簡易檢索 / 詳目顯示

研究生: 耿緯皓
Wei-Hao Geng
論文名稱: 生醫支架的可降解多層覆膜研究
A Study of Biodegradable Multilayer Thin Film for Biomedical Stent
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 張以全
I-Tsyuen Chang
葉家宏
Chia-Hung Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 126
中文關鍵詞: 可降解高分子多層薄膜膽管支架
外文關鍵詞: Biodegradable Polymer, Multilayer Thin Film, Biliary Stent
相關次數: 點閱:341下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

膽管腫瘤所引起的嚴重問題之一為膽道阻塞。目前膽道阻塞的主要治療方式之一為膽道支架的置入。然而膽道支架在置入後六至八個月則可能再發生阻塞現象。有鑑於此,本研究探討利用可降解多層覆膜改善此問題的可能性。
本研究為了改善膽管支架置入後可能發生的再阻塞現象,探討可用於膽管支架的可降解多層覆膜及其自潔機制。本研究分為兩部分進行,第一部分以交叉沉浸法製作不同可降解材料的高分子薄膜。此製程對於薄膜厚度及均勻度能有良好控制。再使用各薄膜層降解速度不同之特性,使其降解時,底層薄膜快速降解,導致上層之慢速降解層失去支撐進而剝離,達到薄膜自潔之目的。其中在多層膜降解實驗的部分,本研究使用水膠層上覆蓋PLGA層的多層薄膜,以便在短時間內驗證多層膜之自潔特性。
第二部分為探討兩種轉印之方法,在環形結構上製作其結構。首先利用矽微米線狀結構搭配電鍍製程製作可撓性模具,配合鎳鈦合金彈簧進行環形熱壓,並成功在厚度30um的PLGA薄膜上製做出環形結構。由實驗結果得到在壓印時間20分鐘、轉印溫度85°C及轉印壓力0.04MPa的製程條件下具有90.01%的轉寫率。第二為探討使用PDMS軟膜對水膠進行環形轉印的可行性,結果證實此方法可轉印出水膠環形結構,轉寫率達97.7%。此部分初步驗證可降解環形結構之製作方法。此二方法未來將應用在支架上具自潔功能的多層薄膜製作。


Currently in the study of bile duct carcinoma, biliary stenosis is the biggest problem by tumor in the bile duct, and biliary stent as one way of treatment, then it may happen restenosis phenomenon when you place the biliary stent. In this view point, we present the study to explore using multi-layered biodegradable film to improve this problem.
In this research, in order to improve when placing biliary stent may occur restenosis phenomenon, we explore the self-cleaning properties of multilayer film and the method of fabricating the multilayer film. Therefore, this study divided into two parts to research this purpose. The first part is using a shuttle dipping method to fabricate each layer of polymer film, and this process is good for film thickness and uniformity control, and then using different characteristics in degradation rate of each layer, so that bottom film rapidly degraded, resulting a slow degradation of the upper layer loss the support then peel off to achieve the purpose of self-cleaning film. Among the part of multilayer film degradation experiment, we dip the PLGA on the hydrocolloids to verity the self-cleaning by multilayer in the short time.
The second part is to explore the microstructure fabrication by circular imprint methods. First, we use silicon linear microstructure master and electroforming method to fabricate flexible molds, then use a nitinol spring to carry on a circular thermal imprint. It successfully makes circular structures on a 30um thickness PLGA film, and the experimental results indicate the special circular imprint process with duration 20 minutes, temperature 85C and pressure 0.04Mpa can achieve the transfer rate by 90.01%. The second is to explore the feasibility of using PDMS soft mold of endless transfer by hydrocolloids. The results confirmed that the circular PDMS structure can be transferred to circular hydrocolloids structure, even the rate reach 97.7%. This part achieves the fabrication of degradable circular structure. The two methods could be applied to fabricate microstructure circular membranes for biomedical stents in the future.

摘要 Abstract 目錄 圖目錄 表目錄 第一章 、緒論 1-1 研究背景 1-2 研究動機與目的 1-3 論文架構 第二章、文獻回顧 2-1 聚氨酯(Polyurethane,PU)簡介 2-1-1 PU 基本結構 2-1-2 PU合成方法 2-2聚乳酸-甘醇酸高分子(PLGA)簡介 2-3聚乳酸(PLA)高分子簡介 2-3-1 光學活性 2-3-2 分子量 2-3-3 生物可降解性質 2-4 微/奈米轉印技術 2-5薄膜製程 2-6高分子降解 2-7 鎳鈦合金材料介紹 2-8 鎳鈦合金熱處理 第三章、實驗背景與設備 3-1實驗背景 3-2實驗設備 3-2-1 微/奈米轉印機台 3-2.-2 真空熱壓機 3-2-3 光纖雷射系統 3-2-4 擴張設備 3-2-5 壓縮設備 3-2-6 熱風循環烘箱 (Cyclic Oven) 3-3量測儀器 3-3-1 光學顯微鏡 (Optical Microscope, OM) 3-3-2 Z軸量測平台 3-3-3 掃描式電子顯微鏡 3-3-4 綠光表面干涉儀(CCI) 3-3-4 精密量測天平(Analytical Balances) 第四章、實驗規劃 4-1 PU材料製備跟改質測試 4-1-1 材料性質 4-1-2 以交叉dipping法製作PU薄膜 4-1-3 PU/PEG共混薄膜製作 4-1-4 PU-HDMI接枝PEG 4-1-5 PU薄膜表面親水性量測 4-2 PLGA材料及實驗製備 4-2-1 材料性質 4-2-2 以交叉Dipping法製作PLGA membrane 4-2-3 PU/PLGA 薄膜均勻度和厚度量測 4-3 多層膜結構降解實驗 4-3-1 水膠-PLGA薄膜降解 4-3-2 PLGA薄膜降解 4-3-3 PU-PLGA-PLA降解 4-4微米模具熱壓製程 4-4-1矽母模製作 4-4-2電鑄鎳金屬微米模具製備 4-4-3 PU-PLGA壓印 4-4-4 轉寫率評估方式 4-5 環形熱壓轉印實驗 4-5-1 轉印環形模具 4-5-2鎳鈦合金擴張製程和擴張力量測測 4-5-3 環形熱壓轉印製程 4-6 環形轉印實驗 4-6-1 PDMS材料與製備介紹 4--2 環形轉印實驗流程 第五章、實驗結果分析 5-1 PU薄膜改質水接觸角量測 5-2 PU-PLGA薄膜均勻度和厚度量測 5-2-1 PU/PLGA薄膜均勻度測試結果 5-2-2 交叉沉浸厚度之推算 5-3 多層膜降解分析與討論 5-3-1 水膠-PLGA降解實驗結果 5-3-1 PU-PLGA薄膜降解實驗結果 5-3-2 PU-PLGA-PLA薄膜降解實驗結果 5-4 熱壓結果與討論 5-4-1鎳膜製作結果 5-4-2 PLGA薄膜壓印結果與討論 5-5 環形熱壓印結果討論與分析 5-5-1鎳鈦擴張力測試 5-5-2 環形熱壓轉印結果討論 5-6 PDMS環形轉印結果討論 5-6-1 PDMS環形轉印轉印實驗分析 第六章、結論與未來展望 6-1 結論 6-2 未來展望 參考文獻

[1] J.C. Middleton, and A.J Tipton. 2000. 'Synthetic biodegradable polymers as orthopedic devices', Biomaterials, 21: 2335-46.
[2] 張復瑜、張毓廷,中華民國104年8月1號至中華民國106年7月31號,以環行轉印技術開發具自潔功能的膽管覆膜支架(In endless transfer technology to develop a self-cleaning Biliary Covered Stent),編號:MOST 104-2221-E-011-106-MY2
[3] F. Gao, Y Bai, S.R. Ma, F. Liu, Z.S Li. 2010. 'Systematic review: photodynamic therapy for Unresectable cholangiocarcinoma', Journal of Hepato-biliary-pancreatic sciences, Vol. 17, pp.125-31.
[4] D. Fuks , E. Bartoli , R. Delcenserie , T. Yzet, P. Celice , C. Sabbagh , D. Chatelain, J.P. Joly , N. Cheron , and J.L. Dupas. 2009. 'Biliary drainage, photodynamic therapy and chemotherapy for unresectable cholangiocarcinoma with jaundice', Journal of gastroenterology and hepatology, 24: 1745-52.
[5] G.C. Harewood, T.H. Baron, A. Rumalla, K.K. Wang, G.J Gores, L. M Stadheim, and P.C De Groen. 2005. Pilot study to assess patient outcomes following endoscopic application of photodynamic therapy for advanced cholangiocarcinoma', Journal of gastroenterology and hepatology, 20: 415-20.
[6] Y.K. Cheon, T.Y. Lee, S.M. Lee, J.Y. Yoon, and C.S. Shim. 2012. 'Longterm outcome of photodynamic therapy compared with biliary stenting alone in patients with advanced hilar cholangiocarcinoma', HPB, 14: 185-93.
[7] P. Chahal, and T.H. Baron. 2006. 'Endoscopic palliation of cholangiocarcinoma', Current opinion in gastroenterology, 22: 551-60.
[8] J. Bridgewater, P.R. Galle, S.A. Khan, J. M. Llovet, J.W. Park, T. Patel, T.M. Pawlik, and G.J. Gores. 2014. 'Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma', Journal of hepatology, 60: 1268-89.
[9] R.I.R. Macias. 2014. 'Cholangiocarcinoma: biology, clinical management, and pharmacological perspectives', ISRN Hepatology, 2014.
[10] S. Awad, A.M. Zaitoun, and D.N. Lobo. 2011. 'Hepatobiliary and Pancreatic: Blocked metal biliary stent', Journal of gastroenterology and hepatology, 26: 1694-94.
[11] O. Bayer. 1937. Angewandte Chemie, A59 257.
[12] 陳昭瑋,中華民國103年7月,改善聚胺酯薄膜材料阻燃性質之研究(Improving the Flame Retardancy of Polyurethane Film),國立中山大學材料與光電工程學系碩士班
[13] G. Oertel, and L. Abele. 1985. Polyurethane handbook: chemistry, raw materials, processing, application, properties (Hanser Publishers. Distributed in USA by Scientific and Technical Books, Macmillan).
[14] C. Prisacariu. 2011. Polyurethane elastomers: from morphology to mechanical aspects (Springer Science & Business Media).
[15] 李喬賓,中華民國九十三年七月,PLGA 奈米粒子之製備及表面修飾對細胞標的化能力之探討(Effect of surface modification of PLGA nanoparticles on targeting cells),國立雲林科技大學化學工程系碩士班。
[16] 傅佑璋,中華民國九十年六月,聚乳酸(PLA)及乳酸/羥基乙酸共聚合物(PLGA)於抗癌藥物傳輸系統之研究(The study of polylactide and Polylactide-co-glycolide in the anti-cancer drugs delivery stem),國立中央大學化學工程研究所。
[17] A. K. Schneider. 1955."Polymers of high melting lactide", U.S. Patent, NO.2703316
[18] T. Ouchi, T. Minari, and Y. Ohya. 2004. 'Synthesis of poly (L‐lactide)‐grafted pullulan through coupling reaction between amino group end‐capped poly (L‐lactide) and carboxymethyl pullulan and its aggregation behavior in water', Journal of Polymer Science Part A: Polymer Chemistry, 42: 5482-87.
[19] H.S. Kim, M.O. Hwang, M.N. Kim, and J.S. Yoon. 2006. 'Preparation of high‐molecular‐weight poly (L‐lactic acid)‐based polymers through direct condensation polymerization in bulk state', Journal of applied polymer science, 100: 466-72.
[20] N. A. Higgins. 1982. "Condensation polymers of hydroxyacetic acid", U.S. Patent, NO.2676945.
[21] J. W. Leenslag. 1982."Poly(L-lactide) and its biomedical applications", PhD. Thesis, University of Groningen, The Netherlands.
[22] H.J. Lehermeier, J.R. Dorgan, and J.D. Way. 2001. 'Gas permeation properties of poly (lactic acid)', Journal of membrane science, 190: 243-51.
[23] J.C. Bogaert, and P. Coszach. 2000. "Poly (lactic acids): a potential solution to plastic waste dilemma." In Macromolecular symposia, 287-303. Wiley Online Library.
[24] R. Jain, N. H. Shah, A.W. Malick, and C.T. Rhodes. 1998. 'Controlled drug delivery by biodegradable poly (ester) devices: different preparative approaches', Drug development and industrial pharmacy, 24: 703-27.
[25] D. Hutmacher, M.B. Hürzeler, and H. Schliephake. 1996. 'A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications', International Journal of Oral & Maxillofacial Implants, 11.
[26] K. Jamshidi, S.H. Hyon, and Y. Ikada. 1988. 'Thermal characterization of polylactides', Polymer, 29: 2229-34.
[27] D. Cam, S.H. Hyon, and Y. Ikada. 1995. 'Degradation of high molecular weight poly (L-lactide) in alkaline medium', Biomaterials, 16: 833-43.
[28] 任杰,中華民國九十二年,可降解與吸收材料(Biodegradable and absorbent material),化學工業出版社。
[29] S.Y. Chou, P.R. Krauss, and P.J Renstrom. 1996. 'Nanoimprint lithography', Journal of Vacuum Science & Technology B, 14: 4129-33.
[30] M. Heckele, W. Bacher, and K.D. Müller. 1998. 'Hot embossing-the molding technique for plastic microstructures', Microsystem technologies, 4: 122-24.
[31] J. L. Charest, L. E. Bryant, A.J. Garcia, and W.P. King. 2004. 'Hot embossing for micropatterned cell substrates', Biomaterials, 25: 4767-75.
[32] Y. Ito, H. Hasuda, M. Morimatsu, N.Takagi, and Y.Hirai. 2005. 'A microfabrication method of a biodegradable polymer chip for a controlled release system', Journal of Biomaterials Science, Polymer Edition, 16: 949-55.
[33] C. Lu, M.M.C. Cheng, A. Benatar, and L.J. Lee. 2007. 'Embossing of high‐aspect‐ratio‐microstructures using sacrificial templates and fast surface heating', Polymer Engineering & Science, 47: 830-40.
[34] 劉凡宇,中華民國104年,以自擴張環形熱壓轉印技術開發生物可降解支架(Utilizing Self-Expandable Circular Thermal Imprint to Fabricate Biodegradable Stents),國立台灣科技大學碩士論文。
[35] H.W. Fang, , K.Y. Li, T.L. Su, C.K.Y. Thomas, J. Chang, P.L. Lin, and W.C.Chang. 2008. 'Dip coating assisted polylactic acid deposition on steel surface: Film thickness affected by drag force and gravity', Materials Letters, 62: 3739-41.
[36] D.H. Kim, S.G. Kang, J. R .Choi, J.N. Byun, Y.C. Kim, and Y.M. Ahn. 2001. 'Evaluation of the biodurability of polyurethane-covered stent using a flow phantom', Korean journal of radiology, 2: 75-79.
[37] M. Zilberman, R.C. Eberhart, and N.D. Schwade . 2002 “In vitro study of drug-loaded ioresorbable films and support structures”, Journal of Biomaterials Science, Polymer Edition, Vol. 13, No. 11, pp.1221–1240.
[38] J.C. Middleton, and A.J. Tipton. 2000. 'Synthetic biodegradable polymers as orthopedic devices', Biomaterials, 21: 2335-46.
[39] A.C.R. Grayson, M.J Cima, and R. Langer. 2005. 'Size and temperature effects on poly (lactic-co-glycolic acid) degradation and microreservoir device performance', Biomaterials, 26: 2137-45.
[40] T. Xi, R. Gao, B. Xu, L. Chen, T. Luo, J. Liu, Y. Wei, and S. Zhong. 2010. 'In vitro and in vivo changes to PLGA/sirolimus coating on drug eluting stents', Biomaterials, 31: 5151-58.
[41] 張銘菘,中華民國97年,形狀記憶合金之有限元素分析(The finite element analysis of the shape memory alloys),國立雲林科技大學碩士論文。
[42] X. Liu, Y. Wang, D. Yang, and M.Qi. 2008. 'The effect of ageing treatment on shape-setting and superelasticity of a nitinol stent', Materials Characterization, 59: 402-06.
[43] D. VOJTĚCH. 2010. 'Influence of heat treatment of shape memory NiTi alloy on its mechanical properties', Czech Academy of Science.
[44] K.W.K. Yeung, K.M.C. Cheung, W.W. Lu, and C.Y. Chung. 2004. 'Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant', Materials Science and Engineering: A, 383: 213-18.
[45] K. Tan, and S.K. Obendorf. 2006. 'Surface modification of microporous polyurethane membrane with poly (ethylene glycol) to develop a novel membrane', Journal of membrane science, 274: 150-58.
[46] 張育唐、陳藹然(中華民國100年5月)。科技部高瞻自然科學與教學平台。取自: http://highscope.ch.ntu.edu.tw/wordpress/?p=27484
[47] 林宜秀,中華民國104年7月,以氣體輔助轉印開發圖案化矽基板(Development of Patterned Silicon Substrate by Gas-Assisted Imprinting),國立台灣科技大學碩士論文。
[48] S.Lan, H.J. Lee, E. Kim, J. Ni, S.H. Lee, X. Lai, J.H. Song, N.K. Lee, and M.G Lee. 2009. 'A parameter study on the micro hot-embossing process of glassy polymer for pattern replication', Microelectronic Engineering, 86: 2369-74.
[49] 王建同,中華民國104年7月,以奈米轉印技術製作微奈米模具複合結構金屬玻璃模具(Fabrication of Bulk Metallic Glass Mold with Hybrid Micro/Nano Structures by Nanoimprint),國立台灣科技大學碩士論文。

無法下載圖示 全文公開日期 2021/08/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE