,證實導入GO奈米片有助於薄膜於高溫操作。
研究第二部分使用聚乙二醇和絲素蛋白進行混摻,聚乙二醇不僅誘導絲素蛋白結晶,同時可以作為薄膜的造孔劑,經由完全移除PEG/SF薄膜中的聚乙二醇後,可成功製備出多孔絲素蛋白薄膜。透過改變聚乙二醇的分子量及添加比例可有效調控絲素蛋白薄膜結晶度和滲透通量,多孔絲素蛋白薄膜進行蛋白質過濾有優異的防汙性能,當PEG200的添加比例由SF質量的1倍增加至2倍時,絲素蛋白薄膜的結晶度由53 %提升至54 %,1.0 PEG200/SF和2.0 PEG200/SF製備之多孔絲素蛋白薄膜的純水滲透通量、BSA溶液滲透通量、BSA截留率分別為1.1 LMH/bar、1.0 LMH/bar、99.3 %和5.8 LMH/bar、5.4 LMH/bar、99.5 %,另外,固定PEG添加比例為SF質量的1.5倍,當PEG的分子量由200 g/mol提升至2000 g/mol時,絲素蛋白薄膜的結晶度反而由54 %下降至42 %,1.5 PEG200/SF和1.5 PEG2000/SF製備之多孔絲素蛋白薄膜的純水滲透通量、BSA溶液滲透通量、BSA截留率分別為2.1 LMH/bar、1.9 LMH/bar、99.7 %和2.7 LMH/bar、2.5 LMH/bar、99.6 %,證實多孔絲素蛋白薄膜應用於蛋白質分離的發展潛力。


Silk fibroin is a non-toxic natural polymer which has excellent biocompatibility. The silk fibroin can make environment friendly membranes suitable for the separation of bio-products. Silk fibroin membranes are easily soluble in water and have poor mechanical strength, which limits their application. In this research, two methods were used to induce the structural transformation of silk fibroin. Through the ethanol post-treatment method and the polyethylene glycol blending method, dense or porous silk fibroin membranes were successfully prepared. The developed membranes can be applied to various liquid separation processes.
The first part of this work prepared silk fibroin dense membranes and explored the effect of ethanol post-treatment on the crystallinity and pervaporation performance of silk fibroin membranes. The results confirmed that the crystallinity of silk fibroin membranes were effectively controlled from 36% to 49% with the ethanol post-treatment time was from 0 s to 300 s. Compared the isopropanol/water pervaporation performance of SF-0s and SF-300s membranes, feed solution was 70 wt% isopropanol aqueous solution, the permeation flux increased from 337 g/hr•m2 to 465 g/hr•m2, and the water content in permeate were maintained above 97 wt%. When the water content in feed increased to 90 wt%, the SF-300s membrane had the 1138 g/hr•m2 permeation flux and 99 wt% water content in permeate. In addition, the permeate flux and the water content in permeate were 1613 g/hr•m2 and 93 wt% for 70 ℃ feed solution, respectively. This result confirmed that increasing the crystallinity could avoid excessive swelling or disturbance of the molecular chain which improve the pervaporation performance and stability of silk fibroin membranes. In order to improve the permeation flux, graphene oxide nanosheets were introduced into the silk fibroin. The mass transfer channels formed at the interface regions were successfully used to improve the permeation flux. The 0.5 GO/SF membranes had the highest permeation flux of 577 g/hr•m2 and the 92 wt% water content in permeate. In addition, when the temperature of feed solution was 70 ℃, the membranes had 1320 g/hr•m2 permeation flux and 98 wt% water content in permeate. The introduction of GO nanosheets was helpful for the membranes to operate at high temperature.
The polyethylene glycol blended with silk fibroin in the second part of this research. Polyethylene glycol not only induced the crystallization of silk fibroin, but also acted as a porogen for the membranes. By completely removed the polyethylene glycol in the PEG/SF membranes, the porous silk fibroin membranes can be successfully prepared. Changed the molecular weight and blending ratio of polyethylene glycol, the crystallinity and permeation flux of the silk fibroin membranes can be effectively regulated. The porous silk fibroin membrane has excellent antifouling properties for protein separation. When the blending ratio of PEG200 increased from 1 to 2 times mass of SF, the crystallinity of the silk fibroin membranes increased from 53 % to 54 %, the water permeation flux, BSA solution permeation flux, and BSA rejection rate were 1.1 LMH/bar, 1.0 LMH/bar, 99.3 % and 5.8 LMH/bar, 5.4 LMH/bar, 99.5 %, respectively. In addition, when the molecular weight of PEG increased from 200 g/mol to 2000 g/mol, the crystallinity of the silk fibroin membranes decreased from 54 % to 42 %. The pure water permeation flux, BSA solution permeation flux, and BSA rejection of porous silk fibroin films prepared from 1.5 PEG2000/SF and 1.5 PEG2000/SF were 2.1 LMH/bar, 1.9 LMH/bar, 99.7 % and 2.7 LMH/bar, 2.5 LMH, 99.6 %, respectively. Experimental results confirmed the development potential of porous silk fibroin membranes for protein separation.

摘要 I Abstract III 致謝 VI 目錄 VIII 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 薄膜概述 1 1.2.1 薄膜製備常見之材料 3 1.2.2 薄膜結構分類及製備方法 4 1.3 研究範疇與架構 5 第二章 文獻回顧 7 2.1 天然高分子 7 2.2 蠶絲絲素蛋白 8 2.3 誘導絲素蛋白結晶之方法 11 2.4 氧化石墨稀 13 2.5 聚乙二醇 14 2.6 薄膜分離程序 15 2.6.1 滲透蒸發程序 16 2.6.2 奈米過濾/超過濾程序 17 第三章 研究材料與方法 20 3.1 研究流程圖 20 3.2 藥品與實驗設備 20 3.2.1 實驗藥品 20 3.2.2 實驗器材與設備 21 3.3 絲素蛋白及其混合基質薄膜的製作 23 3.3.1 絲素蛋白萃取 23 3.3.2 絲素蛋白溶液製備 23 3.3.3 絲素蛋白薄膜製作 24 3.3.4 氧化石墨稀/絲素蛋白混合基質薄膜製作 24 3.3.5 絲素蛋白及其混合基質薄膜乙醇再結晶處理 25 3.3.6 聚乙二醇/絲素蛋白混合基質多孔薄膜製作 25 3.4 絲素蛋白及其混合基質薄膜的鑑定 26 3.4.1 全反射式傅立葉轉換紅外線光譜儀 (ATR-FTIR) 26 3.4.2 X光繞射分析儀 (XRD) 27 3.4.3 水接觸角量測儀 (WCA) 28 3.4.4 薄膜膨潤度(Degree of swelling)量測 28 3.4.5 高解析度場發射掃描式電子顯微鏡 (FESEM) 29 3.4.6 原子力顯微鏡 (AFM) 30 3.4.7 表面介達電位儀 (Zeta-potential) 30 3.5 絲素蛋白及其混合基質薄膜的鑑定與效能測試 31 3.5.1 滲透蒸發效能測試 31 3.5.2 奈米過濾/超過濾效能測試 33 第四章 結果與討論 35 4.1 乙醇後處理絲素蛋白薄膜之鑑定 35 4.1.1 乙醇後處理對絲素蛋白結晶度之影響 35 4.1.2 乙醇後處理對絲素蛋白薄膜表面性質之影響 38 4.1.3 乙醇後處理對絲素蛋白薄膜膨潤度之影響 42 4.2 絲素蛋白薄膜之滲透蒸發分離效能 43 4.2.1 乙醇後處理對絲素蛋白薄膜滲透蒸發分離效能之影響 43 4.2.2 進料組成對絲素蛋白薄膜滲透蒸發分離效能之影響 44 4.2.3 進料溫度對絲素蛋白薄膜滲透蒸發分離效能之影響 45 4.3 氧化石墨稀/絲素蛋白混合基質薄膜之鑑定 47 4.3.1 氧化石墨稀添加量對絲素蛋白薄膜結晶度之影響 48 4.3.2 氧化石墨稀添加量對絲素蛋白薄膜表面性質之影響 49 4.4 氧化石墨稀/絲素蛋白混合基質薄膜的滲透蒸發分離效能 51 4.4.1 氧化石墨稀添加量對氧化石墨稀/絲素蛋白薄膜滲透蒸發分離效能之影響 51 4.4.2 進料組成對氧化石墨稀/絲素蛋白薄膜滲透蒸發分離效能之影響 53 4.4.3 進料溫度對氧化石墨稀/絲素蛋白薄膜滲透蒸發分離效能之影響 54 4.5聚乙二醇/絲素蛋白混合基質多孔薄膜 55 4.5.1 聚乙二醇添加量及分子量對絲素蛋白薄膜結晶度之影響 55 4.5.2 聚乙二醇分子量及添加量對多孔絲素蛋白薄膜表面型態之影響 59 4.5.3 聚乙二醇分子量及添加量對多孔絲素蛋白薄膜表面電位之影響 62 4.5.4 聚乙二醇分子量及添加量對多孔絲素蛋白薄膜表面親水性之影響 64 4.6聚乙二醇/絲素蛋白混合基質多孔薄膜應用於蛋白質過濾 66 第五章 結論 69 參考文獻 71

[1]賴君義, 薄膜科技概論Introduction to Membrane Science and Technology; 臺北市: 五南圖書出版股份有限公司, 2019.
[2]Li X., Shen, S.; Xu, Y.; Guo, T.; Dai, H.; Lu, X. Application of membrane separation processes in phosphorus recovery: A review. Sci. Total Environ. 2021, 767, 144346.
[3]Seligra, P. G.; Jaramillo, C. M.; Famá, L.; Goyanes, S. Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent. Carbohydr. Polym. 2016, 138, 66-74.
[4]Li, H.; Gao, X.; Wang, Y.; Zhang, X.; Tong, Z. Comparison of chitosan/starch composite film properties before and after cross-linking. Int. J. Biol. Macromol. 2013, 52, 275-279.
[5]Liu, Z.; Dong, Y.; Men, H.; Jiang, M.; Tong, J.; Zhou, J. Post-crosslinking modification of thermoplastic starch/PVA blend films by using sodium hexametaphosphate. Carbohydr. Polym. 2012, 89(2), 473-477.
[6]Yang, M.; Lotfikatouli, S.; Chen, Y.; Li, T.; Ma, H.; Mao, X.; Hsiao, B. S. Nanostructured all-cellulose membranes for efficient ultrafiltration of wastewater. J. Membr. Sci. 2022, 650, 120422.
[7]Mehranbod, N.; Khorram, M.; Azizi, S.; Khakinezhad, N. Modification and superhydrophilization of electrospun polyvinylidene fluoride membrane using graphene oxide-chitosan nanostructure and performance evaluation in oil/water separation. J. Environ. Chem. Eng. 2021, 9(5), 106245.
[8]Guo, H.; Peng, Y.; Liu, Y.; Wang, Z.; Hu, J.; Liu, J.; Ding, Q.; Gu, J. Development and investigation of novel antifouling cellulose acetate ultrafiltration membrane based on dopamine modification. Int. J. Biol. Macromol. 2020, 160, 652-659.
[9]Lu, Q.; Zhang, B.; Li, M.; Zou, B.; Kaplan, D. L.; Huang, Y.; Zhu, H. Degradation mechanism and control of silk fibroin. Biomacromolecules. 2011, 12(4), 1080-1086.
[10]Li, M.; Ogiso, M.; Minoura, N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials. 2003, 24(2), 357-365.
[11]Min, B.-M.; Lee, G.; Kim, S. H.; Nam, Y. S.; Lee, T. S.; Park, W. H. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004, 25(7-8), 1289-1297.
[12]Tomeh, M. A.; Hadianamrei, R.; Zhao, X. Silk fibroin as a functional biomaterial for drug and gene delivery. Pharmaceutics. 2019, 11(10), 494.
[13]Kostag, M.; Jedvert, K.; Seoud, O. A. E. Engineering of sustainable biomaterial composites from cellulose and silk fibroin: Fundamentals and applications. Int. J. Biol. Macromol. 2021, 167, 687-718.
[14]Koh, L.-D.; Cheng, Y.; Teng, C.-P.; Khin, Y.-W.; Loh, X.-J.; Tee, S.-Y.; Low, M.; Ye, E.; Yu, H.-D.; Zhang, Y.-W.; Han, M.-Y. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 2015, 46, 86-110.
[15]Zhou, C.-Z.; Confalonieri, F.; Medina, N.; Zivanovic, Y.; Esnault, C. Yang, T.; Jacquet, M.; Janin, J.; Duguet, M.; Perasso, R.; Li Z.-G. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res. 2000, 28(12), 2413-2419.
[16]Riesle, J.; Hollander, A. P.; Langer, R.; Freed, L. E.; Vunjak-Novakovic, G. Collagen in tissue-engineered cartilage: Types, structure, and crosslinks. J. Cell. Biochem. 1998, 71(3), 313-327.
[17]Kasoju, Naresh.; Bora, U. Silk fibroin in tissue engineering. Adv. Healthcare Mater. 2012, 1(4), 393-412.
[18]Kim, K.-H.; Jeong, L.; Park, H.-N.; Shin, S.-Y.; Park, W.-H.; Lee, S.-C.; Kim, T.-I.; Park, Y.-J.; Seol, Y.-J.; Lee, Y.-M.; Ku, Y.; Rhyu, I.-C.; Han, S.-B.; Chung, C.-P. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J. Biotechnol. 2005, 120(3), 327-339.
[19]Meinel, L.; Hofmann, S.; Karageorgiou, V.; Zichner, L.; Langer, R.; Kaplan, D.; Vunjak-Novakovic, G. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol. Bioeng. 2004, 88(3), 379-391.
[20]Tanaka, T.; Hirose, M.; Kotobuki, N.; Ohgushi, H.; Furuzono, T.; Sato, J. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells. Mater. Sci. Eng., C. 207, 27(4), 817-823.
[21]Cebe, P.; Partlow, B. P.; Kaplan, D. L.; Wurm, A.; Zhuravlev, E.; Schick, C. Silk I and Silk II studied by fast scanning calorimetry. Acta Biomater. 2017, 55, 323-332.
[22]Gore, P. M.; Naebe, M.; Wang, X.; Kandasubramanian, B. Progress in silk materials for integrated water treatments: Fabrication, modification and applications. Chem. Eng. J. 2019, 374, 437-470.
[23]Kweon, H. Y.; Park, Y. H. Structural and conformational changes of regenerated Antheraea pernyi silk fibroin films treated with methanol solution. J. Appl. Polym. Sci. 1999, 73, 2887-2894.
[24]Minoura, N.; Tsukada, M.; Nagura, M. Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials. 1990, 11(6), 430-434.
[25]Hu, X.; Kaplan, D.; Cebe, P. Dynamic protein−water relationships during β-sheet formation. Macromolecules. 2008, 41(11), 3939-3948.
[26]Freddi, G.; Tsukada, M.; Beretta, S. Structure and physical properties of silk fibroin/polyacrylamide blend films. J. Appl. Polym. Sci. 1999, 71, 1563-1571.
[27]Allardyce, B. J.; Rajkhowa, R.; Dilley, R. J.; Redmond, S. L.; Atlas, M. D.; Wang, X. Glycerol-plasticised silk membranes made using formic acid are ductile, transparent and degradation-resistant. Mater. Sci. Eng., C. 2017, 80, 165-173.
[28]Zhang, C.; Wang, X.; Fan, S.; Lan, P.; Cao, C.; Zhang, Y. Silk fibroin/reduced graphene oxide composite mats with enhanced mechanical properties and conductivity for tissue engineering. Colloids Surf., B. 2021, 197, 111444.
[29]Chen, X.; Li, W.; Shao, Z.; Zhong, W.; Yu, T. Separation of alcohol–water mixture by pervaporation through a novel natural polymer blend membrane–chitosan/silk fibroin blend membrane. J. Appl. Polym. Sci. 1999, 73, 975-980.
[30]Terada, D.; Yokoyama, Y.; Hattori, S.; Kobayashi, H.; Tamada, Y. The outermost surface properties of silk fibroin films reflect ethanol-treatment conditions used in biomaterial preparation. Mater. Sci. Eng., C. 2016, 58, 119-126.
[31]Zheng, Z.; Wei, Y.; Yan, S.; Li, M. Preparation of regenerated Antheraea yamamai silk fibroin film and controlled-molecular conformation changes by aqueous ethanol treatment. J. Appl. Polym. Sci. 2010, 116, 461-467.
[32]Jin, H.-J.; Park, J.; Karageorgiou, V.; Kim, U.-J.; Valluzzi, R.; Cebe, P.; Kaplan, D. L. Water-stable silk films with reduced β-sheet content. Adv. Funct. Mater. 2005, 15(8), 1241-1247.
[33]Hu, X.; Shmelev, K.; Sun, L.; Gil, E.-S.; Park, S.-H.; Cebe, P.; Kaplan, D. L. Regulation of silk material structure by temperature-controlled water vapor annealing. Biomaterials. 2011, 12(5), 1686-1696.
[34]Ishida, M.; Asakura, T.; Yokoi, M.; Saitó, H. Solvent- and mechanical-treatment-induced conformational transition of silk fibroins studied by high-resolution solid-state 13C NMR spectroscopy. Macromolecules. 1990, 23, 94-100.
[35]Chiao, Y.-H.; Hung, W.-S. Separation performance of alcohol-induced silk fibroin membranes with homogeneous and heterogeneous microstructures. Sep. Purif. Technol. 2022, 293, 121004.
[36]Kaewprasit, K.; Kobayashi, T.; Damrongsakkul, S. Thai silk fibroin gelation process enhancing by monohydric and polyhydric alcohols. Int. J. Biol. Macromol. 2018, 118, 1726-1735.
[37]Kaewpirom, S.; Boonsang, S. Influence of alcohol treatments on properties of silk-fibroin-based films for highly optically transparent coating applications. RSC Adv. 2020, 10, 15913-15923.
[38]Huang, K.; Liu, G.; Jin, W. Vapor transport in graphene oxide laminates and their application in pervaporation. Curr. Opin. Chem. Eng. 2017, 16, 56-64.
[39]Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270-274.
[40]Cao, K.; Jiang, Z.; Zhao, J.; Zhao, C.; Gao, C.; Pan, F.; Wang, B.; Cao, X.; Yang, J. Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides. J. Membr. Sci. 2014, 469, 272-283.
[41]Hung, W.-S.; An, Q.-F.; Guzman, M. D.; Lin, H.-Y.; Huang, S.-H.; Liu, W.-R.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon. 2014, 68, 670-677.
[42]Dharupaneedi, S. P.; Anjanapura, R. V.; Han, J. M.; Aminabhavi, T. M. Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind. Eng. Chem. Res. 2014, 53(37), 14474-14484.
[43]Castro-Muñoz, R.; Buera-González, J.; Iglesia, Ó. d. l.; Galiano, F.; Fíla, V.; Malankowska, M.; Rubio, C.; Figoli, A.; Téllez, C.; Coronas, J. Towards the dehydration of ethanol using pervaporation cross-linked poly(vinyl alcohol)/graphene oxide membranes. J. Membr. Sci. 2019, 582, 423-434.
[44]Huang, L.; Li, Y.; Zhou, Q.; Yuan, W.; Shi, G. Graphene oxide membranes with tunable semipermeability in organic solvents. Adv. Mater. 2015, 27, 3797-3802.
[45]Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Nair, R. R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science. 2014, 343(6172), 752-754.
[46]Lin, Y.-C.; Tseng, H.-H.; Wang, D. K. Uncovering the effects of PEG porogen molecular weight and concentration on ultrafiltration membrane properties and protein purification performance. J. Membr. Sci. 2021, 618, 118729.
[47]Mansour, F. R.; Waheed, S.; Paull, B.; Maya, F. Porogens and porogen selection in the preparation of porous polymer monoliths. J. Sep. Sci. 2020, 43(1), 56-69.
[48]Ma, Y.; Shi, F.; Wang, Z.; Wu, M.; Ma, J.; Gao, C. Preparation and characterization of PSf/clay nanocomposite membranes with PEG 400 as a pore forming additive. Desalination. 2012, 286, 131-137.
[49]Lan, Q.; Feng, C.; Ou, K.; Wang, Z.; Wang, Y.; Liu, T. Phenolic membranes with tunable sub-10-nm pores for nanofiltration and tight-ultrafiltration. J. Membr. Sci. 2021, 640, 119858.
[50]Zeng, H.; He, S.; Hosseini, S. S.; Zhu, B.; Shao, L. Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications. Advanced Membranes. 2022, 2, 100015.
[51]Wu, Y.; Ye, H.; You, C.; Zhou, W.; Chen, J.; Xiao, W.; Garba, Z. N.; Wang, L.; Yuan, Z. Construction of functionalized graphene separation membranes and their latest progress in water purification. Sep. Purif. Technol. 2022, 285, 120301.
[52]Liu, G.; Jin, W. Pervaporation membrane materials: Recent trends and perspectives. J. Membr. Sci. 2021, 636, 119557.
[53]Zhu, T.; Xia, Q.; Zuo, J.; Liu, S.; Yu, X.; Wang, Y. Recent advances of thin film composite membranes for pervaporation applications: A comprehensive review. Advanced Membranes. 2021, 1, 100008.
[54]Oatley-Radcliffe, D. L.; Walters, M.; Ainscough, T. J.; Williams, P. M.; Mohammad, A. W.; Hilal, N. Nanofiltration membranes and processes: A review of research trends over the past decade. J. Water Process Eng. 2017, 19, 164-171.
[55]Anand, A.; Unnikrishnan, B.; Mao, J.-Y.; Lin, H.-J.; Huang, C.-C. Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–A review. Desalination. 2018, 429, 119-133.
[56]Abdel-Fatah, M. A. Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng. J. 2018, 9(4), 3077-3092.
[57]Liu, Y.; Huang, H.; Huo, P.; Gu, J. Exploration of zwitterionic cellulose acetate antifouling ultrafiltration membrane for bovine serum albumin (BSA) separation. Carbohydr. Polym. 2017, 165, 266-275.
[58]Saraswathi, M. S. A.; Kausalya, R.; Kaleekkal, N. J.; Rana, D.; Nagendran, A. BSA and humic acid separation from aqueous stream using polydopamine coated PVDF ultrafiltration membranes. J. Environ. Chem. Eng. 2017, 5(3), 2937-2943.
[59]Hu, X.; Kaplan, D.; Cebe, P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules. 2006, 39(18), 6161-6170.
[60]Um, I. C.; Kweon, H. Y.; Park, Y. H.; Hudson, S. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int. J. Biol. Macromol. 2001, 29(2), 91-97.
[61]https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0K107352975420455604
[62]Ji, Y.; Yang, X.; Ji, Z.; Zhu, L.; Ma, N.; Chen, D.; Jia, X.; Tang, J.; Cao, Y. DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components. ACS Omega. 2020, 5(15), 8572-8578.
[63]Cao, K.; Jiang, Z.; Zhang, X.; Zhang, Y.; Zhao, J.; Xing, R.; Yang, S.; Gao, C.; Pan, F. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. J. Membr. Sci. 2015, 490, 72-83.
[64]Xu, L.; Teng, J.; Li, L.; Huang, H.-D.; Xu, J.-Z.; Li, Y.; Ren, P.-G.; Zhong, G.-J.; Li, Z.-M. Hydrophobic graphene oxide as a promising barrier of water vapor for regenerated cellulose nanocomposite films. ACS Omega. 2019, 4, 509-517.
[65]Lammel, A. S.; Hu, X.; Park, S.-H.; Kaplan, D. L.; Scheibel, T. R. Controlling silk fibroin particle features for drug delivery. Biomaterials. 2010, 31(16), 4583-4591.
[66]Chen, S.; Cao, Z.; Jiang, S. Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials. 2009, 30(29), 5892-5896.
[67]Li, C.; Liu, C.; Li, M.; Xu, X.; Li, S.; Qi, W.; Su, R.; Yu, J. Structures and antifouling properties of self-assembled zwitterionic peptide monolayers: Effects of peptide charge distributions and divalent cations. Biomacromolecules. 2020, 21(6), 2087-2095.
[68]Ye, H.; Wang, L.; Huang, R.; Su, R.; Liu, B.; Qi, W.; He, Z. Superior antifouling performance of a zwitterionic peptide compared to an amphiphilic, non-ionic peptide. ACS Appl. Mater. Interfaces. 2015, 7(40), 22448-22457.
[69]Liu, Q.; Li, W.; Singh, A.; Cheng, G.; Liu, L. Two amino acid-based superlow fouling polymers: Poly(lysine methacrylamide) and poly(ornithine methacrylamide). Acta Biomater. 2014, 10(7), 2956-2964.
[70]Zhang, D.; Chen, Q.; Zhang, W.; Liu, H.; Wan, J.; Qian, Y.; Li, B.; Tang, S.; Liu, Y.; Chen, S.; Liu, R. Silk-inspired β-peptide materials resist fouling and the foreign-body response. Angew. Chem., Int. Ed. 2020, 59(24), 9586-9593.

無法下載圖示 全文公開日期 2025/08/29 (校內網路)
全文公開日期 2025/08/29 (校外網路)
全文公開日期 2025/08/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE