簡易檢索 / 詳目顯示

研究生: 賴泓儒
Hung-ru Lai
論文名稱: 積體電路晶片間的光互連研究
A Study of Optical Interconnect among Integrated-Circuit Chips
指導教授: 劉政光
Cheng-Kuang Liu
口試委員: 周肇基
none
張勝良
Sheng-Lyang Jang
莊敏宏
Miin-Horng Juang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 105
中文關鍵詞: 積體電路晶片
外文關鍵詞: Integrated-Circuit Chips, Optical Interconnect
相關次數: 點閱:259下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究積體電路晶片間的光互連與對準技術,利用CIC之CMOS製程來設計積體電路。文中探討四個主題,矽發光晶片、矽光二極體、限幅放大器與積體電路晶片間的光互連與對準。
    第一部分探討矽發光元件的研製,採用指叉式結構來研究矽發光晶片的發光特性,設計的P-N接面矽發光晶片,在面積500 × 80 µm2下,所得外部量子效率為1.298×10-6 。
    第二部分為矽光二極體(Si-Photo Diode)的設計,所得PNNNP型矽光二極體之最高反應率R=0.21(A/W)與量子效率 =0.4,NPPPN型矽光二極體之最高反應率R=0.198(A/W)與量子效率 =0.378。
    第三部份為限幅放大器設計,量測所得放大率為40.83dB,-3dB頻寛約為3MHz。
    第四部分為積體電路矽晶片間對準技術之研究,晶片間橫向對準的精密度可達1µm,垂直最遠距離可達10mm以內,量測得矽發光晶片之最大光功率約45nW且光發散角為θ=46.990。
    以上四個主題,相同的特色就是皆採用矽為材料,利用CMOS製程可供發展光電積體電路(OEIC)的應用。


    In this thesis, a study of the chip-to-chip optical interconnect and chip-to-chip alignment technique is presented. CMOS process provided by CIC (Chip Implement Center) is used. Here, we study four topics: the silicon light emission, the silicon photodiode, the limiting amplifier and the study of the chip-to-chip optical interconnect and alignment technique.
    The first part deals with the CMOS silicon light-emitting chip. Finger structures are used to study the efficiency of light emission. Silicon light emission chips of pn junctions are designed. The maximum quantum external efficiency obtained is 1.298×10-6 with an area of 500×80 µm2.
    The second part is about the silicon photodiode chip, The PNNNP type has a maximum responsivity R=0.21(A/W) and a quantum efficiency =0.4. The NPPPN type has a maximum responsivity R=0.198(A/W) and a quantum efficiency =0.378 in our work.
    The third part is about the limiting amplifier. The amplifier we designed has 40.83dB gain and 3MHz bandwidth.
    In the last, the chip-to-chip optical alignment technique is presented. The horizontal resolution can reach 1µm in our movable stage and the farthermost vertical distance reaches 10mm. Besides, the maximum light intensity is 45nW and the divergence angle is θ=46.990 in our silicon light-emission chip.
    In the topics mentioned above, they have the same feature in the use of material, and it can be applied to realize the opto-electronic interconnect among integrated circuit chips.

    中文摘要Ⅰ 英文摘要Ⅱ 誌謝Ⅲ 目錄Ⅳ 圖表索引Ⅶ 第一章 緒論1 1.1 前言1 1.2 研究動機2 1.3 內容簡介4 第二章 矽發光晶片研究與分析7 2.1光通信系統架構與電路積體化7 2.2矽晶片間光互連8 2.3矽發光元件10 2.3.1矽發光元件架構與發光原理10 2.3.2矽發光二極體特性分析12 2.3.3半導體發光材料特性及效率13 2.3.4矽發光技術之發展14 2.4復合機制研究與分析15 2.5矽發光晶片設計19 2.5.1 電路設計原理19 2.5.2 電路設計架構19 2.5.3 矽發光晶片(D95-93C-29e)實際量測26 2.5.4 矽發光晶片(D95-93C-29e)眼圖量測35 2.6 討論38 第三章 矽檢光電路研究與分析41 3.1光感測器槪要與種類41 3.2光二極體41 3.2.1 光二極體內部構造與原理41 3.2.2 光二極體種類與優缺點43 3.2.3 光二極體等效電路與基本特性44 3.2.4 光二極體溫度特性與暗電流分析49 3.3 矽檢光電路量測51 3.3.1 矽檢光晶片(D95-93C-29e)設計架構與原理51 3.3.2 雷射為發光源的光功率量測57 3.3.3 晶片間發光與接收光功率量測64 3.3.4 矽檢光晶片(D95-93C-29e)眼圖量測69 3.4 限幅放大器(Limiting Amplifier)設計與分析73 3.4.1 電路設計架構與原理73 3.4.2 電路實際量測結果77 3.4.3 Limiting Amplifier眼圖量測81 3.5 討論83 第四章 光互連之對準分析85 4.1 矽晶片間對準量測方法85 4.2 矽晶片間之水平移動對準量測87 4.3 矽晶片間之垂直移動對準量測93 4.4 討論97 第五章 結論99 5.1 研究重點討論99 5.2 未來發展與展望100 參考文獻101 作者簡介105

    [1]Max.M-K, Liu., “Principles and Applications of Optical
    Communications “, IRWIN,Chicago 1996.
    [2]D.A, Neamen.,”Semiconductor Physics & Devices”,台北市,台商圖書
    有限公司, pp.640-642, 1998.
    [3]李雅明,”固態電子學”,台北市,全華書局,民國八十四年.
    [4]林清富, “矽半導體發光的可能性”, 光訊第93期, pp.11-17, Dec.
    2001.
    [5]蘇亭偉, “奈米結構金氧矽發光二極體之特性研究”,碩士論文,國立
    台灣大學, June 2002.
    [6]鄭明哲,”光通信”,全華科技圖書股份有限公司,1985年3月
    [7]J.C, Palais.,“Fiber Optic Communications”, chap 7、11, 台北市,
    東華書局, 民國八十九年.
    [8]R,Behzad.,”Design of Analog CMOS Integrated Circuits”,滄海書
    局, 2002.
    [9]趙福光,”光電積體電路現狀及未來展望”,光電資訊,第6期
    pp.43-50, June 1990
    [10]A, Chatterjee.,P, Mongkolkachit., B, Bhuva., A, Verma., “All Si-based
    optical interconnect for interchip signal transmission”, IEEE
    Photonics Technology Letters, vol. 15, pp.1663-1665, Nov.2003.
    [11]W. J, Liu., R. R.-B, Sheen., J. S. Hwang., O. T.-C, Chen., “A
    low-power and high-frequency CMOS transceiver for chip-to-chip interconnection”, The 2000 IEEE International Symposium on Circuits and Systems, ISCAS 2000 Geneva, vol.3, pp.1-4, May 2000
    [12]M.du,Plessis.,H,Aharoni.,L.W,Snyman.,“Spatial and intensity modulation of light emission from a silicon LED matrix”, IEEE Photonics Technology Letters , vol. 14, pp.768-770, June 2002.
    [13]L. W, Snyman., A, Biber., H, Aharoni., M. du, Plessis., B. D,Patterson., P,Seinz.,“Higher-efficiency Si LED's with standard CMOS technology”, EDMO, London, pp.340-345, Nov. 1997
    [14]L. W, Snyman., A, Biber., H,Aharoni., M. du, Plessis., B. D, Patterson., P, Seinz.,“Practical Si LED's with standard CMOS technology”, IEEE Southeastcon '98, Proceedings. Orlando, FL, pp.344-347, April 1998.
    [15]L. W, Snyman., M. du, Plessis., E,Seevinck., H, Aharoni., “An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface”, IEEE Electron Device Letters,vol. 20, no. 12 pp. 614-615, Dec. 1999.
    [16]L. W, Snyman., A, Biber., “Enhanced light emission from a silicon
    n+pn CMOS structure”, IEEE Proceedings, pp. 242-245, March 1999.
    [17]L. W, Snyman., H. Aharoni., M. Du, Plessis., J. K, Marais., “Planar
    silicon light emitting sources in standard 1.2 and 2 micron CMOS technology”, The 4th Pacific Rim Conference on Lasers and Electro-Optics , Chiba, vol. 1, pp.108-109, July 2001.
    [18]A, Chatterjee., B, Bharat.,“High speed, high reliability Si-based
    light emitters for optical interconnects”, Proceedings of the IEEE International, pp. 86-88, June 2002.
    [19]繆家鼎、徐文娟、牟同升編、曹士林校訂“光電技術”, 五南圖
    書出版股份有限公司,2003.9.
    [20]蘇炎坤教授,”發光二極體之原理種類與應用”,國立成功大學電機
    研究所, 2003.
    [21]莊達人”VLSI製造技術”,高立圖書有限公司,1995.7.14.
    [22]L. W, Snyman., M. du Plessis, E. Seevinck, H. Aharoni, “An efficient
    low voltage, high frequency silicon CMOS light emitting device and
    electro-optical interface”, IEEE Electron Device Letters,vol. 20,
    pp.616-617, no. 12, Dec. 1999.
    [23]J.C,Palais.,”Fiber Optic Communications, ed”, 台北市,東華書局, chap.10&12, 1998.
    [24]C.F, Lin., C. W. Liu, M. J. Chen, M. H. Lee, I. C. Lin, “Electroluminescence at Si band gap energy based on metal-oxide-silicon structures”, Journal Applied Phys, vol.87, pp.8793-8795, 2000.
    [25]W.Z, Chen., C. H. Lu,“A 2.5Gbps CMOS optical receiver analog front-end”, Proceedings of the IEEE, pp.359-362, 2002.
    [26]徐照夫,”光感測器及其使用法”,台北市,全華書局,民國八十年.
    [27]陳春美,”光照對蕭特基二極體之影響”,碩士論文,國立台灣科技大
    學, 1993.
    [28]蔡立民,”接面二極體雜訊特徵的研究”,碩士論文,國立台灣科技大
    學, 1992.
    [29]余合興,”光電子學-原理及應用”,中央圖書出版社, 1986.
    [30]林宜平,”矽基晶片間光互連與對準之研究”,碩士論文,國立台灣科
    技大學, 2004.
    [31]D. A, Neamen., ”Semiconductor Physics & Devices”,,台北市,台商圖
    書有限公司, Chap.7, McGraw-Hill, 1998.
    [32]F,Beaudoin.,M.N,El-Gamal.,”A 5-Gbit/s CMOS optical
    receiver frontend”, The 2002 45th Midwest Symposium on Circuits and Systems , vol. 3, pp.168-171, Aug. 2002.
    [33]王玫文,胡釗維, “電腦標準配備 光通訊醞釀入列”, 工商時報, 2004.02.18.
    [34]“英特爾重大矽光子技術突破 為PC帶來高速光纖連接”, 電子
    工程專輯, 2004.02.18.
    [35]來大偉, “下一代光互連架構可實現20Gbps晶片到晶片的連接速
    度”,電子工程專輯, 2004.05.01.

    QR CODE