簡易檢索 / 詳目顯示

研究生: 黃柏堯
Bo-yao Huang
論文名稱: 以共蒸鍍製備氯鋁酞菁與碳七十小分子有機太陽能元件之最佳化研究與探討
Optimization of ClAlPc and C70 based Organic Photovoltaic Device Fabricated by Coevaporation Method
指導教授: 李志堅
Chih-chien Lee
口試委員: 劉舜維
Shun-wei Liu
范慶麟
Ching-lin Fan
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 小分子有機太陽能電池氯鋁酞菁碳七十混合蒸鍍開路電壓
外文關鍵詞: small molecule organic solar cell, ClAlPc, C70, planar-mixed deposition method, open circuit voltage
相關次數: 點閱:221下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中主要探討採用氯鋁酞菁與碳七十為施體與受體,改變不同元件結構對於元件之短路電流(Short Circuit Current, Isc)、開路電壓(Open Circuit Voltage, Voc)、填充因子(Fill Factor, FF)的影響,進而最佳化元件結構製作出高功率轉換效率(Power Conversion Efficiency, PCE)的小分子有機太陽能電池。利用氯鋁酞菁對於紅外線的長波長吸收頻譜,加上碳七十吸收形成較寬的總吸收頻譜,進而增加光電流。透過平面混合結構,使得施體與受體介面大幅增加以提昇光電流,並藉由調變碳七十膜層厚度來調整光場分佈位置,以及調變混合層比例達到元件特性的改善。最後,藉由調整氯鋁酞菁膜層厚度來提昇開路電壓,達到高功率轉換效率的小分子有機太陽能電池。


    In this thesis, we investigate that the influence of the device structure variation on the short circuit current, open circuit voltage and fill factor. We optimize the device structure to enhance the power conversion efficiency of the small molecule organic solar cell. We use chloro-aluminum phthalocyanine (ClAlPc) and C70 as donor and acceptor respectively and expect the wide absorption band of ClAlPc and C70 will increase the short circuit current. Through hybrid planar-mixed structure, the donor and acceptor materials allows the formation of more dissociation sites, where the excitons can be converted into free carriers and contribute to the photocurrents. We adjust the position of optical filed by changing thickness of C70 layer. Carrier mobility rises by tuning the thickness and the ratio of the mixing layer. We observe the improvement not only the efficiency but also the characteristic of devices. At last, we adjust the thickness of ClAlPc layer to improve the open circuit voltage and achieve high power conversion efficiency small molecule organic solar cell.

    總目錄 誌謝 i 中文摘要 ii ABSTRACT iii 總目錄 iv 圖目錄 viii 表目錄 xi Chapter 1 緒論 1 1.1 前言 1 1.2 太陽能電池介紹 3 1.3 無機太陽能電池 5 1.4 有機太陽能電池 6 1.4.1 單層結構有機太陽能電池 6 1.4.2 雙層異質接面結構有機太陽能電池 8 1.4.3 混合層異質接面結構有機太陽能電池 10 1.4.4 平面結合混合層異質接面結構有機太陽能電池 11 1.5 實驗動機 13 Chapter 2 理論基礎 15 2.1 有機太陽能電池工作原理 15 2.2 等效電路 19 2.3 特性曲線 20 2.3.1 開路電壓(Voc) 21 2.3.2 短路電流密度(Jsc) 23 2.3.3 填充因子(FF) 23 2.3.4 功率轉換效率(PCE) 24 2.3.5 串聯電阻(Rs)與並聯電阻(Rsh) 24 2.4 薄膜成長理論 25 2.5 施體材料 26 2.6 受體材料 27 2.7 激子阻擋層 28 Chapter 3 實驗方法 30 3.1 實驗儀器設備 30 3.1.1 超音波震盪機 30 3.1.2 旋轉塗佈機 31 3.1.3 曝光機 31 3.1.4 手套箱 32 3.1.5 氧電漿清潔機 34 3.1.6 熱蒸鍍機 35 3.1.7 熱昇華純化系統 37 3.1.8 探針式膜厚量測儀(α-step) 39 3.1.9 原子力顯微鏡(AFM) 39 3.1.10 光電子光譜儀(AC-2) 40 3.1.11 太陽光模擬器 41 3.1.12 電壓電流特性量測系統 42 3.1.13 外部量子效率量測系統 43 3.1.14 紫外光/可見光光譜儀 44 3.2 實驗前置準備 45 3.2.1 有機材料昇華純化 45 3.2.2 基板圖案化製程 46 3.3 實驗步驟 49 3.3.1 基板清洗 49 3.3.2 氧電漿清潔 49 3.3.3 熱蒸鍍製程 50 3.3.4 元件封裝 51 3.4 量測分析 52 3.4.1 材料薄膜特性量測 52 3.4.2 元件光電特性量測 53 3.4.3 元件外部量子效率量測 53 Chapter 4 結果與討論 55 4.1 ClAlPc材料特性 56 4.1.1 功函數與能階分佈 56 4.1.2 吸收頻譜 57 4.1.3 表面特性 58 4.2 C70 planar結構與hybrid planar-mixed結構 60 4.2.1 結構差異比較 60 4.2.2 電洞傳輸層導入 65 4.3 C70 hybrid planar-mixed結構調變 69 4.3.1 混合層比例調變 69 4.3.2 混合層厚度調變 74 4.3.3 光場調變 78 4.3.4 Hybrid planar-mixed結構之創新改良 80 Chapter 5 結論 86 參考文獻 87 圖目錄 圖 1 1 太陽能電池的分類 3 圖 1 2 單層結構有機太陽能電池示意圖 7 圖 1 3 單層結構有機太陽能電池工作原理示意圖 7 圖 1 4 異質接面結構有機太陽能電池示意圖 8 圖 1 5 異質接面結構有機太陽能電池工作原理示意圖 9 圖 1 6 混合層異質接面結構有機太陽能電池示意圖 10 圖 1 7 混合層異質接面結構有機太陽能電池工作原理示意圖 11 圖 1 8 平面結合混合層異質接面結構有機太陽能電池示意圖 12 圖 1 9 平面結合混合層異質接面結構有機太陽能電池工作原理示意圖 12 圖 2 1 異質接面結構有機太陽能電池工作原理示意圖 15 圖 2 2異質接面結構拆解示意圖(a)激子有效拆解(b)激子無法拆解 17 圖 2 3 有機太陽能電池等效電路 19 圖 2 4 有機太陽能電池照光之電壓對電流特性曲線 21 圖 2 5 異質接面結構能階推算開路電壓 22 圖 2 6 元件串聯與並聯電阻之計算範圍 25 圖 3 1 超音波震盪機清潔示意圖 30 圖 3 2 旋轉塗佈機示意圖 31 圖 3 3 曝光機示意圖 32 圖 3 4 手套箱外觀示意圖 33 圖 3 5 手套箱系統示意圖 34 圖 3 6 氧電漿清潔機示意圖 35 圖 3 7 熱蒸鍍機示意圖 36 圖 3 8 熱昇華純化系統 38 圖 3 9 膜厚量測儀示意圖 39 圖 3 10 原子力顯微鏡量測示意圖 40 圖 3 11 光電子光譜儀量測之參數 41 圖 3 12 太陽光模擬器模擬AM1.5 G頻譜 42 圖 3 13 太陽光模擬電壓電流量測系統示意圖 43 圖 3 14 外部量子效率量測系統示意圖 44 圖 3 15 紫外光/可見光光譜儀量測示意圖 44 圖 3 16 基板黃光微影製程示意圖 47 圖 3 17 基板黃光微影製程 48 圖 3 18 元件結構剖面示意圖 50 圖 3 19 元件結構上視示意圖 51 圖 3 20 元件封裝示意圖 52 圖 4 1 ClAlPc光電子光譜儀量測結果 56 圖 4 2 ClAlPc吸收係數與太陽光AM1.5 G的頻譜比較 58 圖 4 3 ClAlPc之表面形貌(a)未經過昇華(b)經過昇華純化 59 圖 4 4 Planar與hybrid planar-mixed結構元件J-V特性曲線圖 61 圖 4 5 ClAlPc、C60與C70材料吸收頻譜 63 圖 4 6 Planar與hybrid planar-mixed結構元件外部量子效率圖 64 圖 4 7 Hybrid planar-mixed結構不同前處理元件J-V特性曲線圖 66 圖 4 8 MoO3與O2 plasma光電子光譜儀量測結果 68 圖 4 9 Hybrid planar-mixed結構不同混合比例元件J-V特性曲線圖 70 圖 4 10 Hybrid planar-mixed結構不同混合比例元件外部量子效率 73 圖 4 11 Hybrid planar-mixed結構變混合層厚度元件J-V特性曲線圖 74 圖 4 12 Hybrid planar-mixed結構變混合層厚度元件外部量子效率 77 圖 4 13 Hybrid planar-mixed結構變C70厚度元件J-V特性曲線圖 78 圖 4 14 變ClAlPc厚度元件J-V特性曲線圖 82 圖 4 15 MoO3/ClAlPc與MoO3/ClAlPc:C70光電子光譜儀量測結果 83 表目錄 表 1 1 有機與無機太陽能電池比較表 5 表 4 1 planar結構與hybrid planar-mixed結構表 60 表 4 2 Planar與hybrid planar-mixed結構元件特性參數 62 表 4 3 Hybrid planar-mixed結構前處理比較表 66 表 4 4 Hybrid planar-mixed結構不同前處理元件量測參數表 67 表 4 5不同混合比例hybrid planar-mixed結構表 69 表 4 6 Hybrid planar-mixed結構不同混合比例元件量測參數表 71 表 4 7 Hybrid planar-mixed結構變混合層厚度元件量測參數表 76 表 4 8 Hybrid planar-mixed結構變C70厚度元件量測參數表 79 表 4 9 Hybrid planar-mixed改良結構表 80 表 4 10 變ClAlPc厚度元件量測參數表 82

    參考文獻

    [1] S. G. Benka, “Special Issue The Energy Challenge,” Phys. Today, 55, 38 (2002).
    [2] M. I. Hoffert, K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk, and T. M. L. Wigley, “Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet,” Science, 298, 981 (2002).
    [3] M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Prog. Photovoltaics, 9, 123 (2001).
    [4] N. S. Lewis, “Toward Cost-Effective Solar Energy Use,” Science, 315, 798 (2007).
    [5] C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett., 51, 913 (1987).
    [6] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, 395, 151 (1998).
    [7] C. Adachi, M. A. Baldo, S. R. Forrest, and M. E. Thompson, “High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials,” Appl. Phys. Lett., 77, 904 (2000).
    [8] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,” Appl. Phys. Lett, 49, 1210 (1986).
    [9] G. Horowitz, “Field-effect transistors based on short organic molecules,” J. Mater. Chem., 9, 2021 (1999).
    [10] S. R. Forrest, “Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques,” Chem. Rev., 97, 1793 (1997).
    [11] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett., 78, 841 (2001).
    [12] F. C. Krebs, “All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps,” Org. Electron., 10, 761 (2009).
    [13] F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem., 19, 5442 (2009).
    [14] F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing--First public demonstration,” Sol. Energy Mater. Sol. Cells, 93, 422 (2009).
    [15] G. Dennler, C. Lungenschmied, H. Neugebauer, N. S. Sariciftci, M. Latrèche, G. Czeremuszkin, and M. R. Wertheimer, “A new encapsulation solution for flexible organic solar cells,” Thin Solid Films, 511–512, 349 (2006).
    [16] M. Riede, T. Mueller, W. Tress, R. Schueppel, and K. Leo, “Small-molecule solar cells - status and perspectives,” Nanotechnology, 19 (2008).
    [17] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
    [18] Y. P. Yi, V. Coropceanu, and J. L. Bredas, “Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C-60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry,” J. Am. Chem. Soc., 131, 15777 (2009).
    [19] P. Miranda, D. Moses, and A. Heeger, “Ultrafast photogeneration of charged polarons in conjugated polymers,” Phys. Rev. B, 64 (2001).
    [20] X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses, and A. J. Heeger, “Red electrophosphorescence from polymer doped with iridium complex,” Appl. Phys. Lett., 81, 3711 (2002).
    [21] B. A. Gregg and M. C. Hanna, “Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation,” J. Appl. Phys., 93, 3605 (2003).
    [22] R. Sokel and R. C. Hughes, “Numerical analysis of transient photoconductivity in insulators,” J. Appl. Phys., 53, 7414 (1982).
    [23] L. D. Pulfry, Photovoltaic Power Generation. (Van Nostrand Reinhold Co., New York, 1978).
    [24] A. E. Becquerel, “Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques,” C. R. Acad. Sci., 9, 145 (1839).
    [25] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys., 25, 676 (1954).
    [26] D. Kearns and M. Calvin, “Photovoltaic Effect and Photoconductivity in Laminated Organic Systems,” J. Chem. Phys., 29, 950 (1958).
    [27] C. W. Tang and A. C. Albrecht, “Photovoltaic effects of metal-chlorophyll-a-metal sandwich cells,” J. Chem. Phys., 62, 2139 (1975).
    [28] G. A. Chamberlain, “Organic solar cells: A review,” Sol. Cells, 8, 47 (1983).
    [29] D. Wöhrle and D. Meissner, “Organic Solar Cells,” Adv. Mater., 3, 129 (1991).
    [30] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett., 48, 183 (1986).
    [31] P. Peumans, V. Bulovic, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett., 76, 2650 (2000).
    [32] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science, 270, 1789 (1995).
    [33] B. P. Rand, J. Xue, S. Uchida, and S. R. Forrest, “Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. I. Material properties,” J. Appl. Phys., 98, 124902 (2005).
    [34] T. Tsuzuki, Y. Shirota, J. Rostalski, and D. Meissner, “The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment,” Sol. Energy Mater. Sol. Cells, 61, 1 (2000).
    [35] S. Uchida, J. Xue, B. P. Rand, and S. R. Forrest, “Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer,” Appl. Phys. Lett., 84, 4218 (2004).
    [36] P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature, 425, 158 (2003).
    [37] M. Hiramoto, H. Fujiwara, and M. Yokoyama, “Three-layered organic solar cell with a photoactive interlayer of codeposited pigments,” Appl. Phys. Lett., 58, 1062 (1991).
    [38] M. Hiramoto, H. Fujiwara, and M. Yokoyama, “p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments,” J. Appl. Phys., 72, 3781 (1992).
    [39] J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell,” Adv. Mater., 17, 66 (2005).
    [40] D. Wynands, B. Mannig, M. Riede, K. Leo, E. Brier, E. Reinold, and P. Bauerle, “Organic thin film photovoltaic cells based on planar and mixed heterojunctions between fullerene and a low bandgap oligothiophene,” J. Appl. Phys., 106 (2009).
    [41] J. G. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell,” Adv. Mater., 17, 66 (2005).
    [42] J. H. Schon, C. Kloc, E. Bucher, and B. Batlogg, “Single crystalline pentacene solar cells,” Synth. Met., 115, 177 (2000).
    [43] A. C. Mayer, M. T. Lloyd, D. J. Herman, T. G. Kasen, and G. G. Malliaras, “Postfabrication annealing of pentacene-based photovoltaic cells,” Appl. Phys. Lett., 85, 6272 (2004).
    [44] S. Yoo, B. Domercq, and B. Kippelen, “Efficient thin-film organic solar cells based on pentacene/C-60 heterojunctions,” Appl. Phys. Lett., 85, 5427 (2004).
    [45] W. B. Chen, H. F. Xiang, Z. X. Xu, B. P. Yan, V. A. L. Roy, C. M. Che, and P. T. Lai, “Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer,” Appl. Phys. Lett., 91 (2007).
    [46] R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine,” Appl. Phys. Lett., 91, 3 (2007).
    [47] V. Chauhan, R. Hatton, P. Sullivan, T. Jones, S. W. Cho, L. Piper, A. deMasi, and K. Smith, “Elucidating the factors that determine the open circuit voltage in discrete heterojunction organic photovoltaic cells,” J. Mater. Chem., 20, 1173 (2010).
    [48] H. X. Wei, J. Li, Y. Cai, Z. Q. Xu, S. T. Lee, Y. Q. Li, and J. X. Tang, “Electronic structures of planar and mixed C70/CuPc heterojunctions in organic photovoltaic devices,” Org. Electron., 12, 1422 (2011).
    [49] M. Zhang, H. Wang, H. Tian, Y. Geng, and C. W. Tang, “Bulk Heterojunction Photovoltaic Cells with Low Donor Concentration,” Adv. Mater., 23, 4960 (2011).
    [50] K. Harada, T. Edura, and C. Adachi, “Nanocrystal Growth and Improved Performance of Small Molecule Bulk Heterojunction Solar Cells Composed of a Blend of Chloroaluminum Phthalocyanine and C-70,” Appl. Phys. Express, 3, 3 (2010).
    [51] C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer, “Flexible, long-lived, large-area, organic solar cells,” Sol. Energy Mater. Sol. Cells, 91, 379 (2007).
    [52] S. B. Rim, R. F. Fink, J. C. Schoneboom, P. Erk, and P. Peumans, “Effect of molecular packing on the exciton diffusion length in organic solar cells,” Appl. Phys. Lett., 91, 173504 (2007).
    [53] B. Leckner, “The spectral distribution of solar radiation at the earth's surface--elements of a model,” Sol. Energy, 20, 143 (1978).
    [54] P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys., 93, 3693 (2003).
    [55] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells,” Adv. Mater., 19, 1551 (2007).
    [56] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Charge Carrier Formation in Polythiophene/Fullerene Blend Films Studied by Transient Absorption Spectroscopy,” J. Am. Chem. Soc., 130, 3030 (2008).
    [57] J. L. Bredas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular Understanding of Organic Solar Cells: The Challenges,” Accounts Chem. Res., 42, 1691 (2009).
    [58] A. Jannat, M. F. Rahman, and M. S. H. khan, “A Review Study of Organic Photovoltaic Cell ” Int. J. Sci. Eng. Res., 4, 1 (2013).
    [59] N. Li, B. E. Lassiter, R. R. Lunt, G. Wei, and S. R. Forrest, “Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells,” Appl. Phys. Lett., 94 (2009).
    [60] B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors,” Prog. Photovoltaics, 15, 659 (2007).
    [61] C. Kulshreshtha, J. W. Choi, J.-k. Kim, W. S. Jeon, M. C. Suh, Y. Park, and J. H. Kwon, “Open-circuit voltage dependency on hole-extraction layers in planar heterojunction organic solar cells,” Appl. Phys. Lett., 99, 023308 (2011).
    [62] B. Rand, D. Burk, and S. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells,” Phys. Rev. B, 75, 113527 (2007).
    [63] H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res., 19, 1924 (2004).
    [64] D. Gupta, S. Mukhopadhyay, and K. S. Narayan, “Fill factor in organic solar cells,” Sol. Energy Mater. Sol. Cells, 94, 1309 (2010).
    [65] N. Kaiser, “Review of the fundamentals of thin-film growth,” Applied optics, 41, 3053 (2002).
    [66] D. Gebeyehu, “Bulk-heterojunction photovoltaic devices based on donor–acceptor organic small molecule blends,” Sol. Energy Mater. Sol. Cells, 79, 81 (2003).
    [67] S. Yoo, B. Domercq, and B. Kippelen, “Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions,” Appl. Phys. Lett., 85, 5427 (2004).
    [68] C. W. Chu, Y. Shao, V. Shrotriya, and Y. Yang, “Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions,” Appl. Phys. Lett., 86, 243506 (2005).
    [69] J. Dai, X. Jiang, H. Wang, and D. Yan, “Organic photovoltaic cells with near infrared absorption spectrum,” Appl. Phys. Lett., 91, 253503 (2007).
    [70] R. Salzman, J. Xue, B. Rand, A. Alexander, M. Thompson, and S. Forrest, “The effects of copper phthalocyanine purity on organic solar cell performance,” Org. Electron., 6, 242 (2005).
    [71] H. Kumar, P. Kumar, R. Bhardwaj, G. D. Sharma, S. Chand, S. C. Jain, and V. Kumar, “Broad spectral sensitivity and improved efficiency in CuPc/Sub-Pc organic photovoltaic devices,” J. Phys. Appl. Phys., 42, 015103 (2009).
    [72] X. Sun, Y. Liu, X. Xu, C. Yang, G. Yu, S. Chen, Z. Zhao, W. Qiu, Y. Li, and D. Zhu, “Novel electroactive and photoactive molecular materials based on conjugated donor-acceptor structures for optoelectronic device applications,” J. Phys. Chem. B, 109, 10786 (2005).
    [73] A. Cravino, P. Leriche, O. Alévêque, S. Roquet, and J. Roncali, “Light-Emitting Organic Solar Cells Based on a 3D Conjugated System with Internal Charge Transfer,” Adv. Mater., 18, 3033 (2006).
    [74] K. Schulze, C. Uhrich, R. Schüppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold, and P. Bäuerle, “Efficient Vacuum-Deposited Organic Solar Cells Based on a New Low-Bandgap Oligothiophene and Fullerene C60,” Adv. Mater., 18, 2872 (2006).
    [75] K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, “Enhanced open-circuit voltage in subphthalocyanine/C-60 organic photovoltaic cells,” J. Am. Chem. Soc., 128, 8108 (2006).
    [76] J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alvarez, S. J. Anz, and R. L. Whetten, “Photophysical properties of C60,” J. Phys. Chem., 95, 11 (1991).
    [77] B. Miller, J. M. Rosamilia, G. Dabbagh, R. Tycko, R. C. Haddon, A. J. Muller, W. Wilson, D. W. Murphy, and A. F. Hebard, “Photoelectrochemical behavior of C60 films,” J. Am. Chem. Soc., 113, 6291 (1991).
    [78] S. Morita, A. Zakhidoy, and K. Yashino, “Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescence,” Solid State Comm., 82, 249 (1992).
    [79] M. R. Fraelich and R. B. Weisman, “Triplet states of C60 and C70 in solution: Long intrinsic lifetimes and energy pooling,” J. Phys. Chem., 97, 11145 (1993).
    [80] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science, 258, 1474 (1992).
    [81] E. Frankevich, Y. Maruyama, and H. Ogata, “Mobility of charge carriers in vapor-phase grown C60 single crystal,” Chem. Phys. Lett., 214, 39 (1993).
    [82] L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys., 86, 487 (1999).
    [83] N. S. Sariciftci, “Role of buckminsterfullerene, C60, in organic photoelectric devices,” Prog. Quantum Electron., 19, 131 (1995).
    [84] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Morrati, and A. B. Holmes, “Exciton diffusion and dissociation in a poly(p-phenylenevinylene/C60 heterojunction photovoltaic cell,” Appl. Phys. Lett., 68, 3120 (1996).
    [85] J. Yang and T. Q. Nguyen, “Effects of thin film processing on pentacene/C-60 bilayer solar cell performance,” Org. Electron., 8, 566 (2007).
    [86] S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, “Improved bulk heterojunction organic solar cells employing C70 fullerenes,” Appl. Phys. Lett., 94, 223307 (2009).
    [87] J. Sakai, T. Taima, T. Yamanari, and K. Saito, “Annealing effect in the sexithiophene:C70 small molecule bulk heterojunction organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells, 93, 1149 (2009).
    [88] X. Xi, W. Li, J. Wu, J. Ji, Z. Shi, and G. Li, “A comparative study on the performances of small molecule organic solar cells based on CuPc/C60 and CuPc/C70,” Sol. Energy Mater. Sol. Cells, 94, 2435 (2010).
    [89] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., 79, 126 (2001).
    [90] M. Vogel, S. Doka, C. Breyer, M. C. Lux-Steiner, and K. Fostiropoulos, “On the function of a bathocuproine buffer layer in organic photovoltaic cells,” Appl. Phys. Lett., 89, 163501 (2006).
    [91] K. Kuhnke, R. Becker, M. Epple, and K. Kern, “C60 exciton quenching near metal surfaces,” Phys. Rev. Lett., 79, 3246 (1997).
    [92] H. R. Wu, M. L. Wang, Q. L. Song, Y. Wu, Z. T. Xie, X. D. Gao, X. M. Ding, and X. Y. Hou, “Short-circuiting in fullerene devices studied by in situ electrical measurement in high vacuum and infrared imaging analysis,” Curr. Appl. Phys., 7, 231 (2007).
    [93] N. Wang, J. Yu, Y. Zang, J. Huang, and Y. Jiang, “Effect of buffer layers on the performance of organic photovoltaic cells based on copper phthalocyanine and C60,” Sol. Energy Mater. Sol. Cells, 94, 263 (2010).
    [94] P. He, S. D. Wang, W. K. Wong, L. F. Cheng, C. S. Lee, S. T. Lee, and S. Y. Liu, “Vibrational analysis of oxygen-plasma treated indium tin oxide,” Chem. Phys. Lett., 370, 795 (2003).
    [95] S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” Materials Research Society Bulletin, 30, 28 (2005).
    [96] M. Vogel, J. Strotmann, B. Johnev, M. C. Lux-Steiner, and K. Fostiropoulos, “Influence of nanoscale morphology in small molecule organic solar cells,” Thin Solid Films, 511-512, 367 (2006).
    [97] M. S. Roy, P. Balraju, Y. S. Deol, S. K. Sharma, and G. D. Sharma, “Charge-transport and photocurrent generation in bulk hetero junction based on Chloro-aluminum phthalocyanine (ClAlPc) and Rose Bengal (RB),” J. Mater. Sci., 43, 5551 (2008).
    [98] R. R. Lunt and V. Bulovic, “Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications,” Appl. Phys. Lett., 98, 3 (2011).
    [99] J. A. Macko, R. R. Lunt, T. P. Osedach, P. R. Brown, M. C. Barr, K. K. Gleason, and V. Bulovic, “Multijunction organic photovoltaics with a broad spectral response,” Phys. Chem. Chem. Phys., 14, 14548 (2012).
    [100] S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” Journal of Physics D-Applied Physics, 29, 2750 (1996).
    [101] V. Bhosle, A. Tiwari, and J. Narayan, “Epitaxial growth and properties of MoOx(2 < x < 2.75) films,” J. Appl. Phys., 97, 6 (2005).
    [102] Q. Li, E. C. Walter, W. E. van der Veer, B. J. Murray, J. T. Newberg, E. W. Bohannan, J. A. Switzer, J. C. Hemminger, and R. M. Penner, “Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis,” J. Phys. Chem. B, 109, 3169 (2005).
    [103] V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett., 88 (2006).
    [104] D. W. Zhao, X. W. Sun, C. Y. Jiang, A. K. K. Kyaw, G. Q. Lo, and D. L. Kwong, “Efficient tandem organic solar cells with an Al/MoO3 intermediate layer,” Appl. Phys. Lett., 93, 3 (2008).
    [105] I. Hancox, P. Sullivan, K. V. Chauhan, N. Beaumont, L. A. Rochford, R. A. Hatton, and T. S. Jones, “The effect of a MoOx hole-extracting layer on the performance of organic photovoltaic cells based on small molecule planar heterojunctions,” Org. Electron., 11, 2019 (2010).
    [106] W. C. Chen, X. L. Qiao, J. B. Yang, B. Yu, and D. H. Yan, “Efficient broad-spectrum parallel tandem organic solar cells based on the highly crystalline chloroaluminum phthalocyanine films as the planar layer,” Appl. Phys. Lett., 100, 4 (2012).
    [107] K. V. Chauhan, P. Sullivan, J. L. Yang, and T. S. Jones, “Efficient Organic Photovoltaic Cells through Structural Modification of Chloroaluminum Phthalocyanine/Fullerene Heterojunctions,” J. Phys. Chem. C, 114, 3304 (2010).
    [108] I. Hancox, K. V. Chauhan, P. Sullivan, R. A. Hatton, A. Moshar, C. P. A. Mulcahy, and T. S. Jones, “Increased efficiency of small molecule photovoltaic cells by insertion of a MoO3 hole-extracting layer,” Energy Environ. Sci., 3, 107 (2010).
    [109] B. Verreet, R. Muller, B. P. Rand, K. Vasseur, and P. Heremans, “Structural templating of chloro-aluminum phthalocyanine layers for planar and bulk heterojunction organic solar cells,” Org. Electron., 12, 2131 (2011).
    [110] H. Y. Mao, R. Wang, J. Q. Zhong, S. Zhong, J. D. Lin, X. Z. Wang, Z. K. Chen, and W. Chen, “A high work function anode interfacial layer via mild temperature thermal decomposition of a C60F36 thin film on ITO,” J. Mater. Chem. C, 1, 1491 (2013).
    [111] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer,” Appl. Phys. Lett., 93, 3 (2008).
    [112] R. Pandey, Y. Zou, and R. J. Holmes, “Efficient, bulk heterojunction organic photovoltaic cells based on boron subphthalocyanine chloride-C70,” Appl. Phys. Lett., 101, 033308 (2012).
    [113] K. Kawano and C. Adachi, “Evaluating Carrier Accumulation in Degraded Bulk Heterojunction Organic Solar Cells by a Thermally Stimulated Current Technique,” Adv. Funct. Mater., 19, 3934 (2009).
    [114] P. Kumar, H. Kumar, S. Jain, P. Venkatesu, S. Chand, and V. Kumar, “Effect of Active Layer Thickness on Open Circuit Voltage in Organic Photovoltaic Devices,” Jpn. J. Appl. Phys., 48, 121501 (2009).

    無法下載圖示 全文公開日期 2019/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE