簡易檢索 / 詳目顯示

研究生: Teshager Mekonnen Tekaligne
Teshager Mekonnen Tekaligne
論文名稱: 鋁集流體腐蝕抑制劑和氧化還原穿梭添加劑用於鋰金屬電池中的死鋰再生
An Aluminum current collector corrosion inhibitors and redox shuttle additive for dead lithium rejuvenating in lithium metal batteries
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nein Su
口試委員: 黃炳照
Bing-Joe Hwang
吳溪煌
She-Huang Wu
蘇威年
Wei-Nein Su
劉如熹
Ru-Shi Liu
張仍奎
Jeng-Kuei Chang
王迪彥
Di-Yan Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 266
中文關鍵詞: 水基電解液5-甲酰基-8-羥基喹啉酞菁集電體抑制效率氧化還原添加劑有機基電解液
外文關鍵詞: Aqueous based electrolyte, 5-formyl-8-hydroxyquinoline, Current collector, Inhibition efficiency, Redox-Shuttle additive
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
採用非易燃的水基電解質的水性電池的發展具有降低能量儲存成本和提高安全性的潛力,使得這些電池可以在廣泛的應用中使用。鋁箔由於其高電導率、低成本、強大的電化學性能和低密度而經常被用作電池的陰極電流收集器。然而,隨著下一代電池的開發,嚴重的腐蝕對鋁電流收集器提出了新的挑戰,尤其是在迄今沒有有效添加劑的水性電解質中。於第一項工作中,我們成功地設計和合成了5-甲醛基-8-羥基喹啉(FHQ)作為鋁箔的有效防腐蝕劑。在含有FHQ添加劑的21m LiTFSI水性電解質中測量的每年毫米腐蝕速率(mmpy)為1.37×10-3 mmpy,比未修改的電解質的2.29×10-2 mmpy低得多。含有FHQ添加劑的Zn // LVPF電池提供了更高的容量保持率和平均庫倫效率。有趣的是,開發的添加劑在基於有機電解質的電池中也被證明可以有效防止鋁腐蝕。在第二項工作中,有趣的是,含有Pc添加劑的水電解液中的腐蝕電流密度(0.013微安)比不含Pc的腐蝕電流密度(0.302微安)低23倍。此外,Zn/LVPF電池被用來評估在水電解質中對其電池性能的腐蝕影響。在0.2℃的速率下,添加了Pc添加劑的Zn||LVPF電池在100次和200次循環後分別表現出較高的容量保持率和50.12%。不加Pc的電池顯示出更差的循環壽命,在40次循環後只有27.57%的容量保持率。此外,Pc可以防止有機電解質電池中的鋁腐蝕。 Pc添加劑可以通過雙重安全鈍化機制防止鋁腐蝕,包括其在鋁表面的物理吸附和電化學形成的AlPc-F鈍化層以及來自雙(三氟甲磺酰)亞胺陰離子的氟化物。
此外,鋰金屬電池中經常出現的性能劣化大多是由於無活性鋰(稱為死鋰)所致,它可以在固體電解質互溶形式和電隔離的金屬鋰中找到。迫切需要一種復甦機制來恢復死鋰以穩定鋰金屬電池效能。先前雖有已經識別出的氧化還原穿梭子因不穩定,導致過充保護時間短,或是氧化還原電位限制了它們在高電位正極材料(如NMC和LVPF)的電池中的使用。於最後一項工作,我們成功開發了一種新合成的化合物1,4-雙((三氟甲氧基)甲氧基)-2,5-二叔丁基苯(TFMB),並發現它具有穩定的氧化還原穩定媒介,其氧化還原電位為4.39V,能夠為鋰金屬電池提供過充保護,表明它有足夠的還原一致性。TFMB具有雙重穩定機制,能夠生成穩定、不溶性、堅固的LiF 固態電解質介面,以及恢復來自Cu/Li陽極的死鋰。在負極,氧化的TFMB(o-TFMB)將無活性的鋰(死鋰)轉化為活性的鋰,並將自己還原為還TFMB(r-TFMB),在充電時會在正極重新氧化為o-TFMB;去鋰化的陰極可由復甦的鋰離子重新鋰化,並在再生TFMB+。通過這種設計,使Cu箔陽極和NMC陰極所組成的無陽極電池展示了出色的循環壽命,進行86個循環後,具有高達99.01%的高庫倫效率和62%的容量保留率。然而,沒有添加劑的電解質容量保留率明顯較低,僅為6.58%,30個循環後的庫倫效率為89.73%。此外,在使用TFMB添加劑的Li//NMC電池中,以0.2 C速率進行循環充放電進行230圈後,高容量保留率為72.84%,平均庫倫效率為99.78%。然而,沒有添加劑的電解質容量保留率明顯較低,僅為3.92%,230個循環後的庫倫效率為96.34%。


Abstract
Developing aqueous batteries employing non-flammable water-based electrolytes can lower energy storage costs and improve security, allowing for using these batteries in various applications. Due to its excellent electrical conductivity, low cost, reliable electrochemical characteristics, and low density, aluminum foil is commonly used as a battery cathodic current collector.
However, severe corrosion raises significant problems for aluminum current collectors when next-generation batteries are developed, particularly given the lack of an efficient additive in an aqueous electrolyte. Furthermore, the performance deterioration frequently seen in lithium metal batteries is mainly caused by inactive lithium (more popularly referred to as dead lithium), which can be found in SEI forms and electrically segregated metallic lithium. A fundamental mechanism of retrieving dead lithium is urgently required to stabilize lithium metal batteries. The majority of redox shuttles that have been previously identified have either been unstable as redox shuttles, yielding in a short time of overcharge protection or had redox potentials that restricted their use to cells with higher potential positive electrode materials, such as NMC and LVPF.
In the first work, we successfully developed 5-formyl-8-hydroxyquinoline (FHQ), a potent corrosion inhibitor for aluminum foil.1 The corrosion inhibitor for aluminum foil, FHQ, has been devised and created. In the aqueous electrolyte of 21 m LiTFSI with the FHQ additive, the corrosion rate was measured in millimeters per year (mmpy), and it was substantially lower at 1.37 10-3 mmpy than it was at 2.29 10-2 mmpy in the unaltered electrolyte. The average Coulombic efficiency and capacity retention of the Zn/LVPF cell in the aqueous electrolyte with the FHQ additive is mis greater. Interestingly, an organic electrolyte also attests to the developed additive’s effectiveness at preventing Al corrosion.
In the second work, Interestingly, the corrosion current density (0.013 µA) in the aqueous electrolyte with Pc additive is 23 times less than that (0.302 µA) without Pc. Furthermore, Zn/LVPF cell was used to assess the corrosion impact on its battery performance in an aqueous electrolyte. Zn||LVPF cells at 0.2 C rate with Pc additive demonstrated higher capacity retention of 75% and 50.12% after 100 and 200 cycles, respectively. The battery without Pc showed a substantially worse cycle life with only 27.57% capacity retention after 40 cycles. Furthermore, Pc prevents aluminum corrosion in an organic electrolyte-based battery. Pc additive can prevent aluminum from corrosion by a dual-secure passivation mechanism, including its physical adsorption on the Al surfaces and electrochemically-formed AlPc-F passivation layer and fluoride from the bis(trifluoromethane sulfonyl)imide anion.
In the final work, we developed that the newly synthesized 1,4-bis((trifluoromethoxy)methoxy)-2,5-di-tert-butylbenzene (TFMB) is shown to be a stable redox shuttle with a 4.39V redox potential and provides overcharge protection in Li-metal batteries, suggesting good reductive consistency. The TFMB has a dual-secure mechanism enables it to generate stable and insoluble robust LiF SEI and revive the dead Li from the Cu/Li anode. At the negative electrode, the oxidized-TFMB (o-TFMB) converts inactive Li (dead Li) into active Li and itself to reduced-TFMB (r-TFMB) that will be re-oxidized to o-TFMB at the positive electrode during charging. The oxidation of dead Li by reverting to its original lithiation condition, regenerating the delithiated cathode TFMB+ at the cathode, and rejuvenating Li ion from inactive Li. Through this design, an anode-free battery using a Cu foil anode and NMC as a cathode displays an admirable lifespan of 86 cycles with a high Coulombic efficiency of 99.01% and capacity retention of 62%. However, the electrolyte without additives had much lower capacity retention, with only 6.58 % and an ACE of 89.73% after 30 cycles. Furthermore, after 230 cycles and 0.2 C-rate, the charge-discharge curve of a Li//NMC cell with TFMB additives exhibits high-capacity retention of 72.84% with an ACE of 99.78%. However, the electrolyte without additives had much lower capacity retention, with only 3.92% and an ACE of 96.34% after 230 cycles.

Table of Contents 摘要 i Abstract iii Acknowledgment vi List of Figures xii Index of Tables xvii Index of Schemes xviii Index of Units and Abbreviations xix Chapter 1 General Background 1 1.1 Background of the study 1 1.2 Sources of Energy and Storage Devices 3 1.3 Aqueous and non-aqueous Rechargeable batteries 5 1.4 Current collector 9 1.5 Corrosion of current collector 10 1.6 Dead Lithium in Lithium metal batteries 12 Chapter 2 challenges, their mitigation, and reviving dead lithium for rechargeable batteries 15 2.1 Current collectors for rechargeable batteries 15 2.2 The main requirements of current collectors in lithium-ion batteries 16 2.3 Challenges and mitigation of current collector for rechargeable batteries 17 2.3.1 Current collector 17 2.3.2 Challenges of the current collector 21 2.3.3 Mitigation for deterioration of current collector 28 2.4 Challenges and Mitigation of Dead Li for LMBs 35 2.4.1 Challenges of high-performance LMBs 36 2.4.2 Mitigation of dead Lithium 41 2.5 Developing a corrosion inhibitor and redox shuttle additives 45 2.6 Dead lithium regeneration with redox shuttle additives for lithium metal batteries 49 2.7 Motivation and objectives of the study 52 2.7.1 The Motivation of the Study 52 2.7.2 Objectives of the Study 55 Chapter 3 Materials, experimental procedures, and characterization methodologies 57 3.1 Chemicals and Reagents 57 3.1 Cathode Material Preparation 58 3.2 Anode Current Collector Preparation 59 3.3 Synthesis of 5-formyl-8-hydroxyquinoline (FHQ) 59 3.5 Synthesis of 1, 1,4-bis((trifluoromethoxy)methoxy)-2,5-di-tert-butylbenzene (TFMB) 60 3.6 Electrolyte Preparation 61 3.7 Physicochemical Properties 62 3.8 Electrochemical Measurements 62 3.9 Morphological Evolution of in situ Deposited Li 63 3.10 SEI Components Characterization 64 Chapter 4 Inhibition of Aluminum Current Collector Corrosion in an Aqueous-based Battery by 5-Formyl-8-Hydroxyquinoline 65 4.1 Introduction 65 4.2 Results and Discussion 67 4.2.1 Properties assessment by computational analysis 67 4.2.2 The synthetic route 71 4.3 Electrochemical measurements 72 4.3.1 Measurements of Potentiodynamic 72 4.3.2 Measurement employing electrochemical impedance spectroscopy (EIS) 79 4.4 Surface analysis of aluminum 82 4.4.1 Surface characterization following chemical and electrochemical tests 82 4.4.2 Assessment of surface texture, size, and roughness 87 4.4.3 Composition analysis of the Al current collector surface 90 4.4.4 Al Surface current collector characterizations 94 4.5 Electrochemical Performance Test 97 4.6 Summary 106 Chapter 5 Designing a novel anticorrosion Phthalocyanine additive with a dual-secure prevention mechanism for an aluminum current collector in an aqueous-based battery 109 5.1 Introduction 109 5.2 Results and Discussion 112 5.2.1 Properties assessment by computational analysis 112 5.2.3 Electrochemical measurements and aluminum surface analyses 115 5.2.4 Electrochemical Performance Test 135 5.2.5 Mechanistic insight into corrosion prevention 140 5.3 Summary 146 Chapter 6 1,4-bis((trifluoromethoxy)methoxy)-2,5-di-tert-butylbenzene for lithium metal batteries as a novel Redox Shuttle additive for dead Li regeneration and overcharge protection 149 6.1 Introduction 149 6.2 Results and Discussion 152 6.2.1 Properties assessment by computational analysis 152 6.2.2 The synthetic route 153 6.2.3 Spectroscopic Characterization 154 6.2.4 Quantification of inactive Lithium 159 6.2.5 Electrochemical measurements 172 6.2.6 Overcharge Protection Performance 174 6.2.7 Cell Performance test 177 6.2.8 Surface analysis 181 6.2.9 Evaluation of Cu current collector's surface chemical composition after plating 184 6.3 Summary 186 Chapter 7: Conclusions and Perspectives 188 7.1 Conclusions 188 7.2 Perspective 190 References 194 List of Publications 235

References
(1) Tekaligne, T. M.; Merso, S. K.; Yang, S.-C.; Liao, S.-C.; Tsai, F.-Y.; Fenta, F. W.; Bezabih, H. K.; Shitaw, K. N.; Jiang, S.-K.; Wang, C.-H.; et al. Corrosion inhibition of aluminum current collector by a newly synthesized 5-formyl-8-hydroxyquinoline for aqueous-based battery. Journal of Power Sources 2022, 550, 232142. DOI: https://doi.org/10.1016/j.jpowsour.2022.232142.
(2) Poizot, P.; Dolhem, F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy & Environmental Science 2011, 4 (6), 2003-2019, 10.1039/C0EE00731E. DOI: 10.1039/C0EE00731E.
(3) Basiago, A. D. Economic, social, and environmental sustainability in development theory and urban planning practice. Environmentalist 1998, 19 (2), 145-161. DOI: 10.1023/A:1006697118620.
(4) Liu, L.; Yu, D. Does volatility in natural resources commodity prices and economic performance matter for RCEP economies? Resources Policy 2023, 80, 103223. DOI: https://doi.org/10.1016/j.resourpol.2022.103223.
(5) Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31-49. DOI: https://doi.org/10.1016/j.futures.2015.03.003.
(6) Panwar, N. L.; Kaushik, S. C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews 2011, 15 (3), 1513-1524. DOI: https://doi.org/10.1016/j.rser.2010.11.037.
(7) Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science 2012, 5 (7), 7854-7863, 10.1039/C2EE21892E. DOI: 10.1039/C2EE21892E.
(8) Zhou, H. New energy storage devices for post lithium-ion batteries. Energy & Environmental Science 2013, 6 (8), 2256-2256, 10.1039/C3EE90024J. DOI: 10.1039/C3EE90024J.
(9) Choi, N.-S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y.-K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angewandte Chemie International Edition 2012, 51 (40), 9994-10024, https://doi.org/10.1002/anie.201201429. DOI: https://doi.org/10.1002/anie.201201429 (acccessed 2023/02/22).
(10) Wu, J.; Yang, J.; Leong, Z. Y.; Zhang, F.; Deng, H.; Ouyang, G. F.; Yu, J. A Method to Inhibit Disproportionation of Mn3+ for Low-Cost Mn–Fe All-Flow Battery. ACS Applied Energy Materials 2022, 5 (12), 14646-14651. DOI: 10.1021/acsaem.2c03075.
(11) Scrosati, B. Recent advances in lithium ion battery materials. Electrochimica Acta 2000, 45 (15), 2461-2466. DOI: https://doi.org/10.1016/S0013-4686(00)00333-9.
(12) Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources 2005, 147 (1), 269-281. DOI: https://doi.org/10.1016/j.jpowsour.2005.01.006.
(13) Yu, Y.; Li, C.; Fu, Y.; Yang, W. A group decision-making method to measure national energy architecture performance: A case study of the International energy Agency. Applied Energy 2023, 330, 120285. DOI: https://doi.org/10.1016/j.apenergy.2022.120285.
(14) Zachos, J. C.; Dickens, G. R.; Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 2008, 451 (7176), 279-283. DOI: 10.1038/nature06588.
(15) Schubert, C. Renewable energy: Making fuels for the future. Nature 2011, 474 (7352), 531-533. DOI: 10.1038/nj7352-531a.
(16) Yu, P.; Zeng, Y.; Zhang, H.; Yu, M.; Tong, Y.; Lu, X. Flexible Zn-Ion Batteries: Recent Progresses and Challenges. Small 2019, 15 (7), 1804760, https://doi.org/10.1002/smll.201804760. DOI: https://doi.org/10.1002/smll.201804760 (acccessed 2023/02/23).
(17) Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343 (6176), 1210-1211. DOI: 10.1126/science.1249625 (acccessed 2023/02/23).
(18) Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 2015, 7 (1), 19-29. DOI: 10.1038/nchem.2085.
(19) Battlebury, D. R. A high performance lead–acid battery for EV applications. Journal of Power Sources 1999, 80 (1), 7-11. DOI: https://doi.org/10.1016/S0378-7753(98)00247-X.
(20) Demir-Cakan, R.; Palacin, M. R.; Croguennec, L. Rechargeable aqueous electrolyte batteries: from univalent to multivalent cation chemistry. Journal of Materials Chemistry A 2019, 7 (36), 20519-20539, 10.1039/C9TA04735B. DOI: 10.1039/C9TA04735B.
(21) Goodenough, J. B. Evolution of Strategies for Modern Rechargeable Batteries. Accounts of Chemical Research 2013, 46 (5), 1053-1061. DOI: 10.1021/ar2002705.
(22) Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews 2018, 89, 292-308. DOI: https://doi.org/10.1016/j.rser.2018.03.002.
(23) Zhang, X.; Lv, R.; Tang, W.; Li, G.; Wang, A.; Dong, A.; Liu, X.; Luo, J. Challenges and Opportunities for Multivalent Metal Anodes in Rechargeable Batteries. Advanced Functional Materials 2020, 30 (45), 2004187, https://doi.org/10.1002/adfm.202004187. DOI: https://doi.org/10.1002/adfm.202004187 (acccessed 2023/02/23).
(24) Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. Small Methods 2019, 3 (1), 1800272, https://doi.org/10.1002/smtd.201800272. DOI: https://doi.org/10.1002/smtd.201800272 (acccessed 2023/02/23).
(25) Jia, X.; Liu, C.; Neale, Z. G.; Yang, J.; Cao, G. Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews 2020, 120 (15), 7795-7866. DOI: 10.1021/acs.chemrev.9b00628.
(26) Chao, D.; Zhou, W.; Xie, F.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S.-Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Science Advances 6 (21), eaba4098. DOI: 10.1126/sciadv.aba4098 (acccessed 2022/07/19).
(27) Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176. DOI: 10.1021/ja3091438.
(28) Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Carbon nanotubes for lithium ion batteries. Energy & Environmental Science 2009, 2 (6), 638-654, 10.1039/B904116H. DOI: 10.1039/B904116H.
(29) Palacín, M. R. Recent advances in rechargeable battery materials: a chemist’s perspective. Chemical Society Reviews 2009, 38 (9), 2565-2575, 10.1039/B820555H. DOI: 10.1039/B820555H.
(30) Shao, M.; Deng, J.; Zhong, F.; Cao, Y.; Ai, X.; Qian, J.; Yang, H. An all-vanadium aqueous lithium ion battery with high energy density and long lifespan. Energy Storage Materials 2019, 18, 92-99. DOI: https://doi.org/10.1016/j.ensm.2018.09.029.
(31) Ghiji, M.; Novozhilov, V.; Moinuddin, K.; Joseph, P.; Burch, I.; Suendermann, B.; Gamble, G. A review of lithium-ion battery fire suppression. Energies 2020, 13 (19), 5117.
(32) Mahmud, S.; Rahman, M.; Kamruzzaman, M.; Ali, M. O.; Emon, M. S. A.; Khatun, H.; Ali, M. R. Recent advances in lithium-ion battery materials for improved electrochemical performance: A review. Results in Engineering 2022, 15, 100472. DOI: https://doi.org/10.1016/j.rineng.2022.100472.
(33) Zhu, P.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E. A review of current collectors for lithium-ion batteries. Journal of Power Sources 2021, 485, 229321. DOI: https://doi.org/10.1016/j.jpowsour.2020.229321.
(34) Jin, S.; Jiang, Y.; Ji, H.; Yu, Y. Advanced 3D Current Collectors for Lithium-Based Batteries. Advanced Materials 2018, 30 (48), 1802014, https://doi.org/10.1002/adma.201802014. DOI: https://doi.org/10.1002/adma.201802014 (acccessed 2023/02/25).
(35) Yamada, M.; Watanabe, T.; Gunji, T.; Wu, J.; Matsumoto, F. Review of the Design of Current Collectors for Improving the Battery Performance in Lithium-Ion and Post-Lithium-Ion Batteries. In Electrochem, 2020; Vol. 1, pp 124-159.
(36) Myung, S.-T.; Hitoshi, Y.; Sun, Y.-K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry 2011, 21 (27), 9891-9911, 10.1039/C0JM04353B. DOI: 10.1039/C0JM04353B.
(37) Zhang, T.; de Meatza, I.; Qi, X.; Paillard, E. Enabling steady graphite anode cycling with high voltage, additive-free, sulfolane-based electrolyte: Role of the binder. Journal of Power Sources 2017, 356, 97-102. DOI: https://doi.org/10.1016/j.jpowsour.2017.04.073.
(38) Logan, E. R.; Dahn, J. R. Electrolyte Design for Fast-Charging Li-Ion Batteries. Trends in Chemistry 2020, 2 (4), 354-366. DOI: https://doi.org/10.1016/j.trechm.2020.01.011.
(39) Yuan, M.; Liu, K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries. Journal of Energy Chemistry 2020, 43, 58-70. DOI: https://doi.org/10.1016/j.jechem.2019.08.008.
(40) Zhang, X.; Winget, B.; Doeff, M.; Evans, J. W.; Devine, T. M. Corrosion of Aluminum Current Collectors in Lithium-Ion Batteries with Electrolytes Containing LiPF6. Journal of The Electrochemical Society 2005, 152 (11), B448. DOI: 10.1149/1.2041867.
(41) Wang, X.; Yasukawa, E.; Mori, S. Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes. Electrochimica Acta 2000, 45 (17), 2677-2684. DOI: https://doi.org/10.1016/S0013-4686(99)00429-6.
(42) Yang, H.; Kwon, K.; Devine, T. M.; Evans, J. W. Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance. Journal of The Electrochemical Society 2000, 147 (12), 4399. DOI: 10.1149/1.1394077.
(43) Wang, M.; Tang, M.; Chen, S.; Ci, H.; Wang, K.; Shi, L.; Lin, L.; Ren, H.; Shan, J.; Gao, P.; et al. Graphene-Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithium-Ion Battery. Advanced Materials 2017, 29 (47), 1703882, https://doi.org/10.1002/adma.201703882. DOI: https://doi.org/10.1002/adma.201703882 (acccessed 2023/02/25).
(44) Gabryelczyk, A.; Ivanov, S.; Bund, A.; Lota, G. Corrosion of aluminium current collector in lithium-ion batteries: A review. Journal of Energy Storage 2021, 43, 103226. DOI: https://doi.org/10.1016/j.est.2021.103226.
(45) Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367. DOI: 10.1038/35104644.
(46) Dunn, B. H, Kamath, J.-M. Tarascon. Science 2011, 334, 928-935.
(47) Seidman, D. N. Perspective: From field-ion microscopy of single atoms to atom-probe tomography: A journey: “Atom-probe tomography” [Rev. Sci. Instrum. 78, 031101 (2007)]. Review of Scientific Instruments 2007, 78 (3), 030901. DOI: 10.1063/1.2716503 (acccessed 2023/03/03).
(48) Weng, W.; Zhang, Z.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Fused ring and linking groups effect on overcharge protection for lithium-ion batteries. Journal of Power Sources 2011, 196 (3), 1530-1536. DOI: https://doi.org/10.1016/j.jpowsour.2010.08.049.
(49) Chen, Z.; Qin, Y.; Amine, K. Redox shuttles for safer lithium-ion batteries. Electrochimica Acta 2009, 54 (24), 5605-5613. DOI: https://doi.org/10.1016/j.electacta.2009.05.017.
(50) Huang, J.; Azimi, N.; Cheng, L.; Shkrob, I. A.; Xue, Z.; Zhang, J.; Dietz Rago, N. L.; Curtiss, L. A.; Amine, K.; Zhang, Z.; et al. An organophosphine oxide redox shuttle additive that delivers long-term overcharge protection for 4 V lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (20), 10710-10714, 10.1039/C5TA01326G. DOI: 10.1039/C5TA01326G.
(51) Zhang, R.; Shen, X.; Zhang, Y.-T.; Zhong, X.-L.; Ju, H.-T.; Huang, T.-X.; Chen, X.; Zhang, J.-D.; Huang, J.-Q. Dead lithium formation in lithium metal batteries: A phase field model. Journal of Energy Chemistry 2022, 71, 29-35. DOI: https://doi.org/10.1016/j.jechem.2021.12.020.
(52) Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Recent Advancement of Nanostructured Carbon for Energy Applications. Chemical Reviews 2015, 115 (11), 5159-5223. DOI: 10.1021/cr5006217.
(53) Wang, C.-C.; Lin, Y.-C.; Chiu, K.-F.; Leu, H.-J.; Ko, T.-H. Advanced Carbon Cloth as Current Collector for Enhanced Electrochemical Performance of Lithium-Rich Layered Oxide Cathodes. ChemistrySelect 2017, 2 (16), 4419-4427, https://doi.org/10.1002/slct.201700420. DOI: https://doi.org/10.1002/slct.201700420 (acccessed 2023/03/04).
(54) An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52-76. DOI: https://doi.org/10.1016/j.carbon.2016.04.008.
(55) Kumar, P. S.; Ayyasamy, S.; Tok, E. S.; Adams, S.; Reddy, M. V. Impact of Electrical Conductivity on the Electrochemical Performances of Layered Structure Lithium Trivanadate (LiV3–xMxO8, M= Zn/Co/Fe/Sn/Ti/Zr/Nb/Mo, x = 0.01–0.1) as Cathode Materials for Energy Storage. ACS Omega 2018, 3 (3), 3036-3044. DOI: 10.1021/acsomega.7b01904.
(56) Kraytsberg, A.; Ein-Eli, Y. Conveying Advanced Li-ion Battery Materials into Practice The Impact of Electrode Slurry Preparation Skills. Advanced Energy Materials 2016, 6 (21), 1600655, https://doi.org/10.1002/aenm.201600655. DOI: https://doi.org/10.1002/aenm.201600655 (acccessed 2023/03/04).
(57) Ma, D.; Cao, Z.; Hu, A. Si-Based Anode Materials for Li-Ion Batteries: A Mini Review. Nano-Micro Letters 2014, 6 (4), 347-358. DOI: 10.1007/s40820-014-0008-2.
(58) Li, J.; Du, Z.; Ruther, R. E.; An, S. J.; David, L. A.; Hays, K.; Wood, M.; Phillip, N. D.; Sheng, Y.; Mao, C.; et al. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. JOM 2017, 69 (9), 1484-1496. DOI: 10.1007/s11837-017-2404-9.
(59) Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575 (7781), 75-86. DOI: 10.1038/s41586-019-1682-5.
(60) Warner, J. T. The handbook of lithium-ion battery pack design: chemistry, components, types and terminology; Elsevier, 2015.
(61) Busson, C.; Blin, M. A.; Guichard, P.; Soudan, P.; Crosnier, O.; Guyomard, D.; Lestriez, B. A primed current collector for high performance carbon-coated LiFePO4 electrodes with no carbon additive. Journal of Power Sources 2018, 406, 7-17. DOI: https://doi.org/10.1016/j.jpowsour.2018.10.018.
(62) Yoon, S.; Jang, H.-S.; Kim, S.; Kim, J.; Cho, K. Y. Crater-like architectural aluminum current collectors with superior electrochemical performance for Li-ion batteries. Journal of Electroanalytical Chemistry 2017, 797, 37-41. DOI: https://doi.org/10.1016/j.jelechem.2017.05.017.
(63) Iwakura, C.; Fukumoto, Y.; Inoue, H.; Ohashi, S.; Kobayashi, S.; Tada, H.; Abe, M. Electrochemical characterization of various metal foils as a current collector of positive electrode for rechargeable lithium batteries. Journal of Power Sources 1997, 68 (2), 301-303. DOI: https://doi.org/10.1016/S0378-7753(97)02538-X.
(64) Nakamura, T.; Okano, S.; Yaguma, N.; Morinaga, Y.; Takahara, H.; Yamada, Y. Electrochemical performance of cathodes prepared on current collector with different surface morphologies. Journal of Power Sources 2013, 244, 532-537. DOI: https://doi.org/10.1016/j.jpowsour.2013.02.021.
(65) Liu, C.; Neale, Z. G.; Cao, G. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today 2016, 19 (2), 109-123. DOI: https://doi.org/10.1016/j.mattod.2015.10.009.
(66) Ni, S.; Li, T.; Lv, X.; Yang, X.; Zhang, L. Designed constitution of NiO/Ni nanostructured electrode for high performance lithium ion battery. Electrochimica Acta 2013, 91, 267-274. DOI: https://doi.org/10.1016/j.electacta.2012.12.113.
(67) Johnson, B. A.; White, R. E. Characterization of commercially available lithium-ion batteries. Journal of Power Sources 1998, 70 (1), 48-54. DOI: https://doi.org/10.1016/S0378-7753(97)02659-1.
(68) He, L.-P.; Sun, S.-Y.; Song, X.-F.; Yu, J.-G. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Management 2015, 46, 523-528. DOI: https://doi.org/10.1016/j.wasman.2015.08.035.
(69) Chen, J.; Li, C.; Zhang, J.; Li, C.; Chen, J.; Ren, Y. First-Principles Study on the Adsorption and Dissociation of Impurities on Copper Current Collector in Electrolyte for Lithium-Ion Batteries. In Materials, 2018; Vol. 11.
(70) Fear, C.; Juarez-Robles, D.; Jeevarajan, J. A.; Mukherjee, P. P. Elucidating copper dissolution phenomenon in Li-ion cells under overdischarge extremes. Journal of The Electrochemical Society 2018, 165 (9), A1639.
(71) Haesik, Y.; Kyungjung, K.; Thomas, M. D.; James, W. E. Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance. Journal of The Electrochemical Society 2000, 147 (12), 4399-4407.
(72) Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochimica Acta 2002, 47 (17), 2787-2793. DOI: https://doi.org/10.1016/S0013-4686(02)00164-0.
(73) Chen, X.; Xu, W.; Engelhard, M. H.; Zheng, J.; Zhang, Y.; Ding, F.; Qian, J.; Zhang, J.-G. Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures. Journal of Materials Chemistry A 2014, 2 (7), 2346-2352, 10.1039/C3TA13043F. DOI: 10.1039/C3TA13043F.
(74) Park, K.; Yu, S.; Lee, C.; Lee, H. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis(fluorosulfonyl)imide electrolytes. Journal of Power Sources 2015, 296, 197-203. DOI: https://doi.org/10.1016/j.jpowsour.2015.07.052.
(75) Zhang, L.; Chai, L.; Zhang, L.; Shen, M.; Zhang, X.; Battaglia, V. S.; Stephenson, T.; Zheng, H. Synergistic effect between lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis-oxalato borate (LiBOB) salts in LiPF6-based electrolyte for high-performance Li-ion batteries. Electrochimica Acta 2014, 127, 39-44. DOI: https://doi.org/10.1016/j.electacta.2014.02.008.
(76) Song, S.-W.; Richardson, T. J.; Zhuang, G. V.; Devine, T. M.; Evans, J. W. Effect on aluminum corrosion of LiBF4 addition into lithium imide electrolyte; a study using the EQCM. Electrochimica Acta 2004, 49 (9), 1483-1490. DOI: https://doi.org/10.1016/j.electacta.2003.10.034.
(77) Kawamura, T.; Tanaka, T.; Egashira, M.; Watanabe, I.; Okada, S.; Yamaki, J.-i. Methyl Difluoroacetate Inhibits Corrosion of Aluminum Cathode Current Collector for Lithium Ion Cells. Electrochemical and Solid-State Letters 2005, 8 (9), A459. DOI: 10.1149/1.1993367.
(78) Xu, G.; Han, P.; Dong, S.; Liu, H.; Cui, G.; Chen, L. Li4Ti5O12-based energy conversion and storage systems: Status and prospects. Coordination Chemistry Reviews 2017, 343, 139-184. DOI: https://doi.org/10.1016/j.ccr.2017.05.006.
(79) Lizundia, E.; Costa, C. M.; Alves, R.; Lanceros-Méndez, S. Cellulose and its derivatives for lithium ion battery separators: A review on the processing methods and properties. Carbohydrate Polymer Technologies and Applications 2020, 1, 100001. DOI: https://doi.org/10.1016/j.carpta.2020.100001.
(80) Arora, P.; White, R. E.; Doyle, M. Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries. Journal of The Electrochemical Society 1998, 145 (10), 3647. DOI: 10.1149/1.1838857.
(81) Ma, T.; Xu, G.-L.; Li, Y.; Wang, L.; He, X.; Zheng, J.; Liu, J.; Engelhard, M. H.; Zapol, P.; Curtiss, L. A.; et al. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries. The Journal of Physical Chemistry Letters 2017, 8 (5), 1072-1077. DOI: 10.1021/acs.jpclett.6b02933.
(82) Shu, J.; Shui, M.; Huang, F.; Xu, D.; Ren, Y.; Hou, L.; Cui, J.; Xu, J. Comparative study on surface behaviors of copper current collector in electrolyte for lithium-ion batteries. Electrochimica Acta 2011, 56 (8), 3006-3014. DOI: https://doi.org/10.1016/j.electacta.2011.01.004.
(83) Zhang, S.; Ding, M. S.; Jow, T. R. Self-discharge of Li/LixMn2O4 batteries in relation to corrosion of aluminum cathode substrates. Journal of Power Sources 2001, 102 (1), 16-20. DOI: https://doi.org/10.1016/S0378-7753(01)00781-9.
(84) Rahe, C.; Kelly, S. T.; Rad, M. N.; Sauer, D. U.; Mayer, J.; Figgemeier, E. Nanoscale X-ray imaging of ageing in automotive lithium ion battery cells. Journal of Power Sources 2019, 433, 126631. DOI: https://doi.org/10.1016/j.jpowsour.2019.05.039.
(85) Li, X.; Chen, Y.; Nguyen, C. C.; Nie, M.; Lucht, B. L. Stability of Inactive Components of Cathode Laminates for Lithium Ion Batteries at High Potential. Journal of The Electrochemical Society 2014, 161 (4), A576. DOI: 10.1149/2.060404jes.
(86) Li, H.-F.; Gao, J.-K.; Zhang, S.-L. Effect of Overdischarge on Swelling and Recharge Performance of Lithium Ion Cells. Chinese Journal of Chemistry 2008, 26 (9), 1585-1588, https://doi.org/10.1002/cjoc.200890286. DOI: https://doi.org/10.1002/cjoc.200890286 (acccessed 2023/03/05).
(87) Lee, H.; Cho, J.-J.; Kim, J.; Kim, H.-J. Comparison of Voltammetric Responses over the Cathodic Region in LiPF6 and LiBETI with and without HF. Journal of The Electrochemical Society 2005, 152 (6), A1193. DOI: 10.1149/1.1914748.
(88) Balakrishnan, P. G.; Ramesh, R.; Prem Kumar, T. Safety mechanisms in lithium-ion batteries. Journal of Power Sources 2006, 155 (2), 401-414. DOI: https://doi.org/10.1016/j.jpowsour.2005.12.002.
(89) Tobishima, S.-i.; Takei, K.; Sakurai, Y.; Yamaki, J.-i. Lithium ion cell safety. Journal of Power Sources 2000, 90 (2), 188-195. DOI: https://doi.org/10.1016/S0378-7753(00)00409-2.
(90) Maleki, H.; Howard, J. N. Effects of overdischarge on performance and thermal stability of a Li-ion cell. Journal of Power Sources 2006, 160 (2), 1395-1402. DOI: https://doi.org/10.1016/j.jpowsour.2006.03.043.
(91) Williard, N.; Hendricks, C.; Sood, B.; Chung, J. S.; Pecht, M. Evaluation of Batteries for Safe Air Transport. In Energies, 2016; Vol. 9.
(92) Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. Journal of Power Sources 1997, 68 (2), 320-325. DOI: https://doi.org/10.1016/S0378-7753(97)02517-2.
(93) Behl, W. K.; Plichta, E. J. Stability of aluminum substrates in lithium-ion battery electrolytes. Journal of Power Sources 1998, 72 (2), 132-135. DOI: https://doi.org/10.1016/S0378-7753(97)02700-6.
(94) Taylor, C. D.; Gale, J. D.; Strehblow, H.-H.; Marcus, P. An Introduction to Corrosion Mechanisms and Models. In Molecular Modeling of Corrosion Processes, 2015; pp 1-34.
(95) Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262, 10.1039/C1EE01598B. DOI: 10.1039/C1EE01598B.
(96) Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews 2004, 104 (10), 4303-4418. DOI: 10.1021/cr030203g.
(97) Zhang, S. S.; Jow, T. R. Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources 2002, 109 (2), 458-464. DOI: https://doi.org/10.1016/S0378-7753(02)00110-6.
(98) Guo, L.; Thornton, D. B.; Koronfel, M. A.; Stephens, I. E. L.; Ryan, M. P. Degradation in lithium ion battery current collectors. Journal of Physics: Energy 2021, 3 (3), 032015. DOI: 10.1088/2515-7655/ac0c04.
(99) Peng, C.; Yang, L.; Zhang, Z.; Tachibana, K.; Yang, Y.; Zhao, S. Investigation of the anodic behavior of Al current collector in room temperature ionic liquid electrolytes. Electrochimica Acta 2008, 53 (14), 4764-4772. DOI: https://doi.org/10.1016/j.electacta.2008.01.080.
(100) Li, X.; Deng, S.; Banis, M. N.; Doyle-Davis, K.; Zhang, D.; Zhang, T.; Yang, J.; Divigalpitiya, R.; Brandys, F.; Li, R.; et al. Suppressing Corrosion of Aluminum Foils via Highly Conductive Graphene-like Carbon Coating in High-Performance Lithium-Based Batteries. ACS Applied Materials & Interfaces 2019, 11 (36), 32826-32832. DOI: 10.1021/acsami.9b06442.
(101) Chen, L.; Fan, X.; Hu, E.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Li, J.; Su, D.; Yang, X.; et al. Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3 V Battery. Chem 2019, 5 (4), 896-912. DOI: https://doi.org/10.1016/j.chempr.2019.02.003.
(102) Kaneda, H.; Furuichi, Y.; Ikezawa, A.; Arai, H. Single-Crystal-like Durable LiNiO2 Positive Electrode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2022, 14 (47), 52766-52778. DOI: 10.1021/acsami.2c13421.
(103) Wan, H.; Zhang, B.; Liu, S.; Zhang, J.; Yao, X.; Wang, C. Understanding LiI-LiBr Catalyst Activity for Solid State Li2S/S Reactions in an All-Solid-State Lithium Battery. Nano Letters 2021, 21 (19), 8488-8494. DOI: 10.1021/acs.nanolett.1c03415.
(104) Li, X.; Sun, X. Interface Design and Development of Coating Materials in Lithium–Sulfur Batteries. Advanced Functional Materials 2018, 28 (30), 1801323, https://doi.org/10.1002/adfm.201801323. DOI: https://doi.org/10.1002/adfm.201801323 (acccessed 2023/03/07).
(105) Shembel, E. M.; Apostolova, R. D.; Strizhko, A. S.; Belosokhov, A. I.; Naumenko, A. F.; Rozhkov, V. V. Problems of corrosion and other electrochemical side processes in lithium chemical power sources with non-aqueous electrolytes. Journal of Power Sources 1995, 54 (2), 421-424. DOI: https://doi.org/10.1016/0378-7753(94)02115-J.
(106) Frankel, G. S.; Scully, J. R.; Jahnes, C. V. Repassivation of Pits in Aluminum Thin Films. Journal of The Electrochemical Society 1996, 143 (6), 1834. DOI: 10.1149/1.1836912.
(107) Gao, H.; Ma, T.; Duong, T.; Wang, L.; He, X.; Lyubinetsky, I.; Feng, Z.; Maglia, F.; Lamp, P.; Amine, K.; et al. Protecting Al foils for high-voltage lithium-ion chemistries. Materials Today Energy 2018, 7, 18-26. DOI: https://doi.org/10.1016/j.mtener.2017.12.001.
(108) Dai, C.; Wang, Z.; Liu, K.; Zhu, X.; Liao, X.; Chen, X.; Pan, Y. Effects of cycle times and C-rate on mechanical properties of copper foil and adhesive strength of electrodes in commercial LiCoO2 LIBs. Engineering Failure Analysis 2019, 101, 193-205. DOI: https://doi.org/10.1016/j.engfailanal.2019.03.015.
(109) Whitehead, A. H.; Schreiber, M. Current Collectors for Positive Electrodes of Lithium-Based Batteries. Journal of The Electrochemical Society 2005, 152 (11), A2105. DOI: 10.1149/1.2039587.
(110) Zhao, M.; Xu, M.; Dewald, H. D.; Staniewicz, R. J. Open-Circuit Voltage Study of Graphite-Coated Copper Foil Electrodes in Lithium-Ion Battery Electrolytes. Journal of The Electrochemical Society 2003, 150 (1), A117. DOI: 10.1149/1.1527050.
(111) Diard, J. P.; Le Canut, J. M.; Le Gorrec, B.; Montella, C. Copper electrodissolution in 1M HCl at low current densities. I. General steady-state study. Electrochimica Acta 1998, 43 (16), 2469-2483. DOI: https://doi.org/10.1016/S0013-4686(97)10155-4.
(112) Ning, G.; White, R. E.; Popov, B. N. A generalized cycle life model of rechargeable Li-ion batteries. Electrochimica Acta 2006, 51 (10), 2012-2022. DOI: https://doi.org/10.1016/j.electacta.2005.06.033.
(113) Shkrob, I. A.; Pupek, K. Z.; Abraham, D. P. Allotropic Control: How Certain Fluorinated Carbonate Electrolytes Protect Aluminum Current Collectors by Promoting the Formation of Insoluble Coordination Polymers. The Journal of Physical Chemistry C 2016, 120 (33), 18435-18444. DOI: 10.1021/acs.jpcc.6b05241.
(114) Naoi, K.; Mori, M.; Naruoka, Y.; Lamanna, W. M.; Atanasoski, R. The Surface Film Formed on a Lithium Metal Electrode in a New Imide Electrolyte, Lithium Bis(perfluoroethylsulfonylimide)  [ LiN (  C 2 F 5 SO 2 ) 2 ] Journal of The Electrochemical Society 1999, 146 (2), 462. DOI: 10.1149/1.1391629.
(115) Meng, N.; Zhang, H.; Lianli, S.; Lian, F. Salt-with-Salt, a novel strategy to design the flexible solid electrolyte membrane for highly safe lithium metal batteries. Journal of Membrane Science 2020, 597, 117768. DOI: https://doi.org/10.1016/j.memsci.2019.117768.
(116) Matsumoto, K.; Inoue, K.; Nakahara, K.; Yuge, R.; Noguchi, T.; Utsugi, K. Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte. Journal of Power Sources 2013, 231, 234-238. DOI: https://doi.org/10.1016/j.jpowsour.2012.12.028.
(117) Khaled, K. F. The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions. Electrochimica Acta 2003, 48 (17), 2493-2503. DOI: https://doi.org/10.1016/S0013-4686(03)00291-3.
(118) Hamadi, L.; Mansouri, S.; Oulmi, K.; Kareche, A. The use of amino acids as corrosion inhibitors for metals: A review. Egyptian Journal of Petroleum 2018, 27 (4), 1157-1165. DOI: https://doi.org/10.1016/j.ejpe.2018.04.004.
(119) Mobin, M.; Zehra, S.; Aslam, R. l-Phenylalanine methyl ester hydrochloride as a green corrosion inhibitor for mild steel in hydrochloric acid solution and the effect of surfactant additive. RSC Advances 2016, 6 (7), 5890-5902, 10.1039/C5RA24630J. DOI: 10.1039/C5RA24630J.
(120) Zhao, C.-Z.; Zhao, Q.; Liu, X.; Zheng, J.; Stalin, S.; Zhang, Q.; Archer, L. A. Rechargeable Lithium Metal Batteries with an In-Built Solid-State Polymer Electrolyte and a High Voltage/Loading Ni-Rich Layered Cathode. Advanced Materials 2020, 32 (12), 1905629, https://doi.org/10.1002/adma.201905629. DOI: https://doi.org/10.1002/adma.201905629 (acccessed 2023/03/10).
(121) Kim, H. S.; Jeong, T. G.; Choi, N. S.; Kim, Y. T. The cycling performances of lithium-sulfur batteries in TEGDME/DOL containing LiNO3 additive. Ionics 2013, 19 (12), 1795-1802, Article. DOI: 10.1007/s11581-013-0943-9 Scopus.
(122) Hofmann, A.; Merklein, L.; Schulz, M.; Hanemann, T. Anodic Aluminum Dissolution of LiTFSA Containing Electrolytes for Li-Ion-Batteries. Electrochimica Acta 2014, 116, 388-395. DOI: https://doi.org/10.1016/j.electacta.2013.11.085.
(123) Yamada, Y.; Chiang, C. H.; Sodeyama, K.; Wang, J.; Tateyama, Y.; Yamada, A. Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes. ChemElectroChem 2015, 2 (11), 1687-1694, https://doi.org/10.1002/celc.201500235. DOI: https://doi.org/10.1002/celc.201500235 (acccessed 2023/03/09).
(124) Mussa, A. S.; Liivat, A.; Marzano, F.; Klett, M.; Philippe, B.; Tengstedt, C.; Lindbergh, G.; Edström, K.; Lindström, R. W.; Svens, P. Fast-charging effects on ageing for energy-optimized automotive LiNi1/3Mn1/3Co1/3O2/graphite prismatic lithium-ion cells. Journal of Power Sources 2019, 422, 175-184, Article. DOI: 10.1016/j.jpowsour.2019.02.095 Scopus.
(125) Liu, Q.; Dzwiniel, T. L.; Pupek, K. Z.; Zhang, Z. Corrosion/passivation behavior of concentrated ionic liquid electrolytes and its impact on the Li-ion battery performance. Journal of the Electrochemical Society 2019, 166 (16), A3959-A3964, Article. DOI: 10.1149/2.0161916jes Scopus.
(126) McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A. Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy and Environmental Science 2014, 7 (1), 416-426, Article. DOI: 10.1039/c3ee42351d Scopus.
(127) Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; et al. Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries. Chem 2018, 4 (8), 1877-1892, Article. DOI: 10.1016/j.chempr.2018.05.002 Scopus.
(128) Yu, L.; Chen, S.; Lee, H.; Zhang, L.; Engelhard, M. H.; Li, Q.; Jiao, S.; Liu, J.; Xu, W.; Zhang, J. G. A Localized High-Concentration Electrolyte with Optimized Solvents and Lithium Difluoro(oxalate)borate Additive for Stable Lithium Metal Batteries. ACS Energy Letters 2018, 3 (9), 2059-2067, Article. DOI: 10.1021/acsenergylett.8b00935 Scopus.
(129) Gabryelczyk, A.; Ivanov, S.; Bund, A.; Lota, G. Taguchi method in experimental procedures focused on corrosion process of positive current collector in lithium-ion batteries. Electrochimica Acta 2020, 360, 137011. DOI: https://doi.org/10.1016/j.electacta.2020.137011.
(130) Kanamura, H. Y.; Dias, L. C. D. S.; Da Silva, R. M.; Glasser, C. M.; Patucci, R. M. D. J.; Vellosa, S. A. G.; Antunes, J. L. F. A comparative epidemiologic study of specific antibodies (IgM and IgA) and parasitological findings in an endemic area of low transmission of Schistosoma mansoni. Revista do Instituto de Medicina Tropical de Sao Paulo 1998, 40 (2), 85-91, Article. DOI: 10.1590/S0036-46651998000200004 Scopus.
(131) Meister, P.; Qi, X.; Kloepsch, R.; Krämer, E.; Streipert, B.; Winter, M.; Placke, T. Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness. ChemSusChem 2017, 10 (4), 804-814, Article. DOI: 10.1002/cssc.201601636 Scopus.
(132) Guéguen, A.; Streich, D.; He, M.; Mendez, M.; Chesneau, F. F.; Novák, P.; Berg, E. J. Decomposition of LiPF6 in high energy lithium-ion batteries studied with online electrochemical mass spectrometry. Journal of the Electrochemical Society 2016, 163 (6), A1095-A1100, Article. DOI: 10.1149/2.0981606jes Scopus.
(133) Kim, S. Y.; Song, Y. I.; Wee, J. H.; Kim, C. H.; Ahn, B. W.; Lee, J. W.; Shu, S. J.; Terrones, M.; Kim, Y. A.; Yang, C. M. Few-layer graphene coated current collector for safe and powerful lithium ion battery. Carbon 2019, 153, 495-503, Article. DOI: 10.1016/j.carbon.2019.07.032 Scopus.
(134) Yuan, W.; Zhang, H. Z.; Liu, Q.; Li, G. R.; Gao, X. P. Surface modification of Li(Li0.17Ni0.2Co 0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochimica Acta 2014, 135, 199-207, Article. DOI: 10.1016/j.electacta.2014.04.181 Scopus.
(135) Wang, K.; Wang, C.; Yang, H.; Wang, X.; Cao, F.; Wu, Q.; Peng, H. Vertical graphene nanosheetsmodified Al current collectors for high-performance sodium-ion batteries. Nano Research 2020, 13 (7), 1948-1954, Article. DOI: 10.1007/s12274-020-2780-2 Scopus.
(136) Doberdò, I.; Löffler, N.; Laszczynski, N.; Cericola, D.; Penazzi, N.; Bodoardo, S.; Kim, G. T.; Passerini, S. Enabling aqueous binders for lithium battery cathodes - Carbon coating of aluminum current collector. Journal of Power Sources 2014, 248, 1000-1006, Article. DOI: 10.1016/j.jpowsour.2013.10.039 Scopus.
(137) Guéguen, A.; Streich, D.; He, M.; Mendez, M.; Chesneau, F. F.; Novák, P.; Berg, E. J. Decomposition of LiPF6 in High Energy Lithium-Ion Batteries Studied with Online Electrochemical Mass Spectrometry. Journal of The Electrochemical Society 2016, 163 (6), A1095. DOI: 10.1149/2.0981606jes.
(138) Teucher, G.; Van Gestel, T.; Krott, M.; Gehrke, H.-G.; Eichel, R.-A.; Uhlenbruck, S. Processing of Al-doped ZnO protective thin films on aluminum current collectors for lithium ion batteries. Thin Solid Films 2016, 619, 302-307. DOI: https://doi.org/10.1016/j.tsf.2016.10.047.
(139) Heckmann, A.; Krott, M.; Streipert, B.; Uhlenbruck, S.; Winter, M.; Placke, T. Suppression of Aluminum Current Collector Dissolution by Protective Ceramic Coatings for Better High-Voltage Battery Performance. ChemPhysChem 2017, 18 (1), 156-163, https://doi.org/10.1002/cphc.201601095. DOI: https://doi.org/10.1002/cphc.201601095 (acccessed 2023/03/09).
(140) Lepage, D.; Savignac, L.; Saulnier, M.; Gervais, S.; Schougaard, S. B. Modification of aluminum current collectors with a conductive polymer for application in lithium batteries. Electrochemistry Communications 2019, 102, 1-4. DOI: https://doi.org/10.1016/j.elecom.2019.03.009.
(141) Zhang, X.; Yang, Y.; Zhou, Z. Towards practical lithium-metal anodes. Chemical Society Reviews 2020, 49 (10), 3040-3071, 10.1039/C9CS00838A. DOI: 10.1039/C9CS00838A.
(142) Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 513-537, 10.1039/C3EE40795K. DOI: 10.1039/C3EE40795K.
(143) Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1 (4), 16013. DOI: 10.1038/natrevmats.2016.13.
(144) Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q.; Liaw, B. Y.; Liu, P.; Manthiram, A.; et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy 2019, 4 (3), 180-186. DOI: 10.1038/s41560-019-0338-x.
(145) Wang, J.; Ge, B.; Li, H.; Yang, M.; Wang, J.; Liu, D.; Fernandez, C.; Chen, X.; Peng, Q. Challenges and progresses of lithium-metal batteries. Chemical Engineering Journal 2021, 420, 129739. DOI: https://doi.org/10.1016/j.cej.2021.129739.
(146) Spotte-Smith, E. W. C.; Kam, R. L.; Barter, D.; Xie, X.; Hou, T.; Dwaraknath, S.; Blau, S. M.; Persson, K. A. Toward a Mechanistic Model of Solid–Electrolyte Interphase Formation and Evolution in Lithium-Ion Batteries. ACS Energy Letters 2022, 7 (4), 1446-1453. DOI: 10.1021/acsenergylett.2c00517.
(147) Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M.-H.; Alvarado, J.; Schroeder, M. A.; Yang, Y.; et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572 (7770), 511-515. DOI: 10.1038/s41586-019-1481-z.
(148) Zhang, S. S. Challenges and Strategies for Fast Charge of Li-Ion Batteries. ChemElectroChem 2020, 7 (17), 3569-3577, https://doi.org/10.1002/celc.202000650. DOI: https://doi.org/10.1002/celc.202000650 (acccessed 2023/03/10).
(149) Verma, P.; Maire, P.; Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341. DOI: https://doi.org/10.1016/j.electacta.2010.05.072.
(150) Cai, W.; Yao, Y.-X.; Zhu, G.-L.; Yan, C.; Jiang, L.-L.; He, C.; Huang, J.-Q.; Zhang, Q. A review on energy chemistry of fast-charging anodes. Chemical Society Reviews 2020, 49 (12), 3806-3833, 10.1039/C9CS00728H. DOI: 10.1039/C9CS00728H.
(151) Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnology 2017, 12, 194, Review Article. DOI: 10.1038/nnano.2017.16.
(152) Wu, F.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews 2020, 49 (5), 1569-1614, 10.1039/C7CS00863E. DOI: 10.1039/C7CS00863E.
(153) Li, N.-W.; Yin, Y.-X.; Yang, C.-P.; Guo, Y.-G. An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Advanced Materials 2016, 28 (9), 1853-1858, https://doi.org/10.1002/adma.201504526. DOI: https://doi.org/10.1002/adma.201504526 (acccessed 2023/03/10).
(154) Liu, Y.; Lin, D.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes. Advanced Materials 2017, 29 (10), 1605531, https://doi.org/10.1002/adma.201605531. DOI: https://doi.org/10.1002/adma.201605531 (acccessed 2023/03/10).
(155) Cao, X.; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Matthews, B. E.; Lee, H.; Niu, C.; Arey, B. W.; et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nature Energy 2019, 4 (9), 796-805. DOI: 10.1038/s41560-019-0464-5.
(156) Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; et al. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of the American Chemical Society 2013, 135 (11), 4450-4456. DOI: 10.1021/ja312241y.
(157) Wang, G.; Xiong, X.; Xie, D.; Fu, X.; Ma, X.; Li, Y.; Liu, Y.; Lin, Z.; Yang, C.; Liu, M. Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. Energy Storage Materials 2019, 23, 701-706. DOI: https://doi.org/10.1016/j.ensm.2019.02.026.
(158) Liu, Y.; Lin, D.; Li, Y.; Chen, G.; Pei, A.; Nix, O.; Li, Y.; Cui, Y. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nature Communications 2018, 9 (1), 3656. DOI: 10.1038/s41467-018-06077-5.
(159) Hao, F.; Verma, A.; Mukherjee, P. P. Mechanistic insight into dendrite–SEI interactions for lithium metal electrodes. Journal of Materials Chemistry A 2018, 6 (40), 19664-19671, 10.1039/C8TA07997H. DOI: 10.1039/C8TA07997H.
(160) Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology 2017, 12 (3), 194-206. DOI: 10.1038/nnano.2017.16.
(161) Ghazi, Z. A.; Sun, Z.; Sun, C.; Qi, F.; An, B.; Li, F.; Cheng, H.-M. Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. Small 2019, 15 (32), 1900687, https://doi.org/10.1002/smll.201900687. DOI: https://doi.org/10.1002/smll.201900687 (acccessed 2023/03/11).
(162) Wang, L.; Xie, R.; Chen, B.; Yu, X.; Ma, J.; Li, C.; Hu, Z.; Sun, X.; Xu, C.; Dong, S.; et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nature Communications 2020, 11 (1), 5889. DOI: 10.1038/s41467-020-19726-5.
(163) Wang, X.; Zeng, W.; Hong, L.; Xu, W.; Yang, H.; Wang, F.; Duan, H.; Tang, M.; Jiang, H. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nature Energy 2018, 3 (3), 227-235. DOI: 10.1038/s41560-018-0104-5.
(164) Xiong, S.; Xie, K.; Diao, Y.; Hong, X. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochimica Acta 2012, 83, 78-86. DOI: https://doi.org/10.1016/j.electacta.2012.07.118.
(165) Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Wei, F.; Zhang, J.-G.; Zhang, Q. A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Advanced Science 2016, 3 (3), 1500213, https://doi.org/10.1002/advs.201500213. DOI: https://doi.org/10.1002/advs.201500213 (acccessed 2023/03/11).
(166) Huang, C.-J.; Thirumalraj, B.; Tao, H.-C.; Shitaw, K. N.; Sutiono, H.; Hagos, T. T.; Beyene, T. T.; Kuo, L.-M.; Wang, C.-C.; Wu, S.-H.; et al. Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nature Communications 2021, 12 (1), 1452. DOI: 10.1038/s41467-021-21683-6.
(167) Li, F.; He, J.; Liu, J.; Wu, M.; Hou, Y.; Wang, H.; Qi, S.; Liu, Q.; Hu, J.; Ma, J. Gradient Solid Electrolyte Interphase and Lithium-Ion Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries. Angewandte Chemie International Edition 2021, 60 (12), 6600-6608, https://doi.org/10.1002/anie.202013993. DOI: https://doi.org/10.1002/anie.202013993 (acccessed 2023/03/12).
(168) Chen, C.-Y.; Tsuda, T.; Oshima, Y.; Kuwabata, S. In Situ Monitoring of Lithium Metal Anodes and Their Solid Electrolyte Interphases by Transmission Electron Microscopy. Small Structures 2021, 2 (6), 2100018, https://doi.org/10.1002/sstr.202100018. DOI: https://doi.org/10.1002/sstr.202100018 (acccessed 2023/03/12).
(169) Zhan, Y.-X.; Shi, P.; Zhang, X.-Q.; Ding, F.; Huang, J.-Q.; Jin, Z.; Xiang, R.; Liu, X.; Zhang, Q. The Insights of Lithium Metal Plating/Stripping in Porous Hosts: Progress and Perspectives. Energy Technology 2021, 9 (2), 2000700, https://doi.org/10.1002/ente.202000700. DOI: https://doi.org/10.1002/ente.202000700 (acccessed 2023/03/12).
(170) Huang, K.; Li, Z.; Xu, Q.; Liu, H.; Li, H.; Wang, Y. Lithiophilic CuO Nanoflowers on Ti-Mesh Inducing Lithium Lateral Plating Enabling Stable Lithium-Metal Anodes with Ultrahigh Rates and Ultralong Cycle Life. Advanced Energy Materials 2019, 9 (29), 1900853, https://doi.org/10.1002/aenm.201900853. DOI: https://doi.org/10.1002/aenm.201900853 (acccessed 2023/03/12).
(171) Gao, P.; Wu, H.; Zhang, X.; Jia, H.; Kim, J.-M.; Engelhard, M. H.; Niu, C.; Xu, Z.; Zhang, J.-G.; Xu, W. Optimization of Magnesium-Doped Lithium Metal Anode for High Performance Lithium Metal Batteries through Modeling and Experiment. Angewandte Chemie International Edition 2021, 60 (30), 16506-16513, https://doi.org/10.1002/anie.202103344. DOI: https://doi.org/10.1002/anie.202103344 (acccessed 2023/03/12).
(172) Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F. A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy 2017, 2 (9), 17119. DOI: 10.1038/nenergy.2017.119.
(173) Zhang, X.-Q.; Li, T.; Li, B.-Q.; Zhang, R.; Shi, P.; Yan, C.; Huang, J.-Q.; Zhang, Q. A Sustainable Solid Electrolyte Interphase for High-Energy-Density Lithium Metal Batteries Under Practical Conditions. Angewandte Chemie International Edition 2020, 59 (8), 3252-3257, https://doi.org/10.1002/anie.201911724. DOI: https://doi.org/10.1002/anie.201911724 (acccessed 2023/03/12).
(174) Ju, Z.; Nai, J.; Wang, Y.; Liu, T.; Zheng, J.; Yuan, H.; Sheng, O.; Jin, C.; Zhang, W.; Jin, Z.; et al. Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nature Communications 2020, 11 (1), 488. DOI: 10.1038/s41467-020-14358-1.
(175) Chen, K.-H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. Journal of Materials Chemistry A 2017, 5 (23), 11671-11681, 10.1039/C7TA00371D. DOI: 10.1039/C7TA00371D.
(176) Chen, Z.; Wang, Q.; Amine, K. Understanding the Stability of Aromatic Redox Shuttles for Overcharge Protection of Lithium-Ion Cells. Journal of The Electrochemical Society 2006, 153 (12), A2215. DOI: 10.1149/1.2352048.
(177) Buhrmester, C.; Moshurchak, L. M.; Wang, R. L.; Dahn, J. R. The Use of 2,2,6,6-Tetramethylpiperinyl-Oxides and Derivatives for Redox Shuttle Additives in Li-Ion Cells. Journal of The Electrochemical Society 2006, 153 (10), A1800. DOI: 10.1149/1.2221860.
(178) Jin, C.; Liu, T.; Sheng, O.; Li, M.; Liu, T.; Yuan, Y.; Nai, J.; Ju, Z.; Zhang, W.; Liu, Y.; et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nature Energy 2021, 6 (4), 378-387. DOI: 10.1038/s41560-021-00789-7.
(179) Huang, K.; Bi, S.; Kurt, B.; Xu, C.; Wu, L.; Li, Z.; Feng, G.; Zhang, X. Regulation of SEI Formation by Anion Receptors to Achieve Ultra-Stable Lithium-Metal Batteries. Angewandte Chemie International Edition 2021, 60 (35), 19232-19240, https://doi.org/10.1002/anie.202104671. DOI: https://doi.org/10.1002/anie.202104671 (acccessed 2023/03/12).
(180) Guo, L.; Obot, I. B.; Zheng, X.; Shen, X.; Qiang, Y.; Kaya, S.; Kaya, C. Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms. Applied Surface Science 2017, 406, 301-306. DOI: https://doi.org/10.1016/j.apsusc.2017.02.134.
(181) Zarrouk, A.; Hammouti, B.; Dafali, A.; Bouachrine, M.; Zarrok, H.; Boukhris, S.; Al-Deyab, S. S. A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid. Journal of Saudi Chemical Society 2014, 18 (5), 450-455. DOI: https://doi.org/10.1016/j.jscs.2011.09.011.
(182) Ju, H.; Kai, Z.-P.; Li, Y. Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media: A quantum chemical calculation. Corrosion Science 2008, 50 (3), 865-871. DOI: https://doi.org/10.1016/j.corsci.2007.10.009.
(183) Muthukumar, N.; Ilangovan, A.; Maruthamuthu, S.; Palaniswamy, N. Surface analysis of inhibitor films formed by 1-aminoanthraquinones on API 5L-X60 steel in diesel–water mixtures. Electrochimica Acta 2007, 52 (25), 7183-7192. DOI: https://doi.org/10.1016/j.electacta.2007.05.036.
(184) Khaled, K. F. Electrochemical investigation and modeling of corrosion inhibition of aluminum in molar nitric acid using some sulphur-containing amines. Corrosion Science 2010, 52 (9), 2905-2916. DOI: https://doi.org/10.1016/j.corsci.2010.05.001.
(185) Bhaskara, S.; Fakrudeen, S. P.; Desalegn, T.; Murthy, H. C. A.; Bheemaraju, V. Evaluation of Corrosion Inhibition Efficiency of Aluminum Alloy 2024 by Diaminostilbene and Azobenzene Schiff Bases in 1 M Hydrochloric Acid. International Journal of Corrosion 2021, 2021, 5869915. DOI: 10.1155/2021/5869915.
(186) Akhavan, H.; Izadi, M.; Mohammadi, I.; Shahrabi, T.; Ramezanzadeh, B. The Synergistic Effect of BTA-Co System on the Corrosion Inhibition of Mild Steel in 3.5 wt% NaCl Solution. Journal of The Electrochemical Society 2018, 165 (10), C670. DOI: 10.1149/2.1111810jes.
(187) Moshurchak, L. M.; Lamanna, W. M.; Bulinski, M.; Wang, R. L.; Garsuch, R. R.; Jiang, J.; Magnuson, D.; Triemert, M.; Dahn, J. R. High-Potential Redox Shuttle for Use in Lithium-Ion Batteries. Journal of The Electrochemical Society 2009, 156 (4), A309. DOI: 10.1149/1.3077578.
(188) Kaur, A. P.; Casselman, M. D.; Elliott, C. F.; Parkin, S. R.; Risko, C.; Odom, S. A. Overcharge protection of lithium-ion batteries above 4 V with a perfluorinated phenothiazine derivative. Journal of Materials Chemistry A 2016, 4 (15), 5410-5414, 10.1039/C5TA10375D. DOI: 10.1039/C5TA10375D.
(189) Tomilin, O. B.; Konovalova, E. P.; Yuzhalkin, V. N.; Ryabkina, L. V.; Sanaeva, É. P. Cation radicals of N-substituted phenothiazines. Chemistry of Heterocyclic Compounds 1996, 32 (3), 365-370. DOI: 10.1007/BF01169261.
(190) Zhang, J.; Shkrob, I. A.; Assary, R. S.; Clark, R. J.; Wilson, R. E.; Jiang, S.; Meisner, Q. J.; Zhu, L.; Hu, B.; Zhang, L. An extremely durable redox shuttle additive for overcharge protection of lithium-ion batteries. Materials Today Energy 2019, 13, 308-311. DOI: https://doi.org/10.1016/j.mtener.2019.06.003.
(191) Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451 (7179), 652-657. DOI: 10.1038/451652a.
(192) Richa, K.; Babbitt, C. W.; Gaustad, G.; Wang, X. A future perspective on lithium-ion battery waste flows from electric vehicles. Resources, Conservation and Recycling 2014, 83, 63-76. DOI: https://doi.org/10.1016/j.resconrec.2013.11.008.
(193) Braithwaite, J. W.; Gonzales, A.; Nagasubramanian, G.; Lucero, S. J.; Peebles, D. E.; Ohlhausen, J. A.; Cieslak, W. R. Corrosion of Lithium‐Ion Battery Current Collectors. Journal of The Electrochemical Society 1999, 146 (2), 448-456. DOI: 10.1149/1.1391627.
(194) Li, W.; Dahn, J. R.; Wainwright, D. S. Rechargeable Lithium Batteries with Aqueous Electrolytes. Science 1994, 264 (5162), 1115. DOI: 10.1126/science.264.5162.1115.
(195) Li, S.; Church, B. C. Electrochemical stability of aluminum current collector in aqueous rechargeable lithium-ion battery electrolytes. Journal of Applied Electrochemistry 2017, 47 (7), 839-853. DOI: 10.1007/s10800-017-1081-2.
(196) Wang, Y.; Yi, J.; Xia, Y. Recent Progress in Aqueous Lithium-Ion Batteries. Advanced Energy Materials 2012, 2 (7), 830-840, https://doi.org/10.1002/aenm.201200065. DOI: https://doi.org/10.1002/aenm.201200065 (acccessed 2021/02/15).
(197) Wessells, C.; Huggins, R. A.; Cui, Y. Recent results on aqueous electrolyte cells. Journal of Power Sources 2011, 196 (5), 2884-2888. DOI: https://doi.org/10.1016/j.jpowsour.2010.10.098.
(198) Song, W.; Ji, X.; Zhu, Y.; Zhu, H.; Li, F.; Chen, J.; Lu, F.; Yao, Y.; Banks, C. E. Aqueous Sodium-Ion Battery using a Na3V2(PO4)3 Electrode. ChemElectroChem 2014, 1 (5), 871-876, https://doi.org/10.1002/celc.201300248. DOI: https://doi.org/10.1002/celc.201300248 (acccessed 2021/02/15).
(199) Alias, N.; Mohamad, A. A. Advances of aqueous rechargeable lithium-ion battery: A review. Journal of Power Sources 2015, 274, 237-251. DOI: https://doi.org/10.1016/j.jpowsour.2014.10.009.
(200) Kim, H.; Hong, J.; Park, K.-Y.; Kim, H.; Kim, S.-W.; Kang, K. Aqueous Rechargeable Li and Na Ion Batteries. Chemical Reviews 2014, 114 (23), 11788-11827. DOI: 10.1021/cr500232y.
(201) Moosbauer, D.; Zugmann, S.; Amereller, M.; Gores, H. J. Effect of Ionic Liquids as Additives on Lithium Electrolytes: Conductivity, Electrochemical Stability, and Aluminum Corrosion. Journal of Chemical & Engineering Data 2010, 55 (5), 1794-1798. DOI: 10.1021/je900867m.
(202) Zhang, X.; Winget, B.; Doeff, M.; Evans, J. W.; Devine, T. M. Corrosion of Aluminum Current Collectors in Lithium-Ion Batteries with Electrolytes Containing LiPF[sub 6]. Journal of The Electrochemical Society 2005, 152 (11), B448. DOI: 10.1149/1.2041867.
(203) Yang, H.; Zhuang, G. V.; Ross, P. N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. Journal of Power Sources 2006, 161 (1), 573-579. DOI: https://doi.org/10.1016/j.jpowsour.2006.03.058.
(204) Zhang, X.; Devine, T. M. Identity of Passive Film Formed on Aluminum in Li-Ion Battery Electrolytes with LiPF[sub 6]. Journal of The Electrochemical Society 2006, 153 (9), B344. DOI: 10.1149/1.2214465.
(205) Li, S. Y.; Church, B. C. Effect of aqueous-based cathode slurry pH and immersion time on corrosion of aluminum current collector in lithium-ion batteries. Materials and Corrosion 2016, 67 (9), 978-987, https://doi.org/10.1002/maco.201608843. DOI: https://doi.org/10.1002/maco.201608843 (acccessed 2021/02/16).
(206) Theivaprakasam, S.; Girard, G.; Howlett, P.; Forsyth, M.; Mitra, S.; MacFarlane, D. Passivation behaviour of aluminium current collector in ionic liquid alkyl carbonate (hybrid) electrolytes. npj Materials Degradation 2018, 2 (1), 13. DOI: 10.1038/s41529-018-0033-6.
(207) Jüttner, K.; Lorenz, W. J.; Paatsch, W. The role of surface inhomogeneities in corrosion processes-electrochemical impedance spectroscopy (EIS) on different aluminium oxide films. Corrosion Science 1989, 29 (2), 279-288. DOI: https://doi.org/10.1016/0010-938X(89)90036-X.
(208) Cho, E.; Mun, J.; Chae, O. B.; Kwon, O. M.; Kim, H.-T.; Ryu, J. H.; Kim, Y. G.; Oh, S. M. Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries. Electrochemistry Communications 2012, 22, 1-3. DOI: https://doi.org/10.1016/j.elecom.2012.05.018.
(209) Ahamad, I.; Prasad, R.; Quraishi, M. A. Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media. Corrosion Science 2010, 52 (4), 1472-1481. DOI: https://doi.org/10.1016/j.corsci.2010.01.015.
(210) Ma, H.; Chen, S.; Liu, Z.; Sun, Y. Theoretical elucidation on the inhibition mechanism of pyridine–pyrazole compound: A Hartree Fock study. Journal of Molecular Structure: THEOCHEM 2006, 774 (1), 19-22. DOI: https://doi.org/10.1016/j.theochem.2006.06.044.
(211) Feng, Y.; Chen, S.; Guo, W.; Zhang, Y.; Liu, G. Inhibition of iron corrosion by 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra-(4-chlorophenyl)porphyrin adlayers in 0.5M H2SO4 solutions. Journal of Electroanalytical Chemistry 2007, 602 (1), 115-122. DOI: https://doi.org/10.1016/j.jelechem.2006.12.016.
(212) Douche, D.; Elmsellem, H.; Anouar, E. H.; Guo, L.; Hafez, B.; Tüzün, B.; El Louzi, A.; Bougrin, K.; Karrouchi, K.; Himmi, B. Anti-corrosion performance of 8-hydroxyquinoline derivatives for mild steel in acidic medium: Gravimetric, electrochemical, DFT and molecular dynamics simulation investigations. Journal of Molecular Liquids 2020, 308, 113042. DOI: https://doi.org/10.1016/j.molliq.2020.113042.
(213) Vijayakumar, S.; Kolandaivel, P. Study of static dipole polarizabilities, dipole moments, and chemical hardness for linear CH3–(CC)n–X (X=H, F, Cl, Br, and NO2 and n=1–4) molecules. Journal of Molecular Structure: THEOCHEM 2006, 770 (1), 23-30. DOI: https://doi.org/10.1016/j.theochem.2006.04.030.
(214) Guadalupe, H. J.; García-Ochoa, E.; Maldonado-Rivas, P. J.; Cruz, J.; Pandiyan, T. A combined electrochemical and theoretical study of N,N′-bis(benzimidazole-2yl-ethyl)-1,2-diaminoethane as a new corrosion inhibitor for carbon steel surface. Journal of Electroanalytical Chemistry 2011, 655 (2), 164-172. DOI: https://doi.org/10.1016/j.jelechem.2011.01.039.
(215) Obot, I. B.; Obi-Egbedi, N. O. Indeno-1-one [2,3-b]quinoxaline as an effective inhibitor for the corrosion of mild steel in 0.5M H2SO4 solution. Materials Chemistry and Physics 2010, 122 (2), 325-328. DOI: https://doi.org/10.1016/j.matchemphys.2010.03.037.
(216) El Faydy, M.; Touir, R.; Ebn Touhami, M.; Zarrouk, A.; Jama, C.; Lakhrissi, B.; Olasunkanmi, L. O.; Ebenso, E. E.; Bentiss, F. Corrosion inhibition performance of newly synthesized 5-alkoxymethyl-8-hydroxyquinoline derivatives for carbon steel in 1 M HCl solution: experimental, DFT and Monte Carlo simulation studies. Physical Chemistry Chemical Physics 2018, 20 (30), 20167-20187, 10.1039/C8CP03226B. DOI: 10.1039/C8CP03226B.
(217) Zhang, F.; Tang, Y.; Cao, Z.; Jing, W.; Wu, Z.; Chen, Y. Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl)-benzimidazole for mild steel in hydrochloric acid. Corrosion Science 2012, 61, 1-9. DOI: https://doi.org/10.1016/j.corsci.2012.03.045.
(218) Prakashaiah, B. G.; Vinaya Kumara, D.; Anup Pandith, A.; Nityananda Shetty, A.; Amitha Rani, B. E. Corrosion inhibition of 2024-T3 aluminum alloy in 3.5% NaCl by thiosemicarbazone derivatives. Corrosion Science 2018, 136, 326-338. DOI: https://doi.org/10.1016/j.corsci.2018.03.021.
(219) Baer, D. R.; Artyushkova, K.; Richard Brundle, C.; Castle, J. E.; Engelhard, M. H.; Gaskell, K. J.; Grant, J. T.; Haasch, R. T.; Linford, M. R.; Powell, C. J.; et al. Practical guides for x-ray photoelectron spectroscopy: First steps in planning, conducting, and reporting XPS measurements. Journal of Vacuum Science & Technology A 2019, 37 (3), 031401. DOI: 10.1116/1.5065501 (acccessed 2021/04/19).
(220) Wagner, C.; Naumkin, A.; Kraut-Vass, A.; Allison, J.; Powell, C.; Rumble Jr, J. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 3.4 (Web Version). US Department of Commerce 2003.
(221) Popoola, L. T. Organic green corrosion inhibitors (OGCIs): a critical review. Corrosion Reviews 2019, 37 (2), 71-102. DOI: doi:10.1515/corrrev-2018-0058.
(222) Chiter, F.; Costa, D.; Maurice, V.; Marcus, P. Corrosion inhibition of locally de-passivated surfaces by DFT study of 2-mercaptobenzothiazole on copper. npj Materials Degradation 2021, 5 (1), 52. DOI: 10.1038/s41529-021-00198-x.
(223) Olbasa, B. W.; Fenta, F. W.; Chiu, S.-F.; Tsai, M.-C.; Huang, C.-J.; Jote, B. A.; Beyene, T. T.; Liao, Y.-F.; Wang, C.-H.; Su, W.-N.; et al. High-Rate and Long-Cycle Stability with a Dendrite-Free Zinc Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes. ACS Applied Energy Materials 2020, 3 (5), 4499-4508. DOI: 10.1021/acsaem.0c00183.
(224) Olbasa, B. W.; Huang, C.-J.; Fenta, F. W.; Jiang, S.-K.; Chala, S. A.; Tao, H.-C.; Nikodimos, Y.; Wang, C.-C.; Sheu, H.-S.; Yang, Y.-W.; et al. Highly Reversible Zn Metal Anode Stabilized by Dense and Anion-Derived Passivation Layer Obtained from Concentrated Hybrid Aqueous Electrolyte. Advanced Functional Materials 2021, n/a (n/a), 2103959, https://doi.org/10.1002/adfm.202103959. DOI: https://doi.org/10.1002/adfm.202103959 (acccessed 2022/02/01).
(225) Xia, C.; Guo, J.; Li, P.; Zhang, X.; Alshareef, H. N. Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode. Angewandte Chemie International Edition 2018, 57 (15), 3943-3948, https://doi.org/10.1002/anie.201713291. DOI: https://doi.org/10.1002/anie.201713291 (acccessed 2022/01/02).
(226) Hao, J.; Li, X.; Zeng, X.; Li, D.; Mao, J.; Guo, Z. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy & Environmental Science 2020, 13 (11), 3917-3949, 10.1039/D0EE02162H. DOI: 10.1039/D0EE02162H.
(227) Brütsch, R. Chemical vapour deposition of silicon carbide and its applications. Thin Solid Films 1985, 126 (3), 313-318. DOI: https://doi.org/10.1016/0040-6090(85)90326-8.
(228) Higashi, S.; Lee, S. W.; Lee, J. S.; Takechi, K.; Cui, Y. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nature Communications 2016, 7 (1), 11801. DOI: 10.1038/ncomms11801.
(229) Hu, X.; Xu, L.; Lin, X.; Pecht, M. Battery Lifetime Prognostics. Joule 2020, 4 (2), 310-346. DOI: https://doi.org/10.1016/j.joule.2019.11.018.
(230) Hyams, T. C.; Go, J.; Devine, T. M. Corrosion of Aluminum Current Collectors in High-Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles. Journal of The Electrochemical Society 2007, 154 (8), C390. DOI: 10.1149/1.2742321.
(231) Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M. Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources 2011, 196 (22), 9743-9750. DOI: https://doi.org/10.1016/j.jpowsour.2011.07.071.
(232) Wang, J.; Liu, Z.; Yan, G.; Li, H.; Peng, W.; Li, X.; Song, L.; Shih, K. Improving the electrochemical performance of lithium vanadium fluorophosphate cathode material: Focus on interfacial stability. Journal of Power Sources 2016, 329, 553-557. DOI: https://doi.org/10.1016/j.jpowsour.2016.08.131.
(233) Li, W.; McKinnon, W. R.; Dahn, J. R. Lithium Intercalation from Aqueous Solutions. Journal of The Electrochemical Society 1994, 141 (9), 2310-2316. DOI: 10.1149/1.2055118.
(234) Tang, W.; Zhu, Y.; Hou, Y.; Liu, L.; Wu, Y.; Loh, K. P.; Zhang, H.; Zhu, K. Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy & Environmental Science 2013, 6 (7), 2093-2104, 10.1039/C3EE24249H. DOI: 10.1039/C3EE24249H.
(235) Liu, S.; Ye, S. H.; Li, C. Z.; Pan, G. L.; Gao, X. P. Rechargeable Aqueous Lithium-Ion Battery of TiO2∕LiMn2O4 with a High Voltage. Journal of The Electrochemical Society 2011, 158 (12), A1490. DOI: 10.1149/2.094112jes.
(236) Xu, K.; Angell, C. A. High Anodic Stability of a New Electrolyte Solvent: Unsymmetric Noncyclic Aliphatic Sulfone. Journal of The Electrochemical Society 1998, 145 (4), L70-L72. DOI: 10.1149/1.1838419.
(237) Gheytani, S.; Liang, Y.; Jing, Y.; Xu, J. Q.; Yao, Y. Chromate conversion coated aluminium as a light-weight and corrosion-resistant current collector for aqueous lithium-ion batteries. Journal of Materials Chemistry A 2016, 4 (2), 395-399, 10.1039/C5TA07366A. DOI: 10.1039/C5TA07366A.
(238) Li, X.; Xie, X.; Deng, S.; Du, G. Inhibition effect of two mercaptopyrimidine derivatives on cold rolled steel in HCl solution. Corrosion Science 2015, 92, 136-147. DOI: https://doi.org/10.1016/j.corsci.2014.11.044.
(239) Herrag, L.; Hammouti, B.; Elkadiri, S.; Aouniti, A.; Jama, C.; Vezin, H.; Bentiss, F. Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: Experimental and theoretical investigations. Corrosion Science 2010, 52 (9), 3042-3051. DOI: https://doi.org/10.1016/j.corsci.2010.05.024.
(240) Zarrok, H.; Zarrouk, A.; Hammouti, B.; Salghi, R.; Jama, C.; Bentiss, F. Corrosion control of carbon steel in phosphoric acid by purpald – Weight loss, electrochemical and XPS studies. Corrosion Science 2012, 64, 243-252. DOI: https://doi.org/10.1016/j.corsci.2012.07.018.
(241) Noor, E. A. The inhibition of mild steel corrosion in phosphoric acid solutions by some N-heterocyclic compounds in the salt form. Corrosion Science 2005, 47 (1), 33-55. DOI: https://doi.org/10.1016/j.corsci.2004.05.026.
(242) Li, X.; Deng, S.; Fu, H. Synergistic inhibition effect of 6-benzylaminopurine and iodide ion on the corrosion of cold rolled steel in H3PO4 solution. Corrosion Science 2011, 53 (11), 3704-3711. DOI: https://doi.org/10.1016/j.corsci.2011.07.016.
(243) Behpour, M.; Ghoreishi, S. M.; Soltani, N.; Salavati-Niasari, M.; Hamadanian, M.; Gandomi, A. Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution. Corrosion Science 2008, 50 (8), 2172-2181. DOI: https://doi.org/10.1016/j.corsci.2008.06.020.
(244) Hachama, K.; Khadraoui, A.; Zouikri, M.; Khodja, M.; Khelifa, A.; Echiker, K.; Hammouti, B. Synthesis, characterization and study of methyl 3-(2-oxo-2H-1,4-benzoxazin-3-yl) propanoate as new corrosion inhibitor for carbon steel in 1M H2SO4 solution. Research on Chemical Intermediates 2016, 42 (2), 987-996. DOI: 10.1007/s11164-015-2068-4.
(245) Wang, X.; Yang, H.; Wang, F. An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in different concentration HCl solutions. Corrosion Science 2011, 53 (1), 113-121. DOI: https://doi.org/10.1016/j.corsci.2010.09.029.
(246) El Ibrahimi, B.; Jmiai, A.; Bazzi, L.; El Issami, S. Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arabian Journal of Chemistry 2020, 13 (1), 740-771. DOI: https://doi.org/10.1016/j.arabjc.2017.07.013.
(247) Naoi, K.; Mori, M.; Naruoka, Y.; Lamanna, W. M.; Atanasoski, R. The Surface Film Formed on a Lithium Metal Electrode in a New Imide Electrolyte, Lithium Bis(perfluoroethylsulfonylimide)  [ LiN (  C 2 F 5 SO 2 ) 2 ]. Journal of The Electrochemical Society 1999, 146 (2), 462-469. DOI: 10.1149/1.1391629.
(248) Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M. Ester based electrolyte with lithium bis(trifluoromethane sulfonyl) imide salt for electrochemical storage devices: Physicochemical and electrochemical characterization. Electrochimica Acta 2012, 86, 287-293. DOI: https://doi.org/10.1016/j.electacta.2012.02.080.
(249) Solmaz, R.; Kardaş, G.; Çulha, M.; Yazıcı, B.; Erbil, M. Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochimica Acta 2008, 53 (20), 5941-5952. DOI: https://doi.org/10.1016/j.electacta.2008.03.055.
(250) Solmaz, R.; Kardaş, G.; Yazıcı, B.; Erbil, M. Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid media. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 312 (1), 7-17. DOI: https://doi.org/10.1016/j.colsurfa.2007.06.035.
(251) Al-Sarawy, A. A.; Fouda, A. S.; El-Dein, W. A. S. Some thiazole derivatives as corrosion inhibitors for carbon steel in acidic medium. Desalination 2008, 229 (1), 279-293. DOI: https://doi.org/10.1016/j.desal.2007.09.013.
(252) Musa, A. Y.; Kadhum, A. A. H.; Mohamad, A. B.; Takriff, M. S.; Daud, A. R.; Kamarudin, S. K. On the inhibition of mild steel corrosion by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol. Corrosion Science 2010, 52 (2), 526-533. DOI: https://doi.org/10.1016/j.corsci.2009.10.009.
(253) El Faydy, M.; Galai, M.; Touir, R.; El Assyry, A.; Ebn Touhami, M.; Benali, B. Experimental and theoretical studies for steel XC38 corrosion inhibition in 1 M HCl by N-(8-hydroxyquinolin-5-yl)-methyl)-N-phenylacetamide. Journal of Materials and Environmental Science 2016, 7 (4), 1406-1416.
(254) Morales-Roque, J.; Carrillo-Cárdenas, M.; Jayanthi, N.; Cruz, J.; Pandiyan, T. Theoretical and experimental interpretations of phenol oxidation by the hydroxyl radical. Journal of Molecular Structure: THEOCHEM 2009, 910 (1), 74-79. DOI: https://doi.org/10.1016/j.theochem.2009.06.017.
(255) Senhaji, O.; Taouil, R.; Skalli, M. K.; Bouachrine, M.; Hammouti, B.; Hamidi, M.; Al-Deyab, S. S. Experimental and theoretical study for corrosion inhibition in normal hydrochloric acid solution by some new phophonated compounds. International Journal of Electrochemical Science 2011, 6 (12), 6290-6299.
(256) Khaled, K. F.; Amin, M. A.; Al-Mobarak, N. A. On the corrosion inhibition and adsorption behaviour of some benzotriazole derivatives during copper corrosion in nitric acid solutions: a combined experimental and theoretical study. Journal of Applied Electrochemistry 2010, 40 (3), 601-613. DOI: 10.1007/s10800-009-0035-8.
(257) Goulart, C. M.; Esteves-Souza, A.; Martinez-Huitle, C. A.; Rodrigues, C. J. F.; Maciel, M. A. M.; Echevarria, A. Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors. Corrosion Science 2013, 67, 281-291. DOI: https://doi.org/10.1016/j.corsci.2012.10.029.
(258) Kandemirli, F.; Sagdinc, S. Theoretical study of corrosion inhibition of amides and thiosemicarbazones. Corrosion Science 2007, 49 (5), 2118-2130. DOI: https://doi.org/10.1016/j.corsci.2006.10.026.
(259) Amin, M. A.; Khaled, K. F.; Mohsen, Q.; Arida, H. A. A study of the inhibition of iron corrosion in HCl solutions by some amino acids. Corrosion Science 2010, 52 (5), 1684-1695. DOI: https://doi.org/10.1016/j.corsci.2010.01.019.
(260) Hyjek, P.; Stępień, M.; Kowalik, R.; Sulima, I. Corrosion Resistance of Nickel-Aluminum Sinters Produced by High-Pressure HPHT/SPS Method. In Materials, 2023; Vol. 16.
(261) Hess, A.; Kemnitz, E.; Lippitz, A.; Unger, W. E. S.; Menz, D. H. ESCA, XRD, and IR Characterization of Aluminum Oxide, Hydroxyfluoride, and Fluoride Surfaces in Correlation with Their Catalytic Activity in Heterogeneous Halogen Exchange Reactions. Journal of Catalysis 1994, 148 (1), 270-280. DOI: https://doi.org/10.1006/jcat.1994.1208.
(262) Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes. Applied Surface Science 2015, 357, 2121-2130. DOI: https://doi.org/10.1016/j.apsusc.2015.09.195.
(263) Johansen, H. D.; Brett, C. M. A.; Motheo, A. J. Corrosion protection of aluminium alloy by cerium conversion and conducting polymer duplex coatings. Corrosion Science 2012, 63, 342-350. DOI: https://doi.org/10.1016/j.corsci.2012.06.020.
(264) Akhavan, H.; Izadi, M.; Mohammadi, I.; Shahrabi, T.; Ramezanzadeh, B. The Synergistic Effect of BTA-Co System on the Corrosion Inhibition of Mild Steel in 3.5 wt% NaCl Solution. Journal of The Electrochemical Society 2018, 165 (10), C670-C680. DOI: 10.1149/2.1111810jes.
(265) Lee, J.-M.; 김주완; 임지선; Kim, T.; Kim, S.-D.; 박수진; 이영석. X-ray Photoelectron Spectroscopy Study of Cobalt Supported Multi-walled Carbon Nanotubes Prepared by Different Precursors. Carbon letters 2007, 8 (2), 120-126. DOI: 10.5714/CL.2007.8.2.120.
(266) Abdul Razzaq, A.; Yao, Y.; Shah, R.; Qi, P.; Miao, L.; Chen, M.; Zhao, X.; Peng, Y.; Deng, Z. High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes. Energy Storage Materials 2019, 16, 194-202. DOI: https://doi.org/10.1016/j.ensm.2018.05.006.
(267) Guo, J.; Wen, Z.; Wang, Q.; Jin, J.; Ma, G. A conductive selenized polyacrylonitrile cathode material for re-chargeable lithium batteries with long cycle life. Journal of Materials Chemistry A 2015, 3 (39), 19815-19821, 10.1039/C5TA04510J. DOI: 10.1039/C5TA04510J.
(268) Ye, J.; He, F.; Nie, J.; Cao, Y.; Yang, H.; Ai, X. Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium–sulfur batteries. Journal of Materials Chemistry A 2015, 3 (14), 7406-7412, 10.1039/C4TA06976E. DOI: 10.1039/C4TA06976E.
(269) Dann, A. J.; Fahy, M. R.; Jeynes, C.; Willis, M. R. Iodine implantation of polymeric phthalocyanines. Journal of Physics D: Applied Physics 1986, 19 (11), L217-L224. DOI: 10.1088/0022-3727/19/11/001.
(270) Hiromitsu, I.; Takeuchi, J.; Ito, T. A Pressure Dependent Antiferromagnetism of AlPcF·(TCNE)x Film. Journal of the Physical Society of Japan 1990, 59 (8), 2922-2930. DOI: 10.1143/JPSJ.59.2922 (acccessed 2022/07/24).
(271) Lessard, B. H.; Al-Amar, M.; Grant, T. M.; White, R.; Lu, Z.-H.; Bender, T. P. From chloro to fluoro, expanding the role of aluminum phthalocyanine in organic photovoltaic devices. Journal of Materials Chemistry A 2015, 3 (9), 5047-5053, 10.1039/C4TA06759B. DOI: 10.1039/C4TA06759B.
(272) Souza, A. D. V.; Arruda, C. C.; Fernandes, L.; Antunes, M. L. P.; Kiyohara, P. K.; Salomão, R. Characterization of aluminum hydroxide (Al(OH)3) for use as a porogenic agent in castable ceramics. Journal of the European Ceramic Society 2015, 35 (2), 803-812. DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.09.010.
(273) Elmorsi, M. Corrosion of metal pipes in ground water. M. A Elmorsi, et al. B. Electrochem., 4(9), 785-788,(1988) Sep 1988.
(274) Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angewandte Chemie International Edition 2014, 53 (1), 102-121, https://doi.org/10.1002/anie.201306588. DOI: https://doi.org/10.1002/anie.201306588 (acccessed 2022/07/11).
(275) Yesibolati, N.; Umirov, N.; Koishybay, A.; Omarova, M.; Kurmanbayeva, I.; Zhang, Y.; Zhao, Y.; Bakenov, Z. High Performance Zn/LiFePO4 Aqueous Rechargeable Battery for Large Scale Applications. Electrochimica Acta 2015, 152, 505-511. DOI: https://doi.org/10.1016/j.electacta.2014.11.168.
(276) McCafferty, E.; Hackerman, N. Double Layer Capacitance of Iron and Corrosion Inhibition with Polymethylene Diamines. Journal of The Electrochemical Society 1972, 119 (2), 146. DOI: 10.1149/1.2404150.
(277) Liu, T.; Lin, L.; Bi, X.; Tian, L.; Yang, K.; Liu, J.; Li, M.; Chen, Z.; Lu, J.; Amine, K.; et al. In situ quantification of interphasial chemistry in Li-ion battery. Nature Nanotechnology 2019, 14 (1), 50-56. DOI: 10.1038/s41565-018-0284-y.
(278) Gao, Y.; Yan, Z.; Gray, J. L.; He, X.; Wang, D.; Chen, T.; Huang, Q.; Li, Y. C.; Wang, H.; Kim, S. H.; et al. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature Materials 2019, 18 (4), 384-389. DOI: 10.1038/s41563-019-0305-8.
(279) Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nature Nanotechnology 2018, 13 (4), 337-344. DOI: 10.1038/s41565-018-0061-y.
(280) Zhang, X.-Q.; Cheng, X.-B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials 2017, 27 (10), 1605989, https://doi.org/10.1002/adfm.201605989. DOI: https://doi.org/10.1002/adfm.201605989 (acccessed 2023/01/11).
(281) Tikekar, M. D.; Choudhury, S.; Tu, Z.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy 2016, 1 (9), 16114. DOI: 10.1038/nenergy.2016.114.
(282) Wu, F.; Lee, J. T.; Nitta, N.; Kim, H.; Borodin, O.; Yushin, G. Lithium Iodide as a Promising Electrolyte Additive for Lithium–Sulfur Batteries: Mechanisms of Performance Enhancement. Advanced Materials 2015, 27 (1), 101-108, https://doi.org/10.1002/adma.201404194. DOI: https://doi.org/10.1002/adma.201404194 (acccessed 2023/01/11).
(283) Blomgren, G. E. The Development and Future of Lithium Ion Batteries. Journal of The Electrochemical Society 2017, 164 (1), A5019. DOI: 10.1149/2.0251701jes.
(284) Biensan, P.; Simon, B.; Pérès, J. P.; de Guibert, A.; Broussely, M.; Bodet, J. M.; Perton, F. On safety of lithium-ion cells. Journal of Power Sources 1999, 81-82, 906-912. DOI: https://doi.org/10.1016/S0378-7753(99)00135-4.
(285) Hammami, A.; Raymond, N.; Armand, M. Runaway risk of forming toxic compounds. Nature 2003, 424 (6949), 635-636. DOI: 10.1038/424635b.
(286) Behl, W. K.; Chin, D. T. Electrochemical Overcharge Protection of Rechargeable Lithium Batteries: I . Kinetics of Iodide/Tri‐Iodide/Iodine Redox Reactions on Platinum in Solutions. Journal of The Electrochemical Society 1988, 135 (1), 16. DOI: 10.1149/1.2095545.
(287) Buhrmester, C.; Chen, J.; Moshurchak, L.; Jiang, J.; Wang, R. L.; Dahn, J. R. Studies of Aromatic Redox Shuttle Additives for LiFePO4-Based Li-Ion Cells. Journal of The Electrochemical Society 2005, 152 (12), A2390. DOI: 10.1149/1.2098265.
(288) Zhang, L.; Zhang, Z.; Wu, H.; Amine, K. Novel redox shuttle additive for high-voltage cathode materials. Energy & Environmental Science 2011, 4 (8), 2858-2862, 10.1039/C0EE00733A. DOI: 10.1039/C0EE00733A.
(289) Zhang, L.; Zhang, Z.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection. Energy & Environmental Science 2012, 5 (8), 8204-8207, 10.1039/C2EE21977H. DOI: 10.1039/C2EE21977H.
(290) Kaur, A. P.; Ergun, S.; Elliott, C. F.; Odom, S. A. 3,7-Bis(trifluoromethyl)-N-ethylphenothiazine: a redox shuttle with extensive overcharge protection in lithium-ion batteries. Journal of Materials Chemistry A 2014, 2 (43), 18190-18193, 10.1039/C4TA04463K. DOI: 10.1039/C4TA04463K.
(291) Huang, J.; Cheng, L.; Assary, R. S.; Wang, P.; Xue, Z.; Burrell, A. K.; Curtiss, L. A.; Zhang, L. Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries. Advanced Energy Materials 2015, 5 (6), 1401782, https://doi.org/10.1002/aenm.201401782. DOI: https://doi.org/10.1002/aenm.201401782 (acccessed 2023/01/12).
(292) Huang, J.; Su, L.; Kowalski, J. A.; Barton, J. L.; Ferrandon, M.; Burrell, A. K.; Brushett, F. R.; Zhang, L. A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries. Journal of Materials Chemistry A 2015, 3 (29), 14971-14976, 10.1039/C5TA02380G. DOI: 10.1039/C5TA02380G.
(293) Zhang, L.; Huang, J.; Youssef, K.; Redfern, P. C.; Curtiss, L. A.; Amine, K.; Zhang, Z. Molecular Engineering toward Stabilized Interface: An Electrolyte Additive for High-Performance Li-Ion Battery. Journal of The Electrochemical Society 2014, 161 (14), A2262. DOI: 10.1149/2.0971414jes.
(294) Suo, L.; Borodin, O.; Wang, C.; Xu, K. (Invited) Aqueous Interphase Enables Safe, Green and Low Cost Li-Ion Chemistry. ECS Meeting Abstracts 2016, MA2016-01 (5), 465. DOI: 10.1149/MA2016-01/5/465.
(295) Manthiram, A.; Chemelewski, K.; Lee, E.-S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy & Environmental Science 2014, 7 (4), 1339-1350, 10.1039/C3EE42981D. DOI: 10.1039/C3EE42981D.

無法下載圖示 全文公開日期 2028/07/11 (校內網路)
全文公開日期 2028/07/11 (校外網路)
全文公開日期 2028/07/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE